• This record comes from PubMed

Intranasal application of a bifunctional pertactin-RTX fusion antigen elicits protection of mouse airway mucosa against Bordetella pertussis colonization

. 2025 Apr 29 ; 10 (4) : e0095924. [epub] 20250331

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
GX19-27630X Czech Science Foundation
LX22NPO5103, CZ.02.01.01/00/22_008/0004597,LM2023053, CZ.02.1.01./0.0/0.0/18_046/0015974, LM2023042,LM2018127,CZ.02.01.01/00/22_008/0004597 Ministry of Education, Youth and Sports of the Czech Republic

UNLABELLED: The adenylate cyclase toxin (ACT, AC-Hly, or CyaA) plays a key role in airway infections by Bordetella pertussis and ablates the oxidative burst and opsonophagocytic capacity of sentinel phagocytes. CyaA fragments eliciting toxin-neutralizing antibodies are considered prime antigen candidates for improved acellular pertussis (aP) vaccines but their contribution to aP-mediated protection against B. pertussis infection awaits demonstration. We explored whether hybrid antigens inducing simultaneously CyaA-neutralizing and anti-Prn opsonizing antibody responses can enhance aP-elicited protection of mouse airways from infection. Fusion to the N-terminus of an RTX908 antigen derived from CyaA enabled an accelerated folding of the pertactin passenger domain (rPrn) in function of calcium loading of the RTX908 moiety and conferred on the rPrn-RTX908 fusion antigen a superior capacity to induce functional anti-Prn IgG antibodies. The rPrn-RTX908 fusion antigen also elicited CyaA neutralizing anti-RTX antibodies that relieved the toxin-imposed inhibition of oxidative burst and opsonophagocytic uptake of B. pertussis bacteria by HL-60 cells exposed to physiological concentrations of the CyaA toxin. Intranasal immunization of mice with the rPrn-RTX908 antigen admixed into a PT and FHA-based aP vaccine elicited specific sIgA responses in mucosal secretions (saliva) and conferred a significantly enhanced protection of mouse lung and nose mucosa against B. pertussis infection, yielding a significantly accelerated clearance of bacteria from the infected lungs within a single day from infection. These results demonstrate the added value of anti-CyaA antibodies elicited by intranasal application of the rPrn-RTX908 fusion antigen in the protection of the airway against B. pertussis infection. IMPORTANCE: Despite high vaccine coverage, unexpectedly massive whooping cough outbreaks are currently resurging in the most developed countries using the acellular pertussis (aP) vaccine. Accelerated development of improved aP vaccines, conferring a more complete and longer-lasting protection of the airway from Bordetella pertussis infection, is sorely needed. The highly immunosuppressive RTX adenylate cyclase toxin (CyaA) was proposed as a prime antigen candidate for inclusion into improved aP vaccines. We show here that a soluble RTX-derived antigen fused to the major opsonizing antibody target pertactin (rPrn-RTX908 hybrid) elicits opsonizing and toxin-neutralizing antibody responses that relieve the CyaA-imposed block of bactericidal opsonophagocytic uptake capacities of sentinel phagocytes. Intranasal immunization with the rPrn-RTX908 hybrid antigen then enables a significantly accelerated clearance of B. pertussis bacteria from mouse lungs and superior protection of mouse nasal mucosa from bacterial infection. These results unravel the added value of RTX antigen inclusion into the next generation of aP vaccines.

