The adenylate cyclase toxin RTX domain follows a series templated folding mechanism with implications for toxin activity
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37567473
PubMed Central
PMC10511787
DOI
10.1016/j.jbc.2023.105150
PII: S0021-9258(23)02178-6
Knihovny.cz E-zdroje
- Klíčová slova
- adenylate cyclase, bacterial toxin, optical tweezers, protein folding, single-molecule biophysics,
- Publikační typ
- časopisecké články MeSH
Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA's toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.
Department of Chemistry University of British Columbia Vancouver British Columbia Canada
Institute of Microbiology of the Czech Academy of Sciences v v i Prague Czech Republic
Zobrazit více v PubMed
Anderson E.L. Prevention of pertussis. Semin. Respir. Infect. 1989;4:284–292. PubMed
Frumkin K. Pertussis and persistent cough: practical, clinical and epidemiologic issues. J. Emerg. Med. 2013;44:889–895. PubMed
Weiss A.A., Hewlett E.L. Virulence factors of Bordetella pertussis. Annu. Rev. Microbiol. 1986;40:661–686. PubMed
Ladant D., Ullmann A. Bordatella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol. 1999;7:172–176. PubMed
Vojtova J., Kamanova J., Sebo P. Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr. Opin. Microbiol. 2006;9:69–75. PubMed
Linhartova I., Bumba L., Masin J., Basler M., Osicka R., Kamanova J., et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. PubMed PMC
Voegele A., O’Brien D.P., Subrini O., Sapay N., Cannella S.E., Enguene V.Y.N., et al. Translocation and calmodulin-activation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis. Pathog. Dis. 2018;76:fty085. PubMed
Hewlett E.L., Gordon V.M., McCaffery J.D., Sutherland W.M., Gray M.C. Adenylate cyclase toxin from Bordetella pertussis. Identification and purification of the holotoxin molecule. J. Biol. Chem. 1989;264:19379–19384. PubMed
Kanonenberg K., Spitz O., Erenburg I.N., Beer T., Schmitt L. Type I secretion system-it takes three and a substrate. FEMS Microbiol. Lett. 2018;365:fny09. PubMed
Morgan J.L.W., Acheson J.F., Zimmer J. Structure of a type-1 secretion system ABC transporter. Structure. 2017;25:522–529. PubMed
Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. PubMed PMC
Gray M., Szabo G., Otero A.S., Gray L., Hewlett E. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J. Biol. Chem. 1998;273:18260–18267. PubMed
Wald T., Petry-Podgorska I., Fiser R., Matousek T., Dedina J., Osicka R., et al. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin. Anal. Biochem. 2014;450:57–62. PubMed
Confer D.L., Eaton J.W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217:948–950. PubMed
Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., et al. Structure-function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins (Basel) 2017;9:300. PubMed PMC
Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., et al. Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol. Cell. 2016;62:47–62. PubMed
Wang H., Gao X., Li H. Single molecule force spectroscopy reveals the mechanical design governing the efficient translocation of the bacterial toxin protein RTX. J. Am. Chem. Soc. 2019;141:20498–20506. PubMed
Bulutoglu B., Banta S. Block V RTX domain of adenylate cyclase from bordetella pertussis: a conformationally dynamic scaffold for protein engineering applications. Toxins (Basel) 2017;9:289. PubMed PMC
Bauche C., Chenal A., Knapp O., Bodenreider C., Benz R., Chaffotte A., et al. Structural and functional characterization of an essential RTX subdomain of Bordetella pertussis adenylate cyclase toxin. J. Biol. Chem. 2006;281:16914–16926. PubMed
Chenal A., Guijarro J.I., Raynal B., Delepierre M., Ladant D. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J. Biol. Chem. 2009;284:1781–1789. PubMed
Chenal A., Karst J.C., Sotomayor Perez A.C., Wozniak A.K., Baron B., England P., et al. Calcium-induced folding and stabilization of the intrinsically disordered RTX domain of the CyaA toxin. Biophys. J. 2010;99:3744–3753. PubMed PMC
Sotomayor Perez A.C., Karst J.C., Davi M., Guijarro J.I., Ladant D., Chenal A. Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the Bordetella pertussis adenylate cyclase toxin. J. Mol. Biol. 2010;397:534–549. PubMed
El-Azami-El-Idrissi M., Bauche C., Loucka J., Osicka R., Sebo P., Ladant D., et al. Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: role of toxin acylation and identification of the main integrin interaction domain. J. Biol. Chem. 2003;278:38514–38521. PubMed
Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife. 2015;4 PubMed PMC
