Premature aging in childhood cancer survivors
Status PubMed-not-MEDLINE Jazyk angličtina Země Řecko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36644152
PubMed Central
PMC9811640
DOI
10.3892/ol.2022.13629
PII: OL-25-02-13629
Knihovny.cz E-zdroje
- Klíčová slova
- aging-related diseases, childhood cancer survivors, late effects, premature aging,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Progress in medicine has increased the survival time of children suffering from cancer; >80% of patients survive for at least 5 years from the end of treatment. However, there are late effects of anticancer therapy, which accompany this success. Two-thirds of childhood cancer survivors (CCSs) have at least one late effect (any side effects or complications of anticancer treatment that appear months to years after the completion of treatment), e.g. endocrinopathies, cardiovascular diseases or subsequent cancers, and half of these late effects are serious or life threatening. These late consequences of childhood cancer treatment pose a serious health, social and economic problem. A common mechanism for developing a number of late effects is the onset of premature biological aging, which is associated with the early onset of chronic diseases and death. Cellular senescence in cancer survivors is caused by therapy that can induce chromosomal aberrations, mutations, telomere shortening, epigenetic alterations and mitochondrial dysfunctions. The mechanisms of accelerated aging in cancer survivors have not yet been fully clarified. The measurement of biological age in survivors can help improve the understanding of aging mechanisms and identify risk factors for premature aging. However, to the best of our knowledge, no single marker for the evaluation of biological or functional age is known, so it is therefore necessary to measure the consequences of anticancer treatment using complex assessments. The present review presents an overview of premature aging in CCSs and of the mechanisms involved in its development, focusing on the association of senescence and late effects.
Zobrazit více v PubMed
Calaminus G, Baust K, Berger C, Byrne J, Binder H, Casagranda L, Grabow D, Grootenhuis M, Kaatsch P, Kaiser M, et al. Health-related quality of life in european childhood cancer survivors: Protocol for a study within PanCareLIFE. JMIR Res Protoc. 2021;10:e21851. doi: 10.2196/21851. PubMed DOI PMC
Armstrong GT, Liu Q, Yasui Y, Neglia JP, Leisenring W, Robison LL, Mertens AC. Late mortality among 5-year survivors of childhood cancer: A summary from the childhood cancer survivor study. J Clin Oncol. 2009;27:2328–2338. doi: 10.1200/JCO.2008.21.1425. PubMed DOI PMC
Bhuller KS, Zhang Y, Li D, Sehn LH, Goddard K, Mcbride ML, Rogers PC. Late mortality, secondary malignancy and hospitalisation in teenage and young adult survivors of Hodgkin lymphoma: Report of the childhood/adolescent/young adult cancer survivors research program and the BC cancer agency centre for lymphoid cancer. Br J Haematol. 2016;172:757–768. doi: 10.1111/bjh.13903. PubMed DOI
Oeffinger KC, Hudson MM. Long-term complications following childhood and adolescent cancer: Foundations for providing risk-based health care for survivors. CA Cancer J Clin. 2004;54:208–236. doi: 10.3322/canjclin.54.4.208. PubMed DOI
