A conserved tryptophan in the acylated segment of RTX toxins controls their β2 integrin-independent cell penetration
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37390987
PubMed Central
PMC10392135
DOI
10.1016/j.jbc.2023.104978
PII: S0021-9258(23)02006-9
Knihovny.cz E-zdroje
- Klíčová slova
- RTX toxin, acylated segment, adenylate cyclase toxin, cytotoxicity, hydrogen/deuterium exchange, thermal stability, tryptophan residue, α-hemolysin, β(2) integrins,
- MeSH
- adenylátcyklasový toxin * chemie genetika metabolismus MeSH
- antigeny CD18 * genetika metabolismus MeSH
- Bordetella pertussis MeSH
- buněčná membrána metabolismus MeSH
- erytrocyty metabolismus MeSH
- konzervovaná sekvence MeSH
- tryptofan * chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasový toxin * MeSH
- antigeny CD18 * MeSH
- tryptofan * MeSH
The acylated Repeats in ToXins (RTX) leukotoxins, the adenylate cyclase toxin (CyaA) or α-hemolysin (HlyA), bind β2 integrins of leukocytes but also penetrate cells lacking these receptors. We show that the indoles of conserved tryptophans in the acylated segments, W876 of CyaA and W579 of HlyA, are crucial for β2 integrin-independent membrane penetration. Substitutions of W876 by aliphatic or aromatic residues did not affect acylation, folding, or the activities of CyaA W876L/F/Y variants on cells expressing high amounts of the β2 integrin CR3. However, toxin activity of CyaA W876L/F/Y on cells lacking CR3 was strongly impaired. Similarly, a W579L substitution selectively reduced HlyA W579L cytotoxicity towards cells lacking β2 integrins. Intriguingly, the W876L/F/Y substitutions increased the thermal stability (Tm) of CyaA by 4 to 8 °C but locally enhanced the accessibility to deuteration of the hydrophobic segment and of the interface of the two acylated loops. W876Q substitution (showing no increase in Tm), or combination of W876F with a cavity-filling V822M substitution (this combination decreasing the Tm closer to that of CyaA), yielded a milder defect of toxin activity on erythrocytes lacking CR3. Furthermore, the activity of CyaA on erythrocytes was also selectively impaired when the interaction of the pyrrolidine of P848 with the indole of W876 was ablated. Hence, the bulky indoles of residues W876 of CyaA, or W579 of HlyA, rule the local positioning of the acylated loops and enable a membrane-penetrating conformation in the absence of RTX toxin docking onto the cell membrane by β2 integrins.
Department of Chemical Engineering The University of Texas at Austin Austin USA
Department of Molecular Biosciences The University of Texas at Austin Austin USA
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Filipi K., Rahman W.U., Osickova A., Osicka R. Kingella kingae RtxA cytotoxin in the context of other RTX toxins. Microorganisms. 2022;10:518. PubMed PMC
Linhartova I., Bumba L., Masin J., Basler M., Osicka R., Kamanova J., et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. PubMed PMC
Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., et al. Structure-function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins (Basel) 2017;9:300. PubMed PMC
Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., et al. Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol. Cell. 2016;62:47–62. PubMed
Greene N.P., Crow A., Hughes C., Koronakis V. Structure of a bacterial toxin-activating acyltransferase. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E3058–E3066. PubMed PMC
O'Brien D.P., Cannella S.E., Voegele A., Raoux-Barbot D., Davi M., Douche T., et al. Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J. 2019;33:10065–10076. PubMed
Osickova A., Khaliq H., Masin J., Jurnecka D., Sukova A., Fiser R., et al. Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins. J. Biol. Chem. 2020;295:9268–9280. PubMed PMC
Bumba L., Masin J., Fiser R., Sebo P. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog. 2010;6 PubMed PMC
Voegele A., Sadi M., O'Brien D.P., Gehan P., Raoux-Barbot D., Davi M., et al. A high-affinity calmodulin-binding site in the CyaA toxin translocation domain is essential for invasion of Eukaryotic cells. Adv. Sci. 2021;8 PubMed PMC