Wang X., Stapleton J.A., Klesmith J.R., Hewlett E.L., Whitehead T.A., Maynard J.A. Fine epitope mapping of two antibodies neutralizing the Bordetella adenylate cyclase toxin. Biochemistry. 2017;56:1324–1336. PubMed PMC
Goldsmith J.A., DiVenere A.M., Maynard J.A., McLellan J.S. Structural basis for non-canonical integrin engagement by Bordetella adenylate cyclase toxin. Cell Rep. 2022;40 PubMed PMC
Motlova L., Klimova N., Fiser R., Sebo P., Bumba L. Continuous assembly of beta-roll structures is implicated in the type I-dependent secretion of large repeat-in-toxins (RTX) proteins. J. Mol. Biol. 2020;432:5696–5710. PubMed
Goldsmith J.A., DiVenere A.M., Maynard J.A., McLellan J.S. Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathog. 2021;17 PubMed PMC
Wang H., Chen G., Li H. Templated folding of the RTX domain of the bacterial toxin adenylate cyclase revealed by single molecule force spectroscopy. Nat. Commun. 2022;13:2784. PubMed PMC
Karst J.C., Ntsogo Enguene V.Y., Cannella S.E., Subrini O., Hessel A., Debard S., et al. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J. Biol. Chem. 2014;289:30702–30716. PubMed PMC
Cecconi C., Shank E.A., Bustamante C., Marqusee S. Direct observation of the three-state folding of a single protein molecule. Science. 2005;309:2057–2060. PubMed
Zhang X., Halvorsen K., Zhang C.Z., Wong W.P., Springer T.A. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science. 2009;324:1330–1334. PubMed PMC
Stigler J., Ziegler F., Gieseke A., Gebhardt J.C., Rief M. The complex folding network of single calmodulin molecules. Science. 2011;334:512–516. PubMed
Neupane K., Foster D.A., Dee D.R., Yu H., Wang F., Woodside M.T. Direct observation of transition paths during the folding of proteins and nucleic acids. Science. 2016;352:239–242. PubMed
Li H., Oberhauser A.F., Fowler S.B., Clarke J., Fernandez J.M. Atomic force microscopy reveals the mechanical design of a modular protein. Proc. Natl. Acad. Sci. U. S. A. 2000;97:6527–6531. PubMed PMC
Li L., Huang H.H., Badilla C.L., Fernandez J.M. Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module. J. Mol. Biol. 2005;345:817–826. PubMed
Bertz M., Rief M. Mechanical unfoldons as building blocks of maltose-binding protein. J. Mol. Biol. 2008;378:447–458. PubMed
Peng Q., Li H. Domain insertion effectively regulates the mechanical unfolding hierarchy of elastomeric proteins: toward engineering multifunctional elastomeric proteins. J. Am. Chem. Soc. 2009;131:14050–14056. PubMed
Espinosa-Vinals C.A., Masin J., Holubova J., Stanek O., Jurnecka D., Osicka R., et al. Almost half of the RTX domain is dispensable for complement receptor 3 binding and cell-invasive activity of the Bordetella adenylate cyclase toxin. J. Biol. Chem. 2021;297 PubMed PMC
Viguera A.R., Serrano L. Loop length, intramolecular diffusion and protein folding. Nat. Struct. Biol. 1997;4:939–946. PubMed
Li H., Wang H.C., Cao Y., Sharma D., Wang M. Configurational entropy modulates the mechanical stability of protein GB1. J. Mol. Biol. 2008;379:871–880. PubMed
Masin J., Basler M., Knapp O., El-Azami-El-Idrissi M., Maier E., Konopasek I., et al. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry. 2005;44:12759–12766. PubMed
Angely C., Ladant D., Planus E., Louis B., Filoche M., Chenal A., et al. Functional and structural consequences of epithelial cell invasion by Bordetella pertussis adenylate cyclase toxin. PLoS One. 2020;15 PubMed PMC
Oberbarnscheidt L., Janissen R., Oesterhelt F. Direct and model free calculation of force-dependent dissociation rates from force spectroscopic data. Biophys. J. 2009;97:L19–L21. PubMed PMC
Bell G.I. Models for the specific adhesion of cells to cells. Science. 1978;200:618–627. PubMed
Evans E. Probing the relation between force--lifetime--and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 2001;30:105–128. PubMed
Betsou F., Sebo P., Guiso N. Cyac-mediated activation is important not only for toxic but also for protective activities of Bordetella-pertussis adenylate cyclase-hemolysin. Infect. Immun. 1993;61:3583–3589. PubMed PMC
Smith S.B., Cui Y., Bustamante C. Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol. 2003;361:134–162. PubMed
Ladant D., Brezin C., Alonso J.M., Crenon I., Guiso N. Bordetella pertussis adenylate cyclase. Purification, characterization, and radioimmunoassay. J. Biol. Chem. 1986;261:16264–16269. PubMed
Karimova G., Ladant D. cAMP assays. CSH Protoc. 2007;2007 pdb prot4739. PubMed
Karimova G., Pidoux J., Ullmann A., Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. U. S. A. 1998;95:5752–5756. PubMed PMC