Winther JF, Kenborg L, Byrne J, Hjorth L, Kaatsch P, Kremer LC, Kuehni CE, Auquier P, Michel G, de Vathaire F, et al. Childhood cancer survivor cohorts in Europe. Acta Oncol. 2015;54:655–668. doi: 10.3109/0284186X.2015.1008648. PubMed DOI
Taylor A, Hawkins M, Griffiths A, Davies H, Douglas C, Jenney M, Wallace WH, Levitt G. Long-term follow-up of survivors of childhood cancer in the UK. Pediatr Blood Cancer. 2004;42:161–168. doi: 10.1002/pbc.10482. PubMed DOI
Konończuk K, Latoch E, Żelazowska-Rutkowska B, Krawczuk-Rybak M, Muszyńska-Rosłan K. Increased levels of adipocyte and epidermal fatty acid-binding proteins in acute lymphoblastic leukemia survivors. J Clin Med. 2021;10:1567. doi: 10.3390/jcm10081567. PubMed DOI PMC
Armenian SH, Gibson CJ, Rockne RC, Ness KK. Premature aging in young cancer survivors. J Natl Cancer Inst. 2019;111:226–232. doi: 10.1093/jnci/djy229. PubMed DOI
Armstrong GT, Kawashima T, Leisenring W, Stratton K, Stovall M, Hudson MM, Sklar CA, Robison LL, Oeffinger KC. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J Clin Oncol. 2014;32:1218–1227. doi: 10.1200/JCO.2013.51.1055. PubMed DOI PMC
Kruseová J, Gottfriedová B, Zichová A, Švojgr K, Hošek P, Lukš A, Kynčl M, Eckschlager T. Is there a higher incidence of sporadic renal angiomyolipoma in childhood cancer survivors? Clin Epidemiol. 2021;13:707–716. doi: 10.2147/CLEP.S317903. PubMed DOI PMC
Hudson MM, Mertens AC, Yasui Y, Hobbie W, Chen H, Gurney JG, Yeazel M, Recklitis CJ, Marina N, Robison LR, et al. Health status of adult long-term survivors of childhood cancer: A report from the childhood cancer survivor study. JAMA. 2003;290:1583–1592. doi: 10.1001/jama.290.12.1583. PubMed DOI
van den Berg MH, van Dijk M, Byrne J, Berger C, Dirksen U, Winther JF, Fossa SD, Grabow D, Grandage VL, Haupt R, et al. Treatment-related fertility impairment in long-term female childhood, adolescent and young adult cancer survivors: Investigating dose-effect relationships in a European case-control study (PanCareLIFE) Hum Reprod. 2021;36:1561–1573. doi: 10.1093/humrep/deab035. PubMed DOI
Zichová A, Eckschlager T, Ganevová M, Malinová B, Lukš A, Kruseová J. Subsequent neoplasms in childhood cancer survivors. Cancer Epidemiol. 2020;68:101779. doi: 10.1016/j.canep.2020.101779. PubMed DOI
Beekman M, Uh HW, van Heemst D, Wuhrer M, Ruhaak LR, Gonzalez-Covarrubias V, Hankemeier T, Houwing-Duistermaat JJ, Slagboom PE. Classification for longevity potential: The use of novel biomarkers. Front Public Health. 2016;4:233. doi: 10.3389/fpubh.2016.00233. PubMed DOI PMC
De la Fuente M. Role of neuroimmunomodulation in aging. Neuroimmunomodulation. 2008;15:213–223. doi: 10.1159/000156465. PubMed DOI
Wang S, Prizment A, Thyagarajan B, Blaes A. Cancer treatment-induced accelerated aging in cancer survivors: Biology and assessment. Cancers (Basel) 2021;13:427. doi: 10.3390/cancers13030427. PubMed DOI PMC
Stelwagen J, Lubberts S, Steggink LC, Steursma G, Kruyt LM, Donkerbroek JW, van Roon AM, van Gessel AI, van de Zande SC, Meijer C, et al. Vascular aging in long-term survivors of testicular cancer more than 20 years after treatment with cisplatin-based chemotherapy. Br J Cancer. 2020;123:1599–1607. doi: 10.1038/s41416-020-01049-3. PubMed DOI PMC