Benz R., Maier E., Ladant D., Ullmann A., Sebo P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J. Biol. Chem. 1994;269:27231–27239. PubMed
Vojtova-Vodolanova J., Basler M., Osicka R., Knapp O., Maier E., Cerny J., et al. Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin. FASEB J. 2009;23:2831–2843. PubMed
Goldsmith J.A., DiVenere A.M., Maynard J.A., McLellan J.S. Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathog. 2021;17 PubMed PMC
Goldsmith J.A., DiVenere A.M., Maynard J.A., McLellan J.S. Structural basis for non-canonical integrin engagement by Bordetella adenylate cyclase toxin. Cell Rep. 2022;40 PubMed PMC
Hackett M., Guo L., Shabanowitz J., Hunt D.F., Hewlett E.L. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994;266:433–435. PubMed
Hackett M., Walker C.B., Guo L., Gray M.C., Van Cuyk S., Ullmann A., et al. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J. Biol. Chem. 1995;270:20250–20253. PubMed
Lim K.B., Walker C.R., Guo L., Pellett S., Shabanowitz J., Hunt D.F., et al. Escherichia coli alpha-hemolysin (HlyA) is heterogeneously acylated in vivo with 14-, 15-, and 17-carbon fatty acids. J. Biol. Chem. 2000;275:36698–36702. PubMed
Welch R.A. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr. Top Microbiol. Immunol. 2001;257:85–111. PubMed
Fagerholm S.C., Guenther C., Llort Asens M., Savinko T., Uotila L.M. Beta2-Integrins and interacting proteins in leukocyte trafficking, immune Suppression, and Immunodeficiency disease. Front. Immunol. 2019;10:254. PubMed PMC
Ristow L.C., Welch R.A. RTX toxins ambush Immunity's first cellular responders. Toxins (Basel) 2019;11:720. PubMed PMC
Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. PubMed PMC
Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife. 2015;4 PubMed PMC
Gordon V.M., Young W.W., Jr., Lechler S.M., Gray M.C., Leppla S.H., Hewlett E.L. Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. J. Biol. Chem. 1989;264:14792–14796. PubMed
Morova J., Osicka R., Masin J., Sebo P. RTX cytotoxins recognize {beta}2 integrin receptors through N-linked oligosaccharides. Proc. Natl. Acad. Sci. U. S. A. 2008;105:5355–5360. PubMed PMC
Rahman W.U., Osickova A., Klimova N., Lora J., Balashova N., Osicka R. Binding of Kingella kingae RtxA toxin depends on cell surface oligosaccharides, but not on beta2 integrins. Int. J. Mol. Sci. 2020;21:9092. PubMed PMC
Guo Q., Shen Y., Lee Y.S., Gibbs C.S., Mrksich M., Tang W.J. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J. 2005;24:3190–3201. PubMed PMC
Motlova L., Klimova N., Fiser R., Sebo P., Bumba L. Continuous assembly of beta-roll structures is implicated in the type I-dependent secretion of large repeat-in-toxins (RTX) proteins. J. Mol. Biol. 2020;432:5696–5710. PubMed
Sukova A., Bumba L., Srb P., Veverka V., Stanek O., Holubova J., et al. Negative charge of the AC-to-Hly linking segment modulates calcium-dependent membrane activities of Bordetella adenylate cyclase toxin. Biochim. Biophys. Acta Biomembr. 2020;1862 PubMed
Lepesheva A., Osickova A., Holubova J., Jurnecka D., Knoblochova S., Espinosa-Vinals C., et al. Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins. Sci. Rep. 2021;11 PubMed PMC
Masin J., Osickova A., Jurnecka D., Klimova N., Khaliq H., Sebo P., et al. Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin. J. Biol. Chem. 2020;295:9349–9365. PubMed PMC
Masin J., Osickova A., Sukova A., Fiser R., Halada P., Bumba L., et al. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci. Rep. 2016;6 PubMed PMC
Masin J., Roderova J., Osickova A., Novak P., Bumba L., Fiser R., et al. The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin. Sci. Rep. 2017;7:9330. PubMed PMC
Osickova A., Masin J., Fayolle C., Krusek J., Basler M., Pospisilova E., et al. Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol. Microbiol. 2010;75:1550–1562. PubMed
Osickova A., Osicka R., Maier E., Benz R., Sebo P. An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J. Biol. Chem. 1999;274:37644–37650. PubMed
Roderova J., Osickova A., Sukova A., Mikusova G., Fiser R., Sebo P., et al. Residues 529 to 549 participate in membrane penetration and pore-forming activity of the Bordetella adenylate cyclase toxin. Sci. Rep. 2019;9:5758. PubMed PMC