See more in PubMed

Macina D, Mathur S, Dvaretskaya M, Ekhtiari S, Hayat P, Montmerle M, Daluwatte C. 2023. Estimating the pertussis burden in adolescents and adults in the United States between 2007 and 2019. Hum Vaccin Immunother 19:2208514. doi:10.1080/21645515.2023.2208514 PubMed DOI PMC

Barkoff A-M, Gröndahl-Yli-Hannuksela K, He Q. 2015. Seroprevalence studies of pertussis: what have we learned from different immunized populations. Pathog Dis 73:ftv050. doi:10.1093/femspd/ftv050 PubMed DOI

Yeung KHT, Duclos P, Nelson EAS, Hutubessy RCW. 2017. An update of the global burden of pertussis in children younger than 5 years: a modelling study. Lancet Infect Dis 17:974–980. doi:10.1016/S1473-3099(17)30390-0 PubMed DOI

Althouse BM, Scarpino SV. 2015. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med 13:146. doi:10.1186/s12916-015-0382-8 PubMed DOI PMC

Domenech de Cellès M, Magpantay FMG, King AA, Rohani P. 2016. The pertussis enigma: reconciling epidemiology, immunology and evolution. Proc Biol Sci 283:20152309. doi:10.1098/rspb.2015.2309 PubMed DOI PMC

European Centre for Disease Prevention and Control . 2024. Increase of pertussis cases in the EU/EEA. Available from: https://www.ecdc.europa.eu/en/publications-data/increase-pertussis-cases-eueea

Pawloski LC, Queenan AM, Cassiday PK, Lynch AS, Harrison MJ, Shang W, Williams MM, Bowden KE, Burgos-Rivera B, Qin X, Messonnier N, Tondella ML. 2014. Prevalence and molecular characterization of pertactin-deficient Bordetella pertussis in the United States. Clin Vaccine Immunol 21:119–125. doi:10.1128/CVI.00717-13 PubMed DOI PMC

Martin SW, Pawloski L, Williams M, Weening K, DeBolt C, Qin X, Reynolds L, Kenyon C, Giambrone G, Kudish K, Miller L, Selvage D, Lee A, Skoff TH, Kamiya H, Cassiday PK, Tondella ML, Clark TA. 2015. Pertactin-negative Bordetella pertussis strains: evidence for a possible selective advantage. Clin Infect Dis 60:223–227. doi:10.1093/cid/ciu788 PubMed DOI

Lesne E, Cavell BE, Freire-Martin I, Persaud R, Alexander F, Taylor S, Matheson M, van Els C, Gorringe A. 2020. Acellular pertussis vaccines induce anti-pertactin bactericidal antibodies which drives the emergence of pertactin-negative strains. Front Microbiol 11:2108. doi:10.3389/fmicb.2020.02108 PubMed DOI PMC

Guiso N, Rocancourt M, Szatanik M, Alonso J-M. 1989. Bordetella adenylate cyclase is a virulence associated factor and an immunoprotective antigen. Microb Pathog 7:373–380. doi:10.1016/0882-4010(89)90040-5 PubMed DOI

Betsou F, Sebo P, Guiso N. 1993. CyaC-mediated activation is important not only for toxic but also for protective activities of Bordetella pertussis adenylate cyclase-hemolysin. Infect Immun 61:3583–3589. doi:10.1128/iai.61.9.3583-3589.1993 PubMed DOI PMC

Betsou F, Sebo P, Guiso N. 1995. The C-terminal domain is essential for protective activity of the Bordetella pertussis adenylate cyclase-hemolysin. Infect Immun 63:3309–3315. doi:10.1128/iai.63.9.3309-3315.1995 PubMed DOI PMC

Sebo P, Osicka R, Masin J. 2014. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert Rev Vaccines 13:1215–1227. doi:10.1586/14760584.2014.944900 PubMed DOI

Holubová J, Staněk O, Brázdilová L, Mašín J, Bumba L, Gorringe AR, Alexander F, Šebo P. 2020. Acellular pertussis vaccine inhibits Bordetella pertussis clearance from the nasal mucosa of mice. Vaccines (Basel) 8:695. doi:10.3390/vaccines8040695 PubMed DOI PMC