Zhu J, Wang F, Shi L, Cai H, Zheng Y, Zheng W, Bao P, Shu XO. Accelerated aging in breast cancer survivors and its association with mortality and cancer recurrence. Breast Cancer Res Treat. 2020;180:449–459. doi: 10.1007/s10549-020-05541-5. PubMed DOI PMC
Dixon SB, Chen Y, Yasui Y, Pui CH, Hunger SP, Silverman LB, Ness KK, Green DM, Howell RM, Leisenring WM, et al. Reduced morbidity and mortality in survivors of childhood acute lymphoblastic leukemia: A report from the childhood cancer survivor study. J Clin Oncol. 2020;38:3418–3429. doi: 10.1200/JCO.20.00493. PubMed DOI PMC
Bøhn SH, Thorsen L, Kiserud CE, Fosså SD, Lie HC, Loge JH, Wisløff T, Haugnes HS, Reinertsen KV. Chronic fatigue and associated factors among long-term survivors of cancers in young adulthood. Acta Oncol. 2019;58:753–762. doi: 10.1080/0284186X.2018.1557344. PubMed DOI
Spathis A, Hatcher H, Booth S, Gibson F, Stone P, Abbas L, Barclay M, Brimicombe J, Thiemann P, McCabe MG, et al. Cancer-related fatigue in adolescents and young adults after cancer treatment: Persistent and poorly managed. J Adolesc Young Adult Oncol. 2017;6:489–493. doi: 10.1089/jayao.2017.0037. PubMed DOI PMC
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroeme G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC
Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010;24:2463–2479. doi: 10.1101/gad.1971610. PubMed DOI PMC
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621. doi: 10.1016/0014-4827(61)90192-6. PubMed DOI
Blackburn EH, Szostak JW. The molecular structure of centromeres and telomeres. Annu Rev Biochem. 1984;53:163–194. doi: 10.1146/annurev.bi.53.070184.001115. PubMed DOI
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–339. doi: 10.1038/nature12634. PubMed DOI PMC
Knudsen ES, Nambiar R, Rosario SR, Smiraglia DJ, Goodrich DW, Witkiewicz AK. Pan-cancer molecular analysis of the RB tumor suppressor pathway. Commun Biol. 2020;3:158. doi: 10.1038/s42003-020-0873-9. PubMed DOI PMC
Huan T, Chen G, Liu C, Bhattacharya A, Rong J, Chen BH, Seshadri S, Tanriverdi K, Freedman JE, Larson MG, et al. Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits. Aging Cell. 2018;17:e12687. doi: 10.1111/acel.12687. PubMed DOI PMC
Saul D, Kosinsky RL. Epigenetics of aging and aging-associated diseases. Int J Mol Sci. 2021;22:401. doi: 10.3390/ijms22010401. PubMed DOI PMC
Vijg J. Somatic mutations, genome mosaicism, cancer and aging. Curr Opin Genet Dev. 2014;26:141–149. doi: 10.1016/j.gde.2014.04.002. PubMed DOI PMC
Ness KK, Kirkland JL, Gramatges MM, Wang Z, Kundu M, McCastlain K, Li-Harms X, Zhang J, Tchkonia T, Pluijm SMF, Armstrong GT. Premature physiologic aging as a paradigm for understanding increased risk of adverse health across the lifespan of survivors of childhood cancer. J Clin Oncol. 2018;36:2206–2215. doi: 10.1200/JCO.2017.76.7467. PubMed DOI PMC
Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–484. doi: 10.1126/science.1112125. PubMed DOI
Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010;141:280–289. doi: 10.1016/j.cell.2010.02.026. PubMed DOI PMC
Kollman C, Howe CW, Anasetti C, Antin JH, Davies SM, Filipovich AH, Hegland J, Kamani N, Kernan NA, King R, et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: The effect of donor age. Blood. 2001;98:2043–2051. doi: 10.1182/blood.V98.7.2043. PubMed DOI
