The adenylate cyclase toxin RTX domain follows a series templated folding mechanism with implications for toxin activity

. 2023 Sep ; 299 (9) : 105150. [epub] 20230809

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37567473
Odkazy

PubMed 37567473
PubMed Central PMC10511787
DOI 10.1016/j.jbc.2023.105150
PII: S0021-9258(23)02178-6
Knihovny.cz E-zdroje

Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA's toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.

Zobrazit více v PubMed

Anderson E.L. Prevention of pertussis. Semin. Respir. Infect. 1989;4:284–292. PubMed

Frumkin K. Pertussis and persistent cough: practical, clinical and epidemiologic issues. J. Emerg. Med. 2013;44:889–895. PubMed

Weiss A.A., Hewlett E.L. Virulence factors of Bordetella pertussis. Annu. Rev. Microbiol. 1986;40:661–686. PubMed

Ladant D., Ullmann A. Bordatella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol. 1999;7:172–176. PubMed

Vojtova J., Kamanova J., Sebo P. Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr. Opin. Microbiol. 2006;9:69–75. PubMed

Linhartova I., Bumba L., Masin J., Basler M., Osicka R., Kamanova J., et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. PubMed PMC

Voegele A., O’Brien D.P., Subrini O., Sapay N., Cannella S.E., Enguene V.Y.N., et al. Translocation and calmodulin-activation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis. Pathog. Dis. 2018;76:fty085. PubMed

Hewlett E.L., Gordon V.M., McCaffery J.D., Sutherland W.M., Gray M.C. Adenylate cyclase toxin from Bordetella pertussis. Identification and purification of the holotoxin molecule. J. Biol. Chem. 1989;264:19379–19384. PubMed

Kanonenberg K., Spitz O., Erenburg I.N., Beer T., Schmitt L. Type I secretion system-it takes three and a substrate. FEMS Microbiol. Lett. 2018;365:fny09. PubMed

Morgan J.L.W., Acheson J.F., Zimmer J. Structure of a type-1 secretion system ABC transporter. Structure. 2017;25:522–529. PubMed

Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. PubMed PMC

Gray M., Szabo G., Otero A.S., Gray L., Hewlett E. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J. Biol. Chem. 1998;273:18260–18267. PubMed

Wald T., Petry-Podgorska I., Fiser R., Matousek T., Dedina J., Osicka R., et al. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin. Anal. Biochem. 2014;450:57–62. PubMed

Confer D.L., Eaton J.W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217:948–950. PubMed

Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., et al. Structure-function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins (Basel) 2017;9:300. PubMed PMC

Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., et al. Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol. Cell. 2016;62:47–62. PubMed

Wang H., Gao X., Li H. Single molecule force spectroscopy reveals the mechanical design governing the efficient translocation of the bacterial toxin protein RTX. J. Am. Chem. Soc. 2019;141:20498–20506. PubMed

Bulutoglu B., Banta S. Block V RTX domain of adenylate cyclase from bordetella pertussis: a conformationally dynamic scaffold for protein engineering applications. Toxins (Basel) 2017;9:289. PubMed PMC

Bauche C., Chenal A., Knapp O., Bodenreider C., Benz R., Chaffotte A., et al. Structural and functional characterization of an essential RTX subdomain of Bordetella pertussis adenylate cyclase toxin. J. Biol. Chem. 2006;281:16914–16926. PubMed

Chenal A., Guijarro J.I., Raynal B., Delepierre M., Ladant D. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J. Biol. Chem. 2009;284:1781–1789. PubMed

Chenal A., Karst J.C., Sotomayor Perez A.C., Wozniak A.K., Baron B., England P., et al. Calcium-induced folding and stabilization of the intrinsically disordered RTX domain of the CyaA toxin. Biophys. J. 2010;99:3744–3753. PubMed PMC

Sotomayor Perez A.C., Karst J.C., Davi M., Guijarro J.I., Ladant D., Chenal A. Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the Bordetella pertussis adenylate cyclase toxin. J. Mol. Biol. 2010;397:534–549. PubMed

El-Azami-El-Idrissi M., Bauche C., Loucka J., Osicka R., Sebo P., Ladant D., et al. Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: role of toxin acylation and identification of the main integrin interaction domain. J. Biol. Chem. 2003;278:38514–38521. PubMed

Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife. 2015;4 PubMed PMC

Wang X., Stapleton J.A., Klesmith J.R., Hewlett E.L., Whitehead T.A., Maynard J.A. Fine epitope mapping of two antibodies neutralizing the Bordetella adenylate cyclase toxin. Biochemistry. 2017;56:1324–1336. PubMed PMC

Goldsmith J.A., DiVenere A.M., Maynard J.A., McLellan J.S. Structural basis for non-canonical integrin engagement by Bordetella adenylate cyclase toxin. Cell Rep. 2022;40 PubMed PMC