Boehm DT, Hall JM, Wong TY, DiVenere AM, Sen-Kilic E, Bevere JR, Bradford SD, Blackwood CB, Elkins CM, DeRoos KA, Gray MC, Cooper CG, Varney ME, Maynard JA, Hewlett EL, Barbier M, Damron FH. 2018. Evaluation of adenylate cyclase toxoid antigen in acellular pertussis vaccines by using a Bordetella pertussis challenge model in mice. Infect Immun 86:e00857-17. doi:10.1128/IAI.00857-17 PubMed DOI PMC

DiVenere AM, Amengor D, Silva RP, Goldsmith JA, McLellan JS, Maynard JA. 2022. Blockade of the adenylate cyclase toxin synergizes with opsonizing antibodies to protect mice against Bordetella pertussis. mBio 13:e0152722. doi:10.1128/mbio.01527-22 PubMed DOI PMC

Osicka R, Osickova A, Hasan S, Bumba L, Cerny J, Sebo P. 2015. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife 4:e10766. doi:10.7554/eLife.10766 PubMed DOI PMC

El-Azami-El-Idrissi M, Bauche C, Loucka J, Osicka R, Sebo P, Ladant D, Leclerc C. 2003. Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: role of toxin acylation and identification of the main integrin interaction domain. J Biol Chem 278:38514–38521. doi:10.1074/jbc.M304387200 PubMed DOI

Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardi-Castagnoli P, Guiso N, Ladant D, Leclerc C. 2001. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the αMβ2 integrin (CD11b/CD18). J Exp Med 193:1035–1044. doi:10.1084/jem.193.9.1035 PubMed DOI PMC

Confer DL, Eaton JW. 1982. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217:948–950. doi:10.1126/science.6287574 PubMed DOI

Cerny O, Anderson KE, Stephens LR, Hawkins PT, Sebo P. 2017. cAMP signaling of adenylate cyclase toxin blocks the oxidative burst of neutrophils through Epac-mediated inhibition of phospholipase C activity. J Immunol 198:1285–1296. doi:10.4049/jimmunol.1601309 PubMed DOI

Novak J, Cerny O, Osickova A, Linhartova I, Masin J, Bumba L, Sebo P, Osicka R. 2017. Structure–function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins (Basel) 9:300. doi:10.3390/toxins9100300 PubMed DOI PMC

Guiso N, Szatanik M, Rocancourt M. 1991. Protective activity of Bordetella adenylate cyclase-hemolysin against bacterial colonization. Microb Pathog 11:423–431. doi:10.1016/0882-4010(91)90038-c PubMed DOI

Bumba L, Masin J, Macek P, Wald T, Motlova L, Bibova I, Klimova N, Bednarova L, Veverka V, Kachala M, Svergun DI, Barinka C, Sebo P. 2016. Calcium-driven folding of RTX domain β-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol Cell 62:47–62. doi:10.1016/j.molcel.2016.03.018 PubMed DOI

Motlova L, Klimova N, Fiser R, Sebo P, Bumba L. 2020. Continuous assembly of β-roll structures is implicated in the type I-dependent secretion of large repeat-in-toxins (RTX) proteins. J Mol Biol 432:5696–5710. doi:10.1016/j.jmb.2020.08.020 PubMed DOI

Goldsmith JA, DiVenere AM, Maynard JA, McLellan JS. 2021. Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathog 17:e1009920. doi:10.1371/journal.ppat.1009920 PubMed DOI PMC

Goldsmith JA, DiVenere AM, Maynard JA, McLellan JS. 2022. Structural basis for non-canonical integrin engagement by Bordetella adenylate cyclase toxin. Cell Rep 40:111196. doi:10.1016/j.celrep.2022.111196 PubMed DOI PMC

Chen G, Wang H, Bumba L, Masin J, Sebo P, Li H. 2023. The adenylate cyclase toxin RTX domain follows a series templated folding mechanism with implications for toxin activity. J Biol Chem 299:105150. doi:10.1016/j.jbc.2023.105150 PubMed DOI PMC