Rossi DJ, Jamieson CHM, Weissman IL. Stems cells and the pathways to aging and cancer. Cell. 2008;132:681–696. doi: 10.1016/j.cell.2008.01.036. PubMed DOI
Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, Reynaud D, Alvarez S, Diolaiti ME, Ugarte F, Forsberg EC, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature. 2014;512:198–202. doi: 10.1038/nature13619. PubMed DOI PMC
Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, Scadden DT. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 2006;443:421–426. doi: 10.1038/nature05159. PubMed DOI
Jaul E, Barron J. Characterizing the heterogeneity of aging: A vision for a staging system for aging. Front Public Health. 2021;9:513557. doi: 10.3389/fpubh.2021.513557. PubMed DOI PMC
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. doi: 10.1186/gb-2013-14-10-r115. PubMed DOI PMC
Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–367. doi: 10.1016/j.molcel.2012.10.016. PubMed DOI PMC
Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, Horvath S. DNA methylation age of blood predicts future onset of lung cancer in the women's health initiative. Aging (Albany NY) 2015;7:690–700. doi: 10.18632/aging.100809. PubMed DOI PMC
Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 2019;11:303–327. doi: 10.18632/aging.101684. PubMed DOI PMC
Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D, Di Blasio AM, Gentilini D, Vitale G, Collino S, et al. Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell. 2012;11:1132–1134. doi: 10.1111/acel.12005. PubMed DOI
Zheng Y, Joyce BT, Colicino E, Liu L, Zhang W, Dai Q, Shrubsole MJ, Kibbe WA, Gao T, Zhang Z, et al. Blood epigenetic age may predict cancer incidence and mortality. EBioMedicine. 2016;5:68–73. doi: 10.1016/j.ebiom.2016.02.008. PubMed DOI PMC
Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 2018;10:573–591. doi: 10.18632/aging.101414. PubMed DOI PMC
Kresovich JK, Xu Z, O'Brien KM, Weinberg CR, Sandler DP, Taylor JA. Methylation-based biological age and breast cancer risk. J Natl Cancer Inst. 2019;111:1051–1058. doi: 10.1093/jnci/djz020. PubMed DOI PMC
Durso DF, Bacalini MG, Sala C, Pirazzini C, Marasco E, Bonafé M, do Valle ÍF, Gentilini D, Castellani G, Faria AMC, et al. Acceleration of leukocytes' epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget. 2017;8:23237–23245. doi: 10.18632/oncotarget.15573. PubMed DOI PMC
Qin N, Li Z, Song N, Wilson CL, Easton J, Mulder H, Plyler E, Neale G, Walker E, Zhou X, et al. Epigenetic age acceleration and chronic health conditions among adult survivors of childhood cancer. J Natl Cancer Inst. 2021;113:597–605. doi: 10.1093/jnci/djaa147. PubMed DOI PMC
Johnson AA, Shokhirev MN, Wyss-Coray T, Lehallier B. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Aging Res Rev. 2020;60:101070. doi: 10.1016/j.arr.2020.101070. PubMed DOI
Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G, et al. Plasma proteomic signature of age in healthy humans. Aging Cell. 2018;17:e12799. doi: 10.1111/acel.12799. PubMed DOI PMC
Solovev IA, Shaposhnikov MV, Moskalev A. Healthy Ageing and Longevity. Springer Nature; Berlin/Heidelberg, Germany: 2019. An overview of the molecular and cellular biomarkers of aging; pp. 67–78. DOI
Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–9367. doi: 10.1073/pnas.92.20.9363. PubMed DOI PMC
