Possible Mechanisms of Subsequent Neoplasia Development in Childhood Cancer Survivors: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
AZV CR NV19-03-00245
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34680213
PubMed Central
PMC8533890
DOI
10.3390/cancers13205064
PII: cancers13205064
Knihovny.cz E-zdroje
- Klíčová slova
- cancer predisposition syndromes, chemotherapy, childhood cancer survivors, genetic factors, radiotherapy, subsequent malignant neoplasms,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Advances in medicine have improved outcomes in children diagnosed with cancer, with overall 5-year survival rates for these children now exceeding 80%. Two-thirds of childhood cancer survivors have at least one late effect of cancer therapy, with one-third having serious or even life-threatening effects. One of the most serious late effects is a development of subsequent malignant neoplasms (histologically different cancers, which appear after the treatment for primary cancer), which occur in about 3-10% of survivors and are associated with high mortality. In cancers with a very good prognosis, subsequent malignant neoplasms significantly affect long-term survival. Therefore, there is an effort to reduce particularly hazardous treatments. This review discusses the importance of individual factors (gender, genetic factors, cytostatic drugs, radiotherapy) in the development of subsequent malignant neoplasms and the possibilities of their prediction and prevention in the future.
Zobrazit více v PubMed
Oeffinger K.C., Hudson M.M. Long-term Complications Following Childhood and Adolescent Cancer: Foundations for Providing Risk-based Health Care for Survivors. CA Cancer J. Clin. 2004;54:208–236. doi: 10.3322/canjclin.54.4.208. PubMed DOI
Eckschlager T., Prusa R., Hladikova M., Radvanska J., Slaby K., Radvansky J. Lymphocyte subpopulations and immunoglobulin levels in Hodgkin’s disease survivors. Neoplasma. 2004;51:261–264. PubMed
Eckschlager T., Radvanska J., Slaby K., Prusa R., Hochova I., Radvansky J. Changes of blood count, lymphocyte subpopulations and immunoglobulin levels in nephroblastoma long term survivors. Neoplasma. 2009;56:9–12. doi: 10.4149/neo_2009_01_9. PubMed DOI
Armstrong G.T., Liu Q., Yasui Y., Neglia J.P., Leisenring W., Robison L.L., Mertens A.C. Late mortality among 5-year survivors of childhood cancer: A summary from the childhood cancer survivor study. J. Clin. Oncol. 2009;27:2328–2338. doi: 10.1200/JCO.2008.21.1425. PubMed DOI PMC
Bhuller K.S., Zhang Y., Li D., Sehn L.H., Goddard K., Mcbride M.L., Rogers P.C. Late mortality, secondary malignancy and hospitalisation in teenage and young adult survivors of Hodgkin lymphoma: Report of the Childhood/Adolescent/Young Adult Cancer Survivors Research Program and the BC Cancer Agency Centre for Lymphoid Cancer. Br. J. Haematol. 2016;172:757–768. doi: 10.1111/bjh.13903. PubMed DOI
Armenian S.H., Kremer L.C., Sklar C. Approaches to Reduce the Long-Term Burden of Treatment-Related Complications in Survivors of Childhood Cancer. Am. Soc. Clin. Oncol. Educ. B. 2015;35:196–204. doi: 10.14694/EdBook_AM.2015.35.196. PubMed DOI
Zichová A., Eckschlager T., Ganevová M., Malinová B., Lukš A., Kruseová J. Subsequent neoplasms in childhood cancer survivors. Cancer Epidemiol. 2020;68:101779. doi: 10.1016/j.canep.2020.101779. PubMed DOI
Friedman D.L., Whitton J., Leisenring W., Mertens A.C., Hammond S., Stovall M., Donaldson S.S., Meadows A.T., Robison L.L., Neglia J.P. Subsequent neoplasms in 5-year survivors of childhood cancer: The childhood cancer survivor study. J. Natl. Cancer Inst. 2010;102:1083–1095. doi: 10.1093/jnci/djq238. PubMed DOI PMC
Teepen J.C., Kremer L.C.M., Ronckers C.M., Van Leeuwen F.E., Hauptmann M., Van Dulmen-Den Broeder E., Van Der Pal H.J., Jaspers M.W.M., Tissing W.J., Van Den Heuvel-Eibrink M.M., et al. Long-term risk of subsequent malignant neoplasms after treatment of childhood cancer in the DCOG LATER study cohort: Role of chemotherapy. J. Clin. Oncol. 2017;35:2288–2298. doi: 10.1200/JCO.2016.71.6902. PubMed DOI