Wang X, Stapleton JA, Klesmith JR, Hewlett EL, Whitehead TA, Maynard JA. 2017. Fine epitope mapping of two antibodies neutralizing the Bordetella adenylate cyclase toxin. Biochemistry 56:1324–1336. doi:10.1021/acs.biochem.6b01163 PubMed DOI PMC

Espinosa-Vinals CA, Masin J, Holubova J, Stanek O, Jurnecka D, Osicka R, Sebo P, Bumba L. 2021. Almost half of the RTX domain is dispensable for complement receptor 3 binding and cell-invasive activity of the Bordetella adenylate cyclase toxin. J Biol Chem 297:100833. doi:10.1016/j.jbc.2021.100833 PubMed DOI PMC

Braselmann E, Clark PL. 2012. Autotransporters: the cellular environment reshapes a folding mechanism to promote protein transport. J Phys Chem Lett 3:1063–1071. doi:10.1021/jz201654k PubMed DOI PMC

Junker M, Schuster CC, McDonnell AV, Sorg KA, Finn MC, Berger B, Clark PL. 2006. Pertactin β-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. Proc Natl Acad Sci U S A 103:4918–4923. doi:10.1073/pnas.0507923103 PubMed DOI PMC

Emsley P, Charles IG, Fairweather NF, Isaacs NW. 1996. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 381:90–92. doi:10.1038/381090a0 PubMed DOI

Hijnen M, He Q, Schepp R, Van Gageldonk P, Mertsola J, Mooi FR, Berbers GAM. 2008. Antibody responses to defined regions of the Bordetella pertussis virulence factor pertactin. Scand J Infect Dis 40:94–104. doi:10.1080/00365540701642138 PubMed DOI

Hijnen M, de Voer R, Mooi FR, Schepp R, Moret EE, van Gageldonk P, Smits G, Berbers GAM. 2007. The role of peptide loops of the Bordetella pertussis protein P.69 pertactin in antibody recognition. Vaccine (Auckl) 25:5902–5914. doi:10.1016/j.vaccine.2007.05.039 PubMed DOI

Osickova A, Knoblochova S, Bumba L, Man P, Kalaninova Z, Lepesheva A, Jurnecka D, Cizkova M, Biedermannova L, Goldsmith JA, Maynard JA, McLellan JS, Osicka R, Sebo P, Masin J. 2023. A conserved tryptophan in the acylated segment of RTX toxins controls their β2 integrin–independent cell penetration. J Biol Chem 299:104978. doi:10.1016/j.jbc.2023.104978 PubMed DOI PMC

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. . 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. doi:10.1038/s41586-021-03819-2 PubMed DOI PMC

Stanek O, Masin J, Osicka R, Jurnecka D, Osickova A, Sebo P. 2019. Rapid purification of endotoxin-free RTX toxins. Toxins (Basel) 11:336. doi:10.3390/toxins11060336 PubMed DOI PMC

King AJ, Berbers G, van Oirschot HF, Hoogerhout P, Knipping K, Mooi FR. 2001. Role of the polymorphic region 1 of the Bordetella pertussis protein pertactin in immunity. Microbiology (Reading) 147:2885–2895. doi:10.1099/00221287-147-11-2885 PubMed DOI

Hijnen M, van Gageldonk PGM, Berbers GAM, van Woerkom T, Mooi FR. 2005. The Bordetella pertussis virulence factor P.69 pertactin retains its immunological properties after overproduction in Escherichia coli. Protein Expr Purif 41:106–112. doi:10.1016/j.pep.2005.01.014 PubMed DOI

Everest P, Li J, Douce G, Charles I, De Azavedo J, Chatfield S, Dougan G, Roberts M. 1996. Role of the Bordetella pertussis P.69/pertactin protein and the P.69/pertactin RGD motif in the adherence to and invasion of mammalian cells. Microbiology (Reading) 142-:3261–3268. doi:10.1099/13500872-142-11-3261 PubMed DOI