Hurria A, Jones L, Muss HB. Cancer treatment as an accelerated aging process: Assessment, biomarkers, and interventions. Am Soc Clin Oncol Educ Book. 2016;35:e516–e522. doi: 10.1200/EDBK_156160. PubMed DOI
Shen J, Song R, Fuemmeler BF, McGuire KP, Chow WH, Zhao H. Biological aging marker p16INK4a in T cells and breast cancer risk. Cancers (Basel) 2020;12:3122. doi: 10.3390/cancers12113122. PubMed DOI PMC
Sanoff HK, Deal AM, Krishnamurthy J, Torrice C, Dillon P, Sorrentino J, Ibrahim JG, Jolly TA, Williams G, Carey LA, et al. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst. 2014;106:dju057. doi: 10.1093/jnci/dju057. PubMed DOI PMC
Smitherman AB, Wood WA, Mitin N, Ayer Miller VL, Deal AM, Davis IJ, Blatt J, Gold SH, Muss HB. Accelerated aging among childhood, adolescent, and young adult cancer survivors is evidenced by increased expression of p16INK4a and frailty. Cancer. 2020;126:4975–4983. doi: 10.1002/cncr.33112. PubMed DOI PMC
Wood WA, Krishnamurthy J, Mitin N, Torrice C, Parker JS, Snavely AC, Shea TC, Serody JS, Sharpless NE. Chemotherapy and stem cell transplantation increase p16INK4a expression, a biomarker of T-cell aging. EBioMedicine. 2016;11:227–238. doi: 10.1016/j.ebiom.2016.08.029. PubMed DOI PMC
Bourlon MT, Velazquez HE, Hinojosa J, Orozco L, Rios-Corzo R, Lima G, Llorente L, Hernandez-Ramirez DF, Valentin-Cortez FJ, Medina-Rangel I, Atisha-Fregoso Y. Immunosenescence profile and expression of the aging biomarker (p16INK4a) in testicular cancer survivors treated with chemotherapy. BMC Cancer. 2020;20:882. doi: 10.1186/s12885-020-07383-2. PubMed DOI PMC
Ness KK, Krull KR, Jones KE, Mulrooney DA, Armstrong GT, Green DM, Chemaitilly W, Smith WA, Wilson CL, Sklar CA, et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: A report from the St Jude Lifetime cohort study. J Clin Oncol. 2013;31:4496–4503. doi: 10.1200/JCO.2013.52.2268. PubMed DOI PMC
Degesys N, Klein C, Binner M, Browner I, Shapiro G. Fitness screening in older cancer patients. J Am Geriatr Soc. 2011;59:S141.
Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in community-dwelling older persons: A systematic review. J Am Geriatr Soc. 2012;60:1487–1492. doi: 10.1111/j.1532-5415.2012.04054.x. PubMed DOI
Ness KK, Wogksch MD. Frailty and aging in cancer survivors. Transl Res. 2020;221:65–82. doi: 10.1016/j.trsl.2020.03.013. PubMed DOI PMC
Williams AM, Krull KR, Howell CR, Banerjee P, Brinkman TM, Kaste SC, Partin RE, Srivastava D, Yasui Y, Armstrong GT, et al. Physiologic frailty and neurocognitive decline among young-adult childhood cancer survivors: A prospective study from the St Jude lifetime cohort. J Clin Oncol. 2021;39:3485–3495. doi: 10.1200/JCO.21.00194. PubMed DOI PMC
Hayek S, Gibson TM, Leisenring WM, Guida JL, Gramatges MM, Lupo PJ, Howell RM, Oeffinger KC, Bhatia S, Edelstein K, et al. Prevalence and predictors of frailty in childhood cancer survivors and siblings: A report from the childhood cancer survivor study. J Clin Oncol. 2020;38:232–247. doi: 10.1200/JCO.19.01226. PubMed DOI PMC
Vatanen A, Hou M, Huang T, Söder O, Jahnukainen T, Kurimo M, Ojala TH, Sarkola T, Turanlahti M, Saarinen-Pihkala UM, Jahnukainen K. Clinical and biological markers of premature aging after autologous SCT in childhood cancer. Bone Marrow Transplant. 2017;52:600–605. doi: 10.1038/bmt.2016.334. PubMed DOI