Motlova L., Klimova N., Fiser R., Sebo P., Bumba L. Continuous assembly of beta-roll structures is implicated in the type I-dependent secretion of large repeat-in-toxins (RTX) proteins. J. Mol. Biol. 2020;432:5696–5710. PubMed

Goldsmith J.A., DiVenere A.M., Maynard J.A., McLellan J.S. Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathog. 2021;17 PubMed PMC

Wang H., Chen G., Li H. Templated folding of the RTX domain of the bacterial toxin adenylate cyclase revealed by single molecule force spectroscopy. Nat. Commun. 2022;13:2784. PubMed PMC

Karst J.C., Ntsogo Enguene V.Y., Cannella S.E., Subrini O., Hessel A., Debard S., et al. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J. Biol. Chem. 2014;289:30702–30716. PubMed PMC

Cecconi C., Shank E.A., Bustamante C., Marqusee S. Direct observation of the three-state folding of a single protein molecule. Science. 2005;309:2057–2060. PubMed

Zhang X., Halvorsen K., Zhang C.Z., Wong W.P., Springer T.A. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science. 2009;324:1330–1334. PubMed PMC

Stigler J., Ziegler F., Gieseke A., Gebhardt J.C., Rief M. The complex folding network of single calmodulin molecules. Science. 2011;334:512–516. PubMed

Neupane K., Foster D.A., Dee D.R., Yu H., Wang F., Woodside M.T. Direct observation of transition paths during the folding of proteins and nucleic acids. Science. 2016;352:239–242. PubMed

Li H., Oberhauser A.F., Fowler S.B., Clarke J., Fernandez J.M. Atomic force microscopy reveals the mechanical design of a modular protein. Proc. Natl. Acad. Sci. U. S. A. 2000;97:6527–6531. PubMed PMC

Li L., Huang H.H., Badilla C.L., Fernandez J.M. Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module. J. Mol. Biol. 2005;345:817–826. PubMed

Bertz M., Rief M. Mechanical unfoldons as building blocks of maltose-binding protein. J. Mol. Biol. 2008;378:447–458. PubMed

Peng Q., Li H. Domain insertion effectively regulates the mechanical unfolding hierarchy of elastomeric proteins: toward engineering multifunctional elastomeric proteins. J. Am. Chem. Soc. 2009;131:14050–14056. PubMed

Espinosa-Vinals C.A., Masin J., Holubova J., Stanek O., Jurnecka D., Osicka R., et al. Almost half of the RTX domain is dispensable for complement receptor 3 binding and cell-invasive activity of the Bordetella adenylate cyclase toxin. J. Biol. Chem. 2021;297 PubMed PMC

Viguera A.R., Serrano L. Loop length, intramolecular diffusion and protein folding. Nat. Struct. Biol. 1997;4:939–946. PubMed

Li H., Wang H.C., Cao Y., Sharma D., Wang M. Configurational entropy modulates the mechanical stability of protein GB1. J. Mol. Biol. 2008;379:871–880. PubMed

Masin J., Basler M., Knapp O., El-Azami-El-Idrissi M., Maier E., Konopasek I., et al. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry. 2005;44:12759–12766. PubMed

Angely C., Ladant D., Planus E., Louis B., Filoche M., Chenal A., et al. Functional and structural consequences of epithelial cell invasion by Bordetella pertussis adenylate cyclase toxin. PLoS One. 2020;15 PubMed PMC

Oberbarnscheidt L., Janissen R., Oesterhelt F. Direct and model free calculation of force-dependent dissociation rates from force spectroscopic data. Biophys. J. 2009;97:L19–L21. PubMed PMC

Bell G.I. Models for the specific adhesion of cells to cells. Science. 1978;200:618–627. PubMed

Evans E. Probing the relation between force--lifetime--and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 2001;30:105–128. PubMed

Betsou F., Sebo P., Guiso N. Cyac-mediated activation is important not only for toxic but also for protective activities of Bordetella-pertussis adenylate cyclase-hemolysin. Infect. Immun. 1993;61:3583–3589. PubMed PMC

Smith S.B., Cui Y., Bustamante C. Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol. 2003;361:134–162. PubMed

Ladant D., Brezin C., Alonso J.M., Crenon I., Guiso N. Bordetella pertussis adenylate cyclase. Purification, characterization, and radioimmunoassay. J. Biol. Chem. 1986;261:16264–16269. PubMed

Karimova G., Ladant D. cAMP assays. CSH Protoc. 2007;2007 pdb prot4739. PubMed

Karimova G., Pidoux J., Ullmann A., Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. U. S. A. 1998;95:5752–5756. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...