Cherry JD, Gornbein J, Heininger U, Stehr K. 1998. A search for serologic correlates of immunity to Bordetella pertussis cough illnesses. Vaccine (Auckl) 16:1901–1906. doi:10.1016/S0264-410X(98)00226-6 PubMed DOI

Storsaeter J, Hallander HO, Gustafsson L, Olin P. 1998. Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis. Vaccine (Auckl) 16:1907–1916. doi:10.1016/S0264-410X(98)00227-8 PubMed DOI

Hellwig SMM, Rodriguez ME, Berbers GAM, van de Winkel JGJ, Mooi FR. 2003. Crucial role of antibodies to pertactin in Bordetella pertussis immunity. J Infect Dis 188:738–742. doi:10.1086/377283 PubMed DOI

Olin P, Hallander HO, Gustafsson L, Reizenstein E, Storsaeter J. 2001. How to make sense of pertussis immunogenicity data. Clin Infect Dis 33(Suppl 4):S288–S291. doi:10.1086/322564 PubMed DOI

Kamanova J, Kofronova O, Masin J, Genth H, Vojtova J, Linhartova I, Benada O, Just I, Sebo P. 2008. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J Immunol 181:5587–5597. doi:10.4049/jimmunol.181.8.5587 PubMed DOI

Hasan S, Rahman WU, Sebo P, Osicka R. 2019. Distinct spatiotemporal distribution of bacterial toxin-produced cellular cAMP differentially inhibits opsonophagocytic signaling. Toxins (Basel) 11:362. doi:10.3390/toxins11060362 PubMed DOI PMC

Eby JC, Gray MC, Warfel JM, Paddock CD, Jones TF, Day SR, Bowden J, Poulter MD, Donato GM, Merkel TJ, Hewlett EL. 2013. Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection. Infect Immun 81:1390–1398. doi:10.1128/IAI.00110-13 PubMed DOI PMC

Godfroid F, Denoël P, de Grave D, Schuerman L, Poolman J. 2004. Diphtheria-tetanus-pertussis (DTP) combination vaccines and evaluation of pertussis immune responses. Int J Med Microbiol 294:269–276. doi:10.1016/j.ijmm.2004.07.007 PubMed DOI

Silva RP, DiVenere AM, Amengor D, Maynard JA. 2022. Antibodies binding diverse pertactin epitopes protect mice from Bordetella pertussis infection. J Biol Chem 298:101715. doi:10.1016/j.jbc.2022.101715 PubMed DOI PMC

Wilk MM, Borkner L, Misiak A, Curham L, Allen AC, Mills KHG. 2019. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg Microbes Infect 8:169–185. doi:10.1080/22221751.2018.1564630 PubMed DOI PMC

Dubois V, Chatagnon J, Thiriard A, Bauderlique-Le Roy H, Debrie A-S, Coutte L, Locht C. 2021. Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ Vaccines 6:6. doi:10.1038/s41541-020-00270-8 PubMed DOI PMC

Watanabe NY, Nakagawa Y, Akutsu S, Yamane A. 2005. Effects of stress response to surgical procedures upon secretion of salivary immunoglobulin A in mice. Oral Sci Int 2:96–103. doi:10.1016/S1348-8643(05)80012-6 DOI

Warfel JM, Merkel TJ. 2014. The baboon model of pertussis: effective use and lessons for pertussis vaccines. Expert Rev Vaccines 13:1241–1252. doi:10.1586/14760584.2014.946016 PubMed DOI

Warfel JM, Edwards KM. 2015. Pertussis vaccines and the challenge of inducing durable immunity. Curr Opin Immunol 35:48–54. doi:10.1016/j.coi.2015.05.008 PubMed DOI

Borkner L, Curham LM, Wilk MM, Moran B, Mills KHG. 2021. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol 14:1183–1202. doi:10.1038/s41385-021-00407-5 PubMed DOI PMC

Pearson RD, Symes P, Conboy M, Weiss AA, Hewlett EL. 1987. Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. J Immunol 139:2749–2754. doi:10.4049/jimmunol.139.8.2749 PubMed DOI