Garwicz S., Anderson H., Olsen J.H., Falck Winther J., Sankila R., Langmark F., Tryggvadõttir L., Möller T.R. Late and very late mortality in 5-year survivors of childhood cancer: Changing pattern over four decades-Experience from the Nordic countries. Int. J. Cancer. 2012;131:1659–1666. doi: 10.1002/ijc.27393. PubMed DOI
Fidler M.M., Reulen R.C., Winter D.L., Kelly J., Jenkinson H.C., Skinner R., Frobisher C., Hawkins M.M. Long term cause specific mortality among 34 489 five year survivors of childhood cancer in Great Britain: Population based cohort study. BMJ. 2016;354:i4351. doi: 10.1136/bmj.i4351. PubMed DOI PMC
Youlden D.R., Baade P.D., Green A.C., Valery P.C., Moore A.S., Aitken J.F. Second primary cancers in people who had cancer as children: An Australian Childhood Cancer Registry population-based study. Med. J. Aust. 2020;212:121–125. doi: 10.5694/mja2.50425. PubMed DOI
Jakab Z., Garami M., Bartyik K., Csoka M., Erdelyi D.J., Hauser P., Juhasz A., Kelemen A., Krivan G., Masat P., et al. Late mortality in survivors of childhood cancer in Hungary. Sci. Rep. 2020;10:10761. doi: 10.1038/s41598-020-67444-1. PubMed DOI PMC
Suh E., Stratton K.L., Leisenring W.M., Nathan P.C., Ford J.S., Freyer D.R., McNeer J.L., Stock W., Stovall M., Krull K.R., et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: A retrospective cohort analysis from the Childhood Cancer Survivor Study. Lancet Oncol. 2020;21:421–435. doi: 10.1016/S1470-2045(19)30800-9. PubMed DOI PMC
Perkins S.M., DeWees T., Shinohara E.T., Reddy M.M., Frangoul H. Risk of subsequent malignancies in survivors of childhood leukemia. J. Cancer Surviv. 2013;7:544–550. doi: 10.1007/s11764-013-0292-8. PubMed DOI
Meadows A.T., Friedman D.L., Neglia J.P., Mertens A.C., Donaldson S.S., Stovall M., Hammond S., Yasui Y., Inskip P.D. Second neoplasms in survivors of childhood cancer: Findings from the Childhood Cancer Survivor Study cohort. J. Clin. Oncol. 2009;27:2356–2362. doi: 10.1200/JCO.2008.21.1920. PubMed DOI PMC
MacArthur A.C., Spinelli J.J., Rogers P.C., Goddard K.J., Phillips N., McBride M.L. Risk of a second malignant neoplasm among 5-year survivors of cancer in childhood and adolescence in British Columbia, Canada. Pediatr. Blood Cancer. 2007;48:453–459. doi: 10.1002/pbc.20921. PubMed DOI
Neglia J.P., Friedman D.L., Yasui Y., Mertens A.C., Hammond S., Stovall M., Donaldson S.S., Meadows A.T., Robison L.L. Second malignant neoplasms in five-year survivors of childhood cancer: Childhood cancer survivor study. J. Natl. Cancer Inst. 2001;93:618–629. doi: 10.1093/jnci/93.8.618. PubMed DOI
Turcotte L.M., Liu Q., Yasui Y., Arnold M.A., Hammond S., Howell R.M., Smith S.A., Weathers R.E., Henderson T.O., Gibson T.M., et al. Temporal trends in treatment and subsequent neoplasm risk among 5-year survivors of childhood cancer, 1970–2015. JAMA. 2017;317:814–824. doi: 10.1001/jama.2017.0693. PubMed DOI PMC
Rugbjerg K., Olsen J. Long-term Risk of Hospitalization for Somatic Diseases in Survivors of Adolescent or Young Adult Cancer. JAMA Oncol. 2016;2:193–200. doi: 10.1001/jamaoncol.2015.4393. PubMed DOI
Zhang Y., Lorenzi M., Goddard K., Spinelli J., Gotay C., McBride M. Late morbidity leading to hospitalization among 5-year survivors of young adult cancer: A report of the childhood, adolescent and young adult cancer survivors research program. Int. J. Cancer. 2014;134:1174–1182. doi: 10.1002/ijc.28453. PubMed DOI
Kenney L.B., Yasui Y., Inskip P.D., Hammond S., Neglia J.P., Mertens A.C., Meadows A.T., Friedman D., Robison L.L., Diller L. Breast cancer after childhood cancer: A report from the Childhood Cancer Survivor Study. Ann. Intern. Med. 2004;141:590–597. doi: 10.7326/0003-4819-141-8-200410190-00006. PubMed DOI
