Is There a Higher Incidence of Sporadic Renal Angiomyolipoma in Childhood Cancer Survivors?

. 2021 ; 13 () : 707-716. [epub] 20210811

Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34408499

BACKGROUND: Cancer treatment can cause various long-term side effects, including those that impact ultrasound findings. During follow-up of childhood cancer survivors (CCSs), we often detected sporadic renal angiomyolipomas without histological confirmation (SAMLs), which is why we initiated this study. We compared the occurrence of SAML in CCSs to the previously reported data from a non-cancer population and correlated SAML with cancer treatment-related factors. METHODS: The cohort included 1098 CCSs (median age at cancer diagnosis (dg) 4.3 years) who had ultrasound follow-up (2014-2019). Of the CCSs, 525 (48%) were female, 132 (12%) had subsequent neoplasms (SNs), and 110 (10%) had genetic syndromes. CCSs were treated for lymphomas 269 (24%) and solid tumors 829 (76%). None of the CCSs had tuberous sclerosis complex (TSC). RESULTS: SAML developed in 48 (4.4%) CCSs; of these, 20 (42%) had SNs. The coincidence of SAMLs and SNs was found in CCSs with a follow-up period exceeding 20 years. The median age at SAML dg was 27.9 years (interquartile range (IQR) 22.3-34.1), and the median time to SAML dg was 22.6 years (IQR 17.4-27.6). Twenty-one (44%) CCSs developed multiple or bilateral SAMLs lesions; of these, six (12%) were in the radiotherapy field. SAML occurrence correlated with radiotherapy of the retroperitoneum (1.65-fold higher with 95% CI 0.90-3.02). The correlations with other cancer treatment factors and with female sex were less clear. CONCLUSION: This study revealed the occurrence of SAMLs in CCSs to be 10 times higher than that in non-cancer studies. The current characteristics of CCSs with SAMLs: younger age, and more bilateral or multiple lesions are more similar to TSC associated angiomyolipoma. Moreover, we observed a coincidence of SAMLs with SNs. Our results support the hypothesis that SAML development in CCSs is not simply a late effect of therapy, and indicates other factors are involved in SAML development.

Zobrazit více v PubMed

Lee KH, Tsai HY, Kao YT, et al. Clinical behavior and management of three types of renal angiomyolipomas. J Formos Med Assoc. 2019;118:162–169. doi:10.1016/j.jfma.2018.02.012 PubMed DOI

Hussain T, Lam V, Farhad M, et al. Can subcentimetre ultrasound detected angiomyolipomas be safely disregarded? Clin Radiol. 2020;75(4):287–292. doi:10.1016/j.crad.2019.12.006 PubMed DOI

Swärd J, Henrikson O, Lyrdal D, Peeker R, Lundstam S. Renal angiomyolipoma-patient characteristics and treatment with focus on active surveillance. Scand J Urol. 2020;54(2):141–146. doi:10.1080/21681805.2020.1716066 PubMed DOI

Flum AS, Hamoui N, Said MA, et al. Update on the diagnosis and management of renal angiomyolipoma. J Urol. 2016;195(1):834–846. doi:10.1016/j.juro.2015.07.126 PubMed DOI

Fitttschen A, Wendlik IN, Oeztuerk S, et al. Prevalence of sporadic renal angiomyolipoma: a retrospective analysis of 61389 in – and out patients. Abdom Imaging. 2014;39:1009–1013. doi:10.1007/s00261-014-0129-6 PubMed DOI

Boorjian SA, Sheinin Y, Crispen PL, et al. Hormone receptor expression in renal angiomyolipoma: clinicopathologic correlation. Urology. 2008;72(4):927–932. doi:10.1016/j.urology.2008.01.067 PubMed DOI PMC

Fernández-Pello S, Hora M, Kuusk T, et al. Management of Sporadic renal angiomyolipoma: a systematic review of available evidence to guide recommendations from the European association of urology renal cell carcinoma guidelines panel. Eur Urol Oncol. 2020;3(1):57–72. doi:10.1016/j.euo.2019.04.005 PubMed DOI

Giannikou K, Malinowska IA, Pugh TJ, et al. Whole exome sequencing identifies TSC1/TSC2 biallelic loss as the primary and sufficient driver event for renal angiomyolipoma development. PLoS Genet. 2016;12(8):e1006242. doi:10.1371/journal.pgen.1006242 PubMed DOI PMC

