Simultaneous Determination of Antibodies to Pertussis Toxin and Adenylate Cyclase Toxin Improves Serological Diagnosis of Pertussis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33513780
PubMed Central
PMC7912298
DOI
10.3390/diagnostics11020180
PII: diagnostics11020180
Knihovny.cz E-zdroje
- Klíčová slova
- Pertussis, in vitro diagnostics, lateral flow, multiplex, point-of-care, serology,
- Publikační typ
- časopisecké články MeSH
Serological diagnosis of pertussis is mainly based on anti-pertussis toxin (PT) IgG antibodies. Since PT is included in all acellular vaccines (ACV), serological assays do not differentiate antibodies induced by ACVs and infection. Adenylate cyclase toxin (ACT) is not included in the ACVs, which makes it a promising candidate for pertussis serology with the specific aim of separating infection- and ACV-induced antibodies. A multiplex lateral flow test with PT and ACT antigens was developed to measure serum antibodies from pertussis-seropositive patients (n = 46), healthy controls (n = 102), and subjects who received a booster dose of ACV containing PT, filamentous hemagglutinin, and pertactin (n = 67) with paired sera collected before and one month after the vaccination. If the diagnosis was solely based on anti-PT antibodies, 98.5-44.8% specificity (before and after vaccination, respectively) and 78.2% sensitivity were achieved, whereas if ACT was used in combination with PT, the sensitivity of the assay increased to 91.3% without compromising specificity. No increase in the level of anti-ACT antibodies was found after vaccination. This exploratory study indicates that the use of ACT for serology would be beneficial in combination with a lower quantitative cutoff for anti-PT antibodies, and particularly in children and adolescents who frequently receive booster vaccinations.
Zobrazit více v PubMed
Pebody R.G., Gay N.J., Giammanco A., Baron S., Schellekens J., Tischer A., Olander N.J., Andrews N.J., Edmunds W.J., Lecoeur H., et al. The seroepidemiology of Bordetella pertussis infection in Western Europe. Epidemiol. Infect. 2005;133:159–171. doi: 10.1017/S0950268804003012. PubMed DOI PMC
Barkoff A.M., Grondahl-Yli-Hannuksela K., He Q. Seroprevalence studies of pertussis: What have we learned from different immunized populations. Pathog Dis. 2015;73 doi: 10.1093/femspd/ftv050. PubMed DOI
Dalby T., Petersen J.W., Harboe Z.B., Krogfelt K.A. Antibody responses to pertussis toxin display different kinetics after clinical Bordetella pertussis infection than after vaccination with an acellular pertussis vaccine. J. Med. Microbiol. 2010;59:1029–1036. doi: 10.1099/jmm.0.020826-0. PubMed DOI
Gustafsson L., Hallander H.O., Olin P., Reizenstein E., Storsaeter J. A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N. Engl. J. Med. 1996;334:349–355. doi: 10.1056/NEJM199602083340602. PubMed DOI
Arciniega J.L., Hewlett E.L., Johnson F.D., Deforest A., Wassilak S.G., Onorato I.M., Manclark C.R., Burns D.L. Human serologic response to envelope-associated proteins and adenylate cyclase toxin of Bordetella pertussis. J. Infect. Dis. 1991;163:135–142. doi: 10.1093/infdis/163.1.135. PubMed DOI
Confer D.L., Eaton J.W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217:948–950. doi: 10.1126/science.6287574. PubMed DOI
Guiso N., Grimprel E., Anjak I., Begue P. Western blot analysis of antibody responses of young infants to pertussis infection. Eur. J. Clin. Microbiol. Infect. Dis. 1993;12:596–600. doi: 10.1007/BF01973637. PubMed DOI
Sebo P., Osicka R., Masin J. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert Rev. Vaccines. 2014;13:1215–1227. doi: 10.1586/14760584.2014.944900. PubMed DOI
Subissi L., Rodeghiero C., Martini H., Litzroth A., Huygen K., Leroux-Roels G., Pierard D., Desombere I. Assessment of IgA anti-PT and IgG anti-ACT reflex testing to improve Bordetella pertussis serodiagnosis in recently vaccinated subjects. Clin. Microbiol. Infect. 2019;26:645-e1. doi: 10.1016/j.cmi.2019.10.001. PubMed DOI
Watanabe M., Connelly B., Weiss A.A. Characterization of serological responses to pertussis. Clin. Vaccine Immunol. 2006;13:341–348. doi: 10.1128/CVI.13.3.341-348.2006. PubMed DOI PMC
Guiso N., Berbers G., Fry N.K., He Q., Riffelmann M., von Konig C.W., EU Pertstrain Group What to do and what not to do in serological diagnosis of pertussis: Recommendations from EU reference laboratories. Eur. J. Clin. Microbiol. Infect. Dis. 2011;30:307–312. doi: 10.1007/s10096-010-1104-y. PubMed DOI PMC