Bhatia S., Robison L.L., Oberlin O., Greenberg M., Bunin G., Fossati-Bellani F., Meadows A.T. Breast Cancer and Other Second Neoplasms after Childhood Hodgkin’s Disease. N. Engl. J. Med. 1996;334:745–751. doi: 10.1056/NEJM199603213341201. PubMed DOI
Beaty O., Hudson M.M., Greenwald C., Luo X., Fang L., Wilimas J.A., Thompson E.I., Kun L.E., Pratt C.B. Subsequent malignancies in children and adolescents after treatment for Hodgkin’s disease. J. Clin. Oncol. 1995;13:603–609. doi: 10.1200/JCO.1995.13.3.603. PubMed DOI
Huang R.S., Kistner E.O., Bleibel W.K., Shukla S.J., Dolan M.E. Effect of population and gender on chemotherapeutic agent-induced cytotoxicity. Mol. Cancer Ther. 2007;6:31–36. doi: 10.1158/1535-7163.MCT-06-0591. PubMed DOI PMC
Van Den Berg H., Paulussen M., Le Teuff G., Judson I., Gelderblom H., Dirksen U., Brennan B., Whelan J., Ladenstein R.L., Marec-Berard P., et al. Impact of gender on efficacy and acute toxicity of alkylating agent -based chemotherapy in Ewing sarcoma: Secondary analysis of the Euro-Ewing99-R1 trial. Eur. J. Cancer. 2015;51:2453–2464. doi: 10.1016/j.ejca.2015.06.123. PubMed DOI
Chemaitilly W., Sklar C.A. Childhood Cancer Treatments and Associated Endocrine Late Effects: A Concise Guide for the Pediatric Endocrinologist. Horm. Res. Paediatr. 2019;91:74–82. doi: 10.1159/000493943. PubMed DOI
Van Cott C. Cancer Genetics. Surg. Clin. N. Am. 2020;100:483–498. doi: 10.1016/j.suc.2020.02.012. PubMed DOI
Ngeow J., Eng C. Precision medicine in heritable cancer: When somatic tumour testing and germline mutations meet. NPJ Genomic Med. 2016;1:1–3. doi: 10.1038/npjgenmed.2015.6. PubMed DOI PMC
Brodeur G.M., Nichols K.E., Plon S.E., Schiffman J.D., Malkin D. Pediatric Cancer Predisposition and Surveillance: An Overview, and a Tribute to Alfred G. Knudson Jr. Clin. Cancer Res. 2017;23:e1–e5. doi: 10.1158/1078-0432.CCR-17-0702. PubMed DOI PMC
Perrino M., Cooke-Barber J., Dasgupta R., Geller J.I. Seminars in Pediatric Surgery. Volume 28 WB Saunders; Philadelphia, PA, USA: 2019. Genetic predisposition to cancer: Surveillance and intervention. PubMed
Jackson M., Marks L., May G.H.W., Wilson J.B. The genetic basis of disease. Essays Biochem. 2018;62:643–723. doi: 10.1042/EBC20170053. PubMed DOI PMC
Kingston J.E., Hawkins M.M., Draper G.J., Marsden H.B., Kinnier Wilson L.M. Patterns of multiple primary tumours in patients treated for cancer during childhood. Br. J. Cancer. 1987;56:331–338. doi: 10.1038/bjc.1987.199. PubMed DOI PMC
Perkins J.L., Liu Y., Mitby P.A., Neglia J.P., Hammond S., Stovall M., Meadows A.T., Hutchinson R., Dreyer Z.A.E., Robison L.L., et al. Nonmelanoma skin cancer in survivors of childhood and adolescent cancer: A report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 2005;23:3733–3741. doi: 10.1200/JCO.2005.06.237. PubMed DOI
Krutilova V., Eckschlager T. The survey of syndromes with the risk of cancer in children age. Klin. Onkol. 2009;22:45–49. PubMed
Broniscer A., Ke W., Fuller C.E., Wu J., Gajjar A., Kun L.E. Second Neoplasms in Pediatric Patients with Primary Central Nervous System Tumors: The St. Jude Children’s Research Hospital Experience. Cancer. 2004;100:2246–2252. doi: 10.1002/cncr.20253. PubMed DOI
Plon S.E., Lupo P.J. Genetic Predisposition to Childhood Cancer in the Genomic Era. Annu. Rev. Genomics Hum. Genet. 2019;20:241–263. doi: 10.1146/annurev-genom-083118-015415. PubMed DOI
Morton L.M., Sampson J.N., Armstrong G.T., Chen T.H., Hudson M.M., Karlins E., Dagnall C.L., Li S.A., Wilson C.L., Srivastava D.K., et al. Genome-Wide Association Study to Identify Susceptibility Loci That Modify Radiation-Related Risk for Breast Cancer after Childhood Cancer. J. Natl. Cancer Inst. 2017;109:djx058. doi: 10.1093/jnci/djx058. PubMed DOI PMC
Wilson C.L., Wang Z., Liu Q., Ehrhardt M.J., Mostafavi R., Easton J., Mulder H., Hedges D.J., Wang S., Rusch M., et al. Estimated number of adult survivors of childhood cancer in United States with cancer-predisposing germline variants. Pediatr. Blood Cancer. 2020;67:e28047. doi: 10.1002/pbc.28047. PubMed DOI PMC