Carbonetti NH, Artamonova GV, Andreasen C, Bushar N. 2005. Pertussis toxin and adenylate cyclase toxin provide a one-two punch for establishment of Bordetella pertussis infection of the respiratory tract. Infect Immun 73:2698–2703. doi:10.1128/IAI.73.5.2698-2703.2005 PubMed DOI PMC

Boehm DT, Wolf MA, Hall JM, Wong TY, Sen-Kilic E, Basinger HD, Dziadowicz SA, Gutierrez M de la P, Blackwood CB, Bradford SD, Begley KA, Witt WT, Varney ME, Barbier M, Damron FH. 2019. Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from Bordetella pertussis. NPJ Vaccines 4:40. doi:10.1038/s41541-019-0136-2 PubMed DOI PMC

Shahin R, Leef M, Eldridge J, Hudson M, Gilley R. 1995. Adjuvanticity and protective immunity elicited by Bordetella pertussis antigens encapsulated in poly(dl-lactide-co-glycolide) microspheres. Infect Immun 63:1195–1200. doi:10.1128/iai.63.4.1195-1200.1995 PubMed DOI PMC

Allen AC, Wilk MM, Misiak A, Borkner L, Murphy D, Mills KHG. 2018. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal Immunol 11:1763–1776. doi:10.1038/s41385-018-0080-x PubMed DOI

Shi W, Kou Y, Jiang H, Gao F, Kong W, Su W, Xu F, Jiang C. 2018. Novel intranasal pertussis vaccine based on bacterium-like particles as a mucosal adjuvant. Immunol Lett 198:26–32. doi:10.1016/j.imlet.2018.03.012 PubMed DOI

Najminejad H, Kalantar SM, Mokarram AR, Dabaghian M, Abdollahpour-Alitappeh M, Ebrahimi SM, Tebianian M, Fasihi Ramandi M, Sheikhha MH. 2019. Bordetella pertussis antigens encapsulated into N-trimethyl chitosan nanoparticulate systems as a novel intranasal pertussis vaccine. Artif Cells Nanomed Biotechnol 47:2605–2611. doi:10.1080/21691401.2019.1629948 PubMed DOI

Wolf MA, Boehm DT, DeJong MA, Wong TY, Sen-Kilic E, Hall JM, Blackwood CB, Weaver KL, Kelly CO, Kisamore CA, Bitzer GJ, Bevere JR, Barbier M, Damron FH. 2021. Intranasal immunization with acellular pertussis vaccines results in long-term immunity to Bordetella pertussis in mice. Infect Immun 89:10–1128. doi:10.1128/IAI.00607-20 PubMed DOI PMC

Li Z, Zhang Y, Wang Q, Li Z, Liu Y, Zhang S, Zhang G, Ma G, Luo J, Su Z. 2016. Purification design and practice for pertactin, the third component of acellular pertussis vaccine, from Bordetella pertussis. Vaccine (Auckl) 34:4032–4039. doi:10.1016/j.vaccine.2016.06.029 PubMed DOI

Imaizumi A, Suzuki Y, Ono S, Sato H, Sato Y. 1983. Heptakis(2,6-O-dimethyl)beta-cyclodextrin: a novel growth stimulant for Bordetella pertussis phase I. J Clin Microbiol 17:781–786. doi:10.1128/jcm.17.5.781-786.1983 PubMed DOI PMC

Lothe RA, Frøholm LO, Westre G, Kjennerud U. 1985. Stainer and Scholte’s pertussis medium with an alternative buffer. J Biol Stand 13:129–134. doi:10.1016/s0092-1157(85)80018-4 PubMed DOI

Stainer DW, Scholte MJ. 1970. A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol 63:211–220. doi:10.1099/00221287-63-2-211 PubMed DOI

Ladant D. 1988. Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J Biol Chem 263:2612–2618. doi:10.1016/S0021-9258(18)69110-0 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...