Knuutila A., Rautanen C., Mertsola J., He Q. Multiplex Point-of-Care Tests for the Determination of Antibodies after Acellular Pertussis Vaccination. Diagnostics. 2020;10:187. doi: 10.3390/diagnostics10040187. PubMed DOI PMC
Tran Minh N.N., He Q., Ramalho A., Kaufhold A., Viljanen M.K., Arvilommi H., Mertsola J. Acellular vaccines containing reduced quantities of pertussis antigens as a booster in adolescents. Pediatrics. 1999;104:e70. doi: 10.1542/peds.104.6.e70. PubMed DOI
He Q., Mertsola J., Himanen J.P., Ruuskanen O., Viljanen M.K. Evaluation of pooled and individual components of Bordetella pertussis as antigens in an enzyme immunoassay for diagnosis of pertussis. Eur. J. Clin. Microbiol. Infect. Dis. 1993;12:690–695. doi: 10.1007/BF02009381. PubMed DOI
Barkoff A.M., Grondahl-Yli-Hannuksela K., Vuononvirta J., Mertsola J., Kallonen T., He Q. Differences in avidity of IgG antibodies to pertussis toxin after acellular pertussis booster vaccination and natural infection. Vaccine. 2012;30:6897–6902. doi: 10.1016/j.vaccine.2012.09.003. PubMed DOI
Reizenstein E., Hallander H.O., Blackwelder W.C., Kuhn I., Ljungman M., Mollby R. Comparison of five calculation modes for antibody ELISA procedures using pertussis serology as a model. J. Immunol. Methods. 1995;183:279–290. doi: 10.1016/0022-1759(95)00067-K. PubMed DOI
Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., Sebo P. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: Delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. doi: 10.1128/IAI.68.1.247-256.2000. PubMed DOI PMC
Sadilkova L., Osicka R., Sulc M., Linhartova I., Novak P., Sebo P. Single-step affinity purification of recombinant proteins using a self-excising module from Neisseria meningitidis FrpC. Protein Sci. 2008;17:1834–1843. doi: 10.1110/ps.035733.108. PubMed DOI PMC
Stanek O., Masin J., Osicka R., Jurnecka D., Osickova A., Sebo P. Rapid Purification of Endotoxin-Free RTX Toxins. Toxins. 2019;11:336. doi: 10.3390/toxins11060336. PubMed DOI PMC
Salminen T., Knuutila A., Barkoff A.M., Mertsola J., He Q. A rapid lateral flow immunoassay for serological diagnosis of pertussis. Vaccine. 2018;36:1429–1434. doi: 10.1016/j.vaccine.2018.01.064. PubMed DOI
Giammanco A., Taormina S., Chiarini A., Dardanoni G., Stefanelli P., Salmaso S., Mastrantonio P. Analogous IgG subclass response to pertussis toxin in vaccinated children, healthy or affected by whooping cough. Vaccine. 2003;21:1924–1931. doi: 10.1016/S0264-410X(02)00823-X. PubMed DOI
Hendrikx L.H., Schure R.M., Ozturk K., de Rond L.G., de Greeff S.C., Sanders E.A., Berbers G., Buisman A.M. Different IgG-subclass distributions after whole-cell and acellular pertussis infant primary vaccinations in healthy and pertussis infected children. Vaccine. 2011;29:6874–6880. doi: 10.1016/j.vaccine.2011.07.055. PubMed DOI
Nagel J., de Graaf S., Schijf-Evers D. Improved serodiagnosis of whooping cough caused by Bordetella pertussis by determination of IgG anti-LPF antibody levels. Dev. Biol. Stand. 1985;61:325–330. PubMed
Poynten M., Hanlon M., Irwig L., Gilbert G.L. Serological diagnosis of pertussis: Evaluation of IgA against whole cell and specific Bordetella pertussis antigens as markers of recent infection. Epidemiol. Infect. 2002;128:161–167. doi: 10.1017/S0950268801006598. PubMed DOI PMC
Thomas M.G., Ashworth L.A., Miller E., Lambert H.P. Serum IgG, IgA, and IgM responses to pertussis toxin, filamentous hemagglutinin, and agglutinogens 2 and 3 after infection with Bordetella pertussis and immunization with whole-cell pertussis vaccine. J. Infect. Dis. 1989;160:838–845. doi: 10.1093/infdis/160.5.838. PubMed DOI
Grimprel E., Begue P., Anjak I., Njamkepo E., Francois P., Guiso N. Long-term human serum antibody responses after immunization with whole-cell pertussis vaccine in France. Clin. Diagn. Lab. Immunol. 1996;3:93–97. doi: 10.1128/CDLI.3.1.93-97.1996. PubMed DOI PMC
Cherry J.D., Xing D.X., Newland P., Patel K., Heininger U., Corbel M.J. Determination of serum antibody to Bordetella pertussis adenylate cyclase toxin in vaccinated and unvaccinated children and in children and adults with pertussis. Clin. Infect. Dis. 2004;38:502–507. doi: 10.1086/381204. PubMed DOI
Linhartova I., Bumba L., Masin J., Basler M., Osicka R., Kamanova J., Prochazkova K., Adkins I., Hejnova-Holubova J., Sadilkova L., et al. RTX proteins: A highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC
Betsou F., Sismeiro O., Danchin A., Guiso N. Cloning and sequence of the Bordetella bronchiseptica adenylate cyclase-hemolysin-encoding gene: Comparison with the Bordetella pertussis gene. Gene. 1995;162:165–166. doi: 10.1016/0378-1119(95)00339-8. PubMed DOI