Worrillow L.J., Smith A.G., Scott K., Andersson M., Ashcroft A.J., Dores G.M., Glimelius B., Holowaty E., Jackson G.H., Jones G.L., et al. Polymorphic MLH1 and risk of cancer after methylating chemotherapy for Hodgkin lymphoma. J. Med. Genet. 2008;45:142–146. doi: 10.1136/jmg.2007.053850. PubMed DOI PMC
Qin N., Wang Z., Liu Q., Song N., Wilson C.L., Ehrhardt M.J., Shelton K., Easton J., Mulder H., Kennetz D., et al. Pathogenic Germline Mutations in DNA Repair Genes in Combination with Cancer Treatment Exposures and Risk of Subsequent Neoplasms Among Long-Term Survivors of Childhood Cancer. J. Clin. Oncol. 2020;38:2728–2740. doi: 10.1200/JCO.19.02760. PubMed DOI PMC
Morton L.M., Karyadi D.M., Hartley S.W., Frone M.N., Sampson J.N., Howell R.M., Neglia J.P., Arnold M.A., Hicks B.D., Jones K. Subsequent Neoplasm Risk Associated with Rare Variants in DNA Damage Response and Clinical Radiation Sensitivity Syndrome Genes in the Childhood Cancer Survivor Study. JCO Precis. Oncol. 2020;4:926–936. doi: 10.1200/PO.20.00141. PubMed DOI PMC
Mertens A.C., Mitby P.A., Radloff G., Jones I.M., Perentesis J., Kiffmeyer W.R., Neglia J.P., Meadows A., Potter J.D., Friedman D., et al. XRCC1 and glutathione-S-transferase gene polymorphisms and susceptibility to radiotherapy-related malignancies in survivors of Hodgkin disease: A report from the Childhood Cancer Survivor Study. Cancer. 2004;101:1463–1472. doi: 10.1002/cncr.20520. PubMed DOI
Rebbeck T.R. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol. Biomark. Prev. 1997;6:733–743. PubMed
Naccarati A., Pardini B., Hemminki K., Vodicka P. Sporadic colorectal cancer and individual susceptibility: A review of the association studies investigating the role of DNA repair genetic polymorphisms. Mutat. Res. Rev. Mutat. Res. 2007;635:118–145. doi: 10.1016/j.mrrev.2007.02.001. PubMed DOI
Naoe T., Takeyama K., Yokozawa T., Kiyoi H., Seto M., Uike N., Ino T., Utsunomiya A., Maruta A., Jin-nai I., et al. Analysis of genetic polymorphism in NQO1, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/myelodysplastic syndrome and de novo acute myeloid leukemia. Clin. Cancer Res. 2000;6:4091–4095. PubMed
Felix C.A. Secondary leukemias induced by topoisomerase-targeted drugs. Biochim. Biophys. Acta Gene Struct. Expr. 1998;1400:233–255. doi: 10.1016/S0167-4781(98)00139-0. PubMed DOI
Qin N., Wang Z., Liu Q., Song N., Wilson C.L., Ehrhardt M.J., Shelton K., Easton J., Mulder H., Kennetz D. Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin. Cancer Res. 2004;10:2675–2680. doi: 10.1158/1078-0432.CCR-03-0372. PubMed DOI
Mbemi A., Khanna S., Njiki S., Yedjou C.G., Tchounwou P.B. Impact of gene–environment interactions on cancer development. Int. J. Environ. Res. Public Health. 2020;17:8089. doi: 10.3390/ijerph17218089. PubMed DOI PMC
Sherborne A.L., Lavergne V., Yu K., Lee L., Davidson P.R., Mazor T., Smirnoff I.V., Horvai A.E., Loh M., DuBois S.G., et al. Somatic and germline TP53 alterations in second malignant neoplasms from pediatric cancer survivors. Clin. Cancer Res. 2017;23:1852–1861. doi: 10.1158/1078-0432.CCR-16-0610. PubMed DOI PMC
Gonzalez K.D., Noltner K.A., Buzin C.H., Gu D., Wen-Fong C.Y., Nguyen V.Q., Han J.H., Lowstuter K., Longmate J., Sommer S.S., et al. Beyond li fraumeni syndrome: Clinical characteristics of families with p53 germline mutations. J. Clin. Oncol. 2009;27:1250–1256. doi: 10.1200/JCO.2008.16.6959. PubMed DOI
Ketteler P., Hülsenbeck I., Frank M., Schmidt B., Jöckel K.H., Lohmann D.R. The impact of RB1 genotype on incidence of second tumours in heritable retinoblastoma. Eur. J. Cancer. 2020;133:47–55. doi: 10.1016/j.ejca.2020.04.005. PubMed DOI
Armstrong G.T., Liu W., Leisenring W., Yasui Y., Hammond S., Bhatia S., Neglia J.P., Stovall M., Srivastava D., Robison L.L. Occurrence of multiple subsequent neoplasms in long-term survivors of childhood cancer: A report from the childhood cancer survivor study. J. Clin. Oncol. 2011;29:3056–3064. doi: 10.1200/JCO.2011.34.6585. PubMed DOI PMC