Caliò A, Brunelli M, Segala D, et al. Angiomyolipoma of the kidney: from simple hamartoma to complex tumour. Pathology. 2021;53(1):129–140. doi:10.1016/j.pathol.2020.08.008 PubMed DOI

Henske EP, Neumann HP, Scheithauer BW, et al. Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band 16p13 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Genes Chrom Cancer. 1995;13(4):295–298. doi:10.1002/gcc.2870130411 PubMed DOI

Jinzaki M, Silverman SG, Akita H, Nagashima Y, Mikami S, Oya M. Renal angiomyolipoma: a radiological classification and update on recent developments in diagnosis and management. Abdom Imaging. 2014;39(3):588–604. doi:10.1007/s00261-014-0083-3 PubMed DOI PMC

Neofytou K, Famularo S, Khan AZ. PEComa in a young patient with known Li-Fraumeni syndrome. Case Rep Med. 2015;2015:906981. doi:10.1155/2015/906981 PubMed DOI PMC

Stone NN, Atlas I, Kim US, Kwan D, Leventhal I, Waxman JS. Renal angiomyolipoma associated with neurofibromatosis and primary carcinoid of mesentery. Urology. 1993;41(1):66–71. doi:10.1016/0090-4295(93)90249-A PubMed DOI

Jain K, Das M, Chatterjee U, Datta C. Cytological features of a renal angiomyolipoma in a child-a case report. Diagn Cytopathol. 2019;47(11):1190–1193. doi:10.1002/dc.24276 PubMed DOI

Chan KE, Chedgy ECP, Bent CL, Turner KJ. Surveillance imaging for sporadic renal angiomyolipoma less than 40 mm: lessons learnt and recommendations from the experience of a large district general hospital. Ann R Coll Surg Engl. 2018;100(6):480–484. doi:10.1308/rcsann.2018.0040 PubMed DOI PMC

Çalışkan S, Gümrükçü G, Özsoy E, Topaktas R, Öztürk Mİ. Renal angiomyolipoma. Rev Assoc Med Bras. 2019;65(7):977–981. doi:10.1590/1806-9282.65.7.977 PubMed DOI

Maclean DFW, Sultana R, Radwan R, McKnight L, Khastgir J. Is the follow-up of small renal angiomyolipomas a necessary precaution? Clin Radiol. 2014;69(8):822–826. doi:10.1016/j.crad.2014.03.016 PubMed DOI

Lam HC, Siroky BJ, Henske EP. Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nat Rev Nephrol. 2018;14(11):704–716. doi:10.1038/s41581-018-0059-6 PubMed DOI

Dong Q, Debelenko LV, Chandrasekharappa SC, et al. Loss of heterozygosity at 11q13: analysis of pituitary tumors, lung carcinoids, lipomas, and other uncommon tumors in subjects with familial multiple endocrine neoplasia type 1. J Clin Endocrinol Metab. 1997;82(5):1416–1420. doi:10.1210/jcem.82.5.3944 PubMed DOI

Armstrong GT, Liu W, Leisenring W, et al. Occurrence of multiple subsequent neoplasms in long-term survivors of childhood Cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2011;29(22):3056–3064. doi:10.1200/JCO.2011.34.6585 PubMed DOI PMC

Kok JL, Teepen JC, Van der pal HJ, et al. Incidence of and risk factors for histologically confirmed solid benign tumors among long-term survivors of childhood cancer. JAMA Oncol. 2019;5(5):671–680. doi:10.1001/jamaoncol.2018.6862 PubMed DOI PMC

Zichová A, Eckschlager T, Ganevová M, Malinová B, Lukš A, Kruseová J. Subsequent neoplasms in childhood cancer survivors. Cancer Epidemiol. 2020;68:101779. doi:10.1016/j.canep.2020.101779 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Premature aging in childhood cancer survivors

. 2023 Feb ; 25 (2) : 43. [epub] 20221213

Possible Mechanisms of Subsequent Neoplasia Development in Childhood Cancer Survivors: A Review

. 2021 Oct 10 ; 13 (20) : . [epub] 20211010

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...