Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin

. 2009 Sep ; 23 (9) : 2831-43. [epub] 20090505

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19417082

The Bordetella adenylate cyclase-hemolysin (CyaA, ACT, or AC-Hly) is a multifunctional toxin. Simultaneously with promoting calcium ion entry, CyaA delivers into host cells an adenylate cyclase enzyme (AC) and permeabilizes cell membrane by forming small cation-selective pores. Indirect evidence suggested that these two activities were accomplished by different membrane-inserted CyaA conformers, one acting as an AC-delivering monomer and the other as an uncharacterized pore-forming oligomer. We tested this model by directly detecting toxin oligomers in cell membrane and by assessing oligomerization of specific mutants with altered pore-forming properties. CyaA oligomers were revealed in sheep erythrocyte membranes by immunogold labeling and directly demonstrated by pulldown of membrane-inserted CyaA together with biotinylated CyaA-AC(-) toxoid. Membrane oligomers of CyaA could also be resolved by nondenaturing electrophoresis of mild detergent extracts of erythrocytes. Furthermore, CyaA mutants exhibiting enhanced (E581K) or reduced (E570K+E581P) specific hemolytic and pore-forming activity were found to exhibit also a correspondingly enhanced or reduced propensity to form oligomers in erythrocyte membranes. On the other hand, processed CyaA, with the AC domain cleaved off by erythrocyte proteases, was detected only in a monomeric form excluded from the oligomers of unprocessed CyaA. These results provide the first direct evidence that oligomerization is involved in formation of CyaA pores in target membranes and that translocation of the AC domain across cell membrane may be accomplished by monomeric CyaA.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A conserved tryptophan in the acylated segment of RTX toxins controls their β2 integrin-independent cell penetration

. 2023 Aug ; 299 (8) : 104978. [epub] 20230628

Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins

. 2022 Feb 27 ; 10 (3) : . [epub] 20220227

Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins

. 2021 Oct 06 ; 11 (1) : 19814. [epub] 20211006

Residues 529 to 549 participate in membrane penetration and pore-forming activity of the Bordetella adenylate cyclase toxin

. 2019 Apr 08 ; 9 (1) : 5758. [epub] 20190408

Bordetella Pertussis Adenylate Cyclase Toxin Does Not Possess a Phospholipase A Activity; Serine 606 and Aspartate 1079 Residues Are Not Involved in Target Cell Delivery of the Adenylyl Cyclase Enzyme Domain

. 2018 Jun 16 ; 10 (6) : . [epub] 20180616

Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes

. 2017 Sep 24 ; 9 (10) : . [epub] 20170924

The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin

. 2017 Aug 24 ; 7 (1) : 9330. [epub] 20170824

Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis

. 2017 Jun ; 85 (6) : . [epub] 20170523

Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8+ and CD4+ T cells

. 2016 Apr ; 94 (4) : 322-33. [epub] 20151006

Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme

. 2015 Nov ; 73 (8) : ftv075. [epub] 20150920

Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size

. 2013 Dec ; 81 (12) : 4571-82. [epub] 20130930

Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores

. 2012 ; 8 (4) : e1002580. [epub] 20120405

Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain

. 2012 Mar ; 80 (3) : 1181-92. [epub] 20120103

General and molecular microbiology and microbial genetics in the IM CAS

. 2010 Dec ; 37 (12) : 1227-39. [epub] 20101118

RTX proteins: a highly diverse family secreted by a common mechanism

. 2010 Nov ; 34 (6) : 1076-112.

Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps

. 2010 May 13 ; 6 (5) : e1000901. [epub] 20100513

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...