Archer N.M., Amorim R.P., Naves R., Hettmer S., Diller L.R., Ribeiro K.B., Rodriguez-Galindo C. An Increased Risk of Second Malignant Neoplasms After Rhabdomyosarcoma: Population-Based Evidence for a Cancer Predisposition Syndrome? Pediatr. Blood Cancer. 2016;63:196–201. doi: 10.1002/pbc.25678. PubMed DOI
Kruseova J., Gottfriedova B., Zichova A., Svojgr K., Hosek P., Luks A., Kyncl M., Eckschlager T. Is There a Higher Incidence of Sporadic Renal Angiomyolipoma in Childhood Cancer Survivors? Clin. Epidemiol. 2021;13:707–716. doi: 10.2147/CLEP.S317903. PubMed DOI PMC
Higgins A., Shah M.V. Genetic and genomic landscape of secondary and therapy-related acute myeloid leukemia. Genes. 2020;11:749. doi: 10.3390/genes11070749. PubMed DOI PMC
Ezoe S. Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int. J. Environ. Res. Public Health. 2012;9:2444–2453. doi: 10.3390/ijerph9072444. PubMed DOI PMC
Allodji R.S., Hawkins M.M., Bright C.J., Fidler-Benaoudia M.M., Winter D.L., Alessi D., Fresneau B., Journy N., Morsellino V., Bárdi E., et al. Risk of subsequent primary leukaemias among 69,460 five-year survivors of childhood cancer diagnosed from 1940 to 2008 in Europe: A cohort study within PanCareSurFup. Eur. J. Cancer. 2019;117:71–83. doi: 10.1016/j.ejca.2019.05.013. PubMed DOI
Smith M.A., Rubinstein L., Ungerleider R.S. Therapy-related acute myeloid leukemia following treatment with epipodophyllotoxins: Estimating the risks. Med. Pediatr. Oncol. 1994;23:86–98. doi: 10.1002/mpo.2950230205. PubMed DOI
Heuser M. Therapy-related myeloid neoplasms: Does knowing the origin help to guide treatment? Hematology. 2016;2016:24–32. doi: 10.1182/asheducation.V2016.1.24.088333. PubMed DOI PMC
Cowell I.G., Austin C.A. Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. Int. J. Environ. Res. Public Health. 2012;9:2075–2091. doi: 10.3390/ijerph9062075. PubMed DOI PMC
Cawthon R.M., Smith K.R., O’Brien E., Sivatchenko A., Kerber R.A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361:393–395. doi: 10.1016/S0140-6736(03)12384-7. PubMed DOI
Schröder C.P., Wisman G.B.A., De Jong S., Van der Graaf W.T.A., Ruiters M.H.J., Mulder N.H., De Leij L.F.M.H., Van der Zee A.G.J., De Vries E.G.E. Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br. J. Cancer. 2001;84:1348–1353. doi: 10.1054/bjoc.2001.1803. PubMed DOI PMC
Roninson I.B. Tumor cell senescence in cancer treatment. Cancer Res. 2003;63:2705–2715. PubMed
Ma H., Zhou Z., Wei S., Liu Z., Pooley K.A., Dunning A.M., Svenson U., Roos G., Hosgood H.D., Shen M., et al. Shortened Telomere length is associated with increased risk of cancer: A meta-analysis. PLoS ONE. 2011;6:e20466. doi: 10.1371/journal.pone.0020466. PubMed DOI PMC
Wentzensen I.M., Mirabello L., Pfeiffer R.M., Savage S.A. The association of telomere length and cancer: A meta-analysis. Cancer Epidemiol. Biomark. Prev. 2011;20:1238–1250. doi: 10.1158/1055-9965.EPI-11-0005. PubMed DOI PMC
Cui Y., Cai Q., Qu S., Chow W.H., Wen W., Xiang Y.B., Wu J., Rothman N., Yang G., Shu X.O., et al. Association of leukocyte telomere length with colorectal cancer risk: Nested case-control findings from the Shanghai women’s health study. Cancer Epidemiol. Biomark. Prev. 2012;21:1807–1813. doi: 10.1158/1055-9965.EPI-12-0657. PubMed DOI PMC
Sanoff H.K., Deal A.M., Krishnamurthy J., Torrice C., Dillon P., Sorrentino J., Ibrahim J.G., Jolly T.A., Williams G., Carey L.A., et al. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J. Natl. Cancer Inst. 2014;106:dju057. doi: 10.1093/jnci/dju057. PubMed DOI PMC
Ness K.K., Krull K.R., Jones K.E., Mulrooney D.A., Armstrong G.T., Green D.M., Chemaitilly W., Smith W.A., Wilson C.L., Sklar C.A., et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: A report from the st jude lifetime cohort study. J. Clin. Oncol. 2013;31:4496–4503. doi: 10.1200/JCO.2013.52.2268. PubMed DOI PMC