Subrini O., Sotomayor-Perez A.C., Hessel A., Spiaczka-Karst J., Selwa E., Sapay N., et al. Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin. J. Biol. Chem. 2013;288:32585–32598. PubMed PMC
Voegele A., Subrini O., Sapay N., Ladant D., Chenal A. Membrane-active properties of an Amphitropic peptide from the CyaA toxin translocation region. Toxins (Basel) 2017;9:369. PubMed PMC
Espinosa-Vinals C.A., Masin J., Holubova J., Stanek O., Jurnecka D., Osicka R., et al. Almost half of the RTX domain is dispensable for complement receptor 3 binding and cell-invasive activity of the Bordetella adenylate cyclase toxin. J. Biol. Chem. 2021;297 PubMed PMC
Al-Numani D., Segura M., Dore M., Gottschalk M. Up-regulation of ICAM-1, CD11a/CD18 and CD11c/CD18 on human THP-1 monocytes stimulated by Streptococcus suis serotype 2. Clin. Exp. Immunol. 2003;133:67–77. PubMed PMC
Szabo G., Gray M.C., Hewlett E.L. Adenylate cyclase toxin from Bordetella pertussis produces ion conductance across artificial lipid bilayers in a calcium- and polarity-dependent manner. J. Biol. Chem. 1994;269:22496–22499. PubMed
Ristow L.C., Tran V., Schwartz K.J., Pankratz L., Mehle A., Sauer J.D., et al. The extracellular domain of the beta2 integrin beta subunit (CD18) is sufficient for Escherichia coli hemolysin and Aggregatibacter actinomycetemcomitans leukotoxin cytotoxic activity. mBio. 2019;10 PubMed PMC
Barik S. The uniqueness of tryptophan in biology: properties, metabolism, interactions and localization in proteins. Int. J. Mol. Sci. 2020;21:8776. PubMed PMC
Hasan S., Osickova A., Bumba L., Novak P., Sebo P., Osicka R. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding. FEBS Lett. 2015;589:374–379. PubMed
Brock A. Fragmentation hydrogen exchange mass spectrometry: a review of methodology and applications. Protein Expr. Purif. 2012;84:19–37. PubMed
Masin J., Basler M., Knapp O., El-Azami-El-Idrissi M., Maier E., Konopasek I., et al. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry. 2005;44:12759–12766. PubMed
Basar T., Havlicek V., Bezouskova S., Hackett M., Sebo P. Acylation of lysine 983 is sufficient for toxin activity of Bordetella pertussis adenylate cyclase. Substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC. J. Biol. Chem. 2001;276:348–354. PubMed
Biedermannova L., K, E R., Berka K., Hobza P., Vondrasek J. Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane. Phys. Chem. Chem. Phys. 2008;10:6350–6359. PubMed
Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., et al. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. PubMed PMC
Stanek O., Masin J., Osicka R., Jurnecka D., Osickova A., Sebo P. Rapid purification of Endotoxin-free RTX toxins. Toxins (Basel) 2019;11:336. PubMed PMC
Holubova J., Kamanova J., Jelinek J., Tomala J., Masin J., Kosova M., et al. Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Infect. Immun. 2012;80:1181–1192. PubMed PMC
Ladant D., Brezin C., Alonso J.M., Crenon I., Guiso N. Bordetella pertussis adenylate cyclase. Purification, characterization, and radioimmunoassay. J. Biol. Chem. 1986;261:16264–16269. PubMed
Masin J., Konopasek I., Svobodova J., Sebo P. Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. Biochim. Biophys. Acta. 2004;1660:144–154. PubMed
Karimova G., Pidoux J., Ullmann A., Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. U. S. A. 1998;95:5752–5756. PubMed PMC
Trcka F., Durech M., Vankova P., Chmelik J., Martinkova V., Hausner J., et al. Human Stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol. Cell. Proteomics. 2019;18:320–337. PubMed PMC
Kavan D., Man P. MSTools—web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 2011;302:53–58.
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. PubMed PMC
Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132 PubMed
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al. Gaussian, Inc; Wallingford, CT: 2016. Gaussian 16 Rev. C.01.
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC
Deutsch E.W., Bandeira N., Perez-Riverol Y., Sharma V., Carver J.J., Mendoza L., et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 2023;51:D1539–D1548. PubMed PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. PubMed PMC