Li P., Hou M., Lou F., Björkholm M., Xu D. Telomere dysfunction induced by chemotherapeutic agents and radiation in normal human cells. Int. J. Biochem. Cell Biol. 2012;44:1531–1540. doi: 10.1016/j.biocel.2012.06.020. PubMed DOI
Benitez-Buelga C., Sanchez-Barroso L., Gallardo M., Apellániz-Ruiz M., Inglada-Pérez L., Yanowski K., Carrillo J., Garcia-Estevez L., Calvo I., Perona R., et al. Impact of chemotherapy on telomere length in sporadic and familial breast cancer patients. Breast Cancer Res. Treat. 2015;149:385–394. doi: 10.1007/s10549-014-3246-6. PubMed DOI PMC
Engelhardt M., Ozkaynak M.F., Drullinsky P., Sandoval C., Tugal O., Jayabose S., Moore M.A.S. Telomerase activity and telomere length in pediatric patients with malignancies undergoing chemotherapy. Leukemia. 1998;12:13–24. doi: 10.1038/sj.leu.2400889. PubMed DOI
Unryn B.M., Hao D., Glück S., Riabowol K.T. Acceleration of telomere loss by chemotherapy is greater in older patients with locally advanced head and neck cancer. Clin. Cancer Res. 2006;12:6345–6350. doi: 10.1158/1078-0432.CCR-06-0486. PubMed DOI
Lee J.J., Nam C.E., Cho S.H., Park K.S., Chung I.J., Kim H.J. Telomere length shortening in non-Hodgkin’s lymphoma patients undergoing chemotherapy. Ann. Hematol. 2003;82:492–495. doi: 10.1007/s00277-003-0691-4. PubMed DOI
Lu Y., Leong W., Guérin O., Gilson E., Ye J. Telomeric impact of conventional chemotherapy. Front. Med. China. 2013;7:411–417. doi: 10.1007/s11684-013-0293-z. PubMed DOI
M’kacher R., Bennaceur-Griscelli A., Girinsky T., Koscielny S., Delhommeau F., Dossou J., Violot D., Leclercq E., Courtier M.H., Béron-Gaillard N., et al. Telomere Shortening and Associated Chromosomal Instability in Peripheral Blood Lymphocytes of Patients with Hodgkin’s Lymphoma Prior to Any Treatment Are Predictive of Second Cancers. Int. J. Radiat. Oncol. Biol. Phys. 2007;68:465–471. doi: 10.1016/j.ijrobp.2007.01.050. PubMed DOI
Vatanen A., Sarkola T., Ojala T.H., Turanlahti M., Jahnukainen T., Saarinen-Pihkala U.M., Jahnukainen K. Radiotherapy-related arterial intima thickening and plaque formation in childhood cancer survivors detected with very-high resolution ultrasound during young adulthood. Pediatr. Blood Cancer. 2015;62:2000–2006. doi: 10.1002/pbc.25616. PubMed DOI
Vatanen A., Ojala T.H., Sarkola T., Turanlahti M., Jahnukainen T., Saarinen-Pihkala U.M., Jahnukainen K. Left ventricular mass and ambulatory blood pressure are increased in long-term survivors of childhood cancer after autologous SCT. Bone Marrow Transplant. 2016;51:853–855. doi: 10.1038/bmt.2015.355. PubMed DOI
Vatanen A., Hou M., Huang T., Söder O., Jahnukainen T., Kurimo M., Ojala T.H., Sarkola T., Turanlahti M., Saarinen-Pihkala U.M., et al. Clinical and biological markers of premature aging after autologous SCT in childhood cancer. Bone Marrow Transplant. 2017;52:600–605. doi: 10.1038/bmt.2016.334. PubMed DOI
Fumagalli M., Rossiello F., Clerici M., Barozzi S., Cittaro D., Kaplunov J.M., Bucci G., Dobreva M., Matti V., Beausejour C.M., et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 2012;14:355–365. doi: 10.1038/ncb2466. PubMed DOI PMC
Gramatges M.M., Liu Q., Yasui Y., Okcu M.F., Neglia J.P., Strong L.C., Armstrong G.T., Robison L.L., Bhatia S. Telomere content and risk of second malignant neoplasm in survivors of childhood cancer: A report from the childhood cancer survivor study. Clin. Cancer Res. 2014;20:904–911. doi: 10.1158/1078-0432.CCR-13-2076. PubMed DOI PMC
Chattopadhyay S., Sud A., Zheng G., Yu H., Sundquist K., Sundquist J., Försti A., Houlston R., Hemminki A., Hemminki K. Second primary cancers in non-Hodgkin lymphoma: Bidirectional analyses suggesting role for immune dysfunction. Int. J. Cancer. 2018;143:2449–2457. doi: 10.1002/ijc.31801. PubMed DOI
Cimino G., lo Coco F., Cartoni C., Gallerano T., Luciani M., Lopez M., de Rossi G. Immune-deficiency in Hodgkin’s disease (HD): A study of patients and healthy relatives in families with multiple cases. Eur. J. Cancer Clin. Oncol. 1988;24:1595–1601. doi: 10.1016/0277-5379(88)90051-X. PubMed DOI
Lázničková P., Kepák T., Hortová—Kohoutková M., Horváth L., Sheardová K., Marciniak R., Vacca C., Šiklová M., Zelante T., Rossmeislová L., et al. Childhood survivors of high-risk neuroblastoma show signs of immune recovery and not immunosenescence. Eur. J. Immunol. 2020;50:2092–2094. doi: 10.1002/eji.202048541. PubMed DOI PMC
Daniel S., Nylander V., Ingerslev L.R., Zhong L., Fabre O., Clifford B., Johnston K., Cohn R.J., Barres R., Simar D. T cell epigenetic remodeling and accelerated epigenetic aging are linked to long-term immune alterations in childhood cancer survivors 11 Medical and Health Sciences 1107 Immunology. Clin. Epigenet. 2018;10:1–13. doi: 10.1186/s13148-018-0561-5. PubMed DOI PMC
Thomas R., Wong W.S.W., Saadon R., Vilboux T., Deeken J., Niederhuber J., Hourigan S.K., Yang E. Gut microbial composition difference between pediatric ALL survivors and siblings. Pediatr. Hematol. Oncol. 2020;37:475–488. doi: 10.1080/08880018.2020.1759740. PubMed DOI PMC
Chua L.L., Rajasuriar R., Azanan M.S., Abdullah N.K., Tang M.S., Lee S.C., Woo Y.L., Lim Y.A.L., Ariffin H., Loke P. Reduced microbial diversity in adult survivors of childhood acute lymphoblastic leukemia and microbial associations with increased immune activation. Microbiome. 2017;5:35. doi: 10.1186/s40168-017-0250-1. PubMed DOI PMC
Sepich-Poore G.D., Zitvogel L., Straussman R., Hasty J., Wargo J.A., Knight R. The microbiome and human cancer. Science. 2021;371:eabc4552. doi: 10.1126/science.abc4552. PubMed DOI PMC
Kamran S.C., Berrington De Gonzalez A., Ng A., Haas-Kogan D., Viswanathan A.N. Therapeutic radiation and the potential risk of second malignancies. Cancer. 2016;122:1809–1821. doi: 10.1002/cncr.29841. PubMed DOI
Sholl L.M., Barletta J.A., Hornick J.L. Radiation-associated neoplasia: Clinical, pathological and genomic correlates. Histopathology. 2017;70:70–80. doi: 10.1111/his.13069. PubMed DOI
Berrington De Gonzalez A., Gilbert E., Curtis R., Inskip P., Kleinerman R., Morton L., Rajaraman P., Little M.P. Second solid cancers after radiation therapy: A systematic review of the epidemiologic studies of the radiation dose-response relationship. Int. J. Radiat. Oncol. Biol. Phys. 2013;86:224–233. doi: 10.1016/j.ijrobp.2012.09.001. PubMed DOI PMC
Sachs R.K., Brenner D.J. Solid tumor risks after high doses of ionizing radiation. Proc. Natl. Acad. Sci. USA. 2005;102:13040–13045. doi: 10.1073/pnas.0506648102. PubMed DOI PMC
Schneider U., Schäfer B. Model of accelerated carcinogenesis based on proliferative stress and inflammation for doses relevant to radiotherapy. Radiat. Environ. Biophys. 2012;51:451–456. doi: 10.1007/s00411-012-0433-x. PubMed DOI
De Gonzalez A.B., Curtis R.E., Kry S.F., Gilbert E., Lamart S., Berg C.D., Stovall M., Ron E. Proportion of second cancers attributable to radiotherapy treatment in adults: A cohort study in the US SEER cancer registries. Lancet Oncol. 2011;12:353–360. doi: 10.1016/S1470-2045(11)70061-4. PubMed DOI PMC
Bright C.J., Hawkins M.M., Winter D.L., Alessi D., Allodji R.S., Bagnasco F., Bardi E., Bautz A., Byrne J., Feijen E.A.M., et al. Risk of soft-tissue sarcoma among 69 460 five-year survivors of childhood cancer in Europe. J. Natl. Cancer Inst. 2018;110:649–660. doi: 10.1093/jnci/djx235. PubMed DOI PMC
Inskip P.D., Sigurdson A.J., Veiga L., Bhatti P., Ronckers C., Rajaraman P., Boukheris H., Stovall M., Smith S., Hammond S., et al. Radiation-related new primary solid cancers in the childhood cancer survivor study: Comparative radiation dose response and modification of treatment effects. Int. J. Radiat. Oncol. Biol. Phys. 2016;94:800–807. doi: 10.1016/j.ijrobp.2015.11.046. PubMed DOI PMC
Armstrong G.T., Stovall M., Robison L.L. Long-term effects of radiation exposure among adult survivors of childhood cancer: Results from the childhood cancer survivor study. Radiat. Res. 2010;174:840–850. doi: 10.1667/RR1903.1. PubMed DOI PMC
Lacouture M.E., O’Reilly K., Rosen N., Solit D.B. Induction of cutaneous squamous cell carcinomas by RAF inhibitors: Cause for concern? J. Clin. Oncol. 2012;30:329–330. doi: 10.1200/JCO.2011.38.2895. PubMed DOI
Stein A.S., Larson R.A., Schuh A.C., Stevenson W., Lech-Maranda E., Tran Q., Zimmerman Z., Kormany W., Topp M.S. Exposure-adjusted adverse events comparing blinatumomab with chemotherapy in advanced acute lymphoblastic leukemia. Blood Adv. 2018;2:1522–1531. doi: 10.1182/bloodadvances.2018019034. PubMed DOI PMC
Patrinely J.R., Young A.C., Quach H., Williams G.R., Ye F., Fan R., Horn L., Beckermann K.E., Gillaspie E.A., Sosman J.A., et al. Survivorship in immune therapy: Assessing toxicities, body composition and health-related quality of life among long-term survivors treated with antibodies to programmed death-1 receptor and its ligand. Eur. J. Cancer. 2020;135:211–220. doi: 10.1016/j.ejca.2020.05.005. PubMed DOI PMC
Andrieu J.M. Increased risk of secondary acute nonlymphocytic leukemia after extended-field radiation therapy combined with MOPP chemotherapy for Hodgkin’s disease. J. Clin. Oncol. 1990;8:1148–1154. doi: 10.1200/JCO.1990.8.7.1148. PubMed DOI
Abrahamsen J.F., Andersen A., Hannisdal E., Nome O., Abrahamsen A.F., Kvaloy S., Host H. Second malignancies after treatment of Hodgkin’s disease: The influence of treatment, follow-up time, and age. J. Clin. Oncol. 1993;11:255–261. doi: 10.1200/JCO.1993.11.2.255. PubMed DOI
Rodriguez M.A., Fuller L.M., Zimmerman S.O., Allen P.K., Brown B.W., Munsell M.F., Hagemeister F.B., Mclaughlin P., Velasquez W.S., Swan F., et al. Hodgkin’s disease: Study of treatment intensities and incidences of second malignancies. Ann. Oncol. 1993;4:125–131. doi: 10.1093/oxfordjournals.annonc.a058414. PubMed DOI
Tura S., Fiacchini M., Zinzani P.L., Brusamolino E., Gobbi P.G. Splenectomy and the increasing risk of secondary acute leukemia in Hodgkin’s disease. J. Clin. Oncol. 1993;11:925–930. doi: 10.1200/JCO.1993.11.5.925. PubMed DOI
Van Leeuwen F.E., Klokman W.J., Hagenbeek A., Noyon R., Van Den Belt-Dusebout A.W., Van Kerkhoff E.H.M., Van Heerde P., Somers R. Second cancer risk following Hodgkin’s disease: A 20-year follow-up study. J. Clin. Oncol. 1994;12:312–325. doi: 10.1200/JCO.1994.12.2.312. PubMed DOI
Van der Velden J.W., van Putten W.L.J., Guinee V.F., Pfeiffer R., van Leeuwen F.E., van der Linden E.A.M., Vardomskaya I., Lane W., Durand M., Lagarde C., et al. Subsequent development of acute non-lymphocytic leukemia in patients treated for Hodgkin’s disease. Int. J. Cancer. 1988;42:252–255. doi: 10.1002/ijc.2910420218. PubMed DOI
Kaldor J.M., Day N.E., Clarke E.A., Van Leeuwen F.E., Henry-Amar M., Fiorentino M.V., Bell J., Pedersen D., Band P., Assouline D., et al. Leukemia Following Hodgkin’s Disease. N. Engl. J. Med. 1990;322:7–13. doi: 10.1056/NEJM199001043220102. PubMed DOI
Dinu I., Liu Y., Leisenring W., Mertens A.C., Neglia J.P., Hammond S., Robison L.L., Yasui Y. Prediction of second malignant neoplasm incidence in a large cohort of long-term survivors of childhood cancers. Pediatr. Blood Cancer. 2008;50:1026–1031. doi: 10.1002/pbc.21306. PubMed DOI
Clement S.C., Kremer L.C.M., Verburg F.A., Simmons J.H., Goldfarb M., Peeters R.P., Alexander E.K., Bardi E., Brignardello E., Constine L.S., et al. Balancing the benefits and harms of thyroid cancer surveillance in survivors of Childhood, adolescent and young adult cancer: Recommendations from the international Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Cancer Treat. Rev. 2018;63:28–39. PubMed
Townsley D.M., Dumitriu B., Liu D., Biancotto A., Weinstein B., Chen C., Hardy N., Mihalek A.D., Lingala S., Kim Y.J., et al. Danazol Treatment for Telomere Diseases. N. Engl. J. Med. 2016;374:1922–1931. doi: 10.1056/NEJMoa1515319. PubMed DOI PMC
Premature aging in childhood cancer survivors