Kruseova J, Vicha A, Feriancikova B, Eckschlager T. Possible mechanisms of subsequent neoplasia development in childhood cancer survivors: A review. Cancers (Basel) 2021;13:5064. doi: 10.3390/cancers13205064. PubMed DOI PMC
Wilson CL, Chemaitilly W, Jones KE, Kaste SC, Srivastava DK, Ojha RP, Yasui Y, Pui CH, Robison LL, Hudson MM, Ness KK. Modifiable factors associated with aging phenotypes among adult survivors of childhood acute lymphoblastic leukemia. J Clin Oncol. 2016;34:2509–2515. doi: 10.1200/JCO.2015.64.9525. PubMed DOI PMC
Bennett JA, Winters-Stone KM, Dobek J, Nail LM. Frailty in older breast cancer survivors: Age, prevalence, and associated factors. Oncol Nurs Forum. 2013;40:E126–E134. doi: 10.1188/13.ONF.E126-E134. PubMed DOI PMC
Smitherman AB, Anderson C, Lund JL, Bensen JT, Rosenstein DL, Nichols HB. Frailty and comorbidities among survivors of adolescent and young adult cancer: A cross-sectional examination of a hospital-based survivorship cohort. J Adolesc Young Adult Oncol. 2018;7:374–383. doi: 10.1089/jayao.2017.0103. PubMed DOI PMC
Chemaitilly W, Cohen LE, Mostoufi-Moab S, Patterson BC, Simmons JH, Meacham LR, van Santen HM, Sklar CA. Endocrine late effects in childhood cancer survivors. J Clin Oncol. 2018;36:2153–2159. doi: 10.1200/JCO.2017.76.3268. PubMed DOI
Lee SJ, Kim NC. Association between sarcopenia and metabolic syndrome in cancer survivors. Cancer Nurs. 2017;40:479–487. doi: 10.1097/NCC.0000000000000454. PubMed DOI
Lee SJ, Park YJ, Cartmell KB. Sarcopenia in cancer survivors is associated with increased cardiovascular disease risk. Support Care Cancer. 2018;26:2313–2321. doi: 10.1007/s00520-018-4083-7. PubMed DOI
Felicetti F, Aimaretti E, Dal Bello F, Gatti F, Godono A, Saba F, Einaudi G, Collino M, Fagioli F, Aragno M, Brignardello E. Advanced glycation end products and their related signaling cascades in adult survivors of childhood Hodgkin lymphoma: A possible role in the onset of late complications. Free Radic Biol Med. 2022;178:76–82. doi: 10.1016/j.freeradbiomed.2021.11.036. PubMed DOI
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. doi: 10.1016/j.mad.2016.09.006. PubMed DOI
Ariffin H, Azanan MS, Abd Ghafar SS, Oh L, Lau KH, Thirunavakarasu T, Sedan A, Ibrahim K, Chan A, Chin TF, et al. Young adult survivors of childhood acute lymphoblastic leukemia show evidence of chronic inflammation and cellular aging. Cancer. 2017;123:4207–4214. doi: 10.1002/cncr.30857. PubMed DOI
Daniel S, Nylander V, Ingerslev LR, Zhong L, Fabre O, Clifford B, Johnston K, Cohn RJ, Barres R, Simar D. T cell epigenetic remodeling and accelerated epigenetic aging are linked to long-term immune alterations in childhood cancer survivors. Clin Epigenetics. 2018;10:138. doi: 10.1186/s13148-018-0561-5. PubMed DOI PMC
Sulicka-Grodzicka J, Surdacki A, Seweryn M, Mikołajczyk T, Rewiuk K, Guzik T, Grodzicki T. Low-grade chronic inflammation and immune alterations in childhood and adolescent cancer survivors: A contribution to accelerated aging? Cancer Med. 2021;10:1772–1782. doi: 10.1002/cam4.3788. PubMed DOI PMC
Rossi F, Di Paola A, Pota E, Argenziano M, Di Pinto D, Marrapodi MM, Di Leva C, Di Martino M, Tortora C. Biological aspects of inflamm-aging in childhood cancer survivors. Cancers (Basel) 2021;13:4933. doi: 10.3390/cancers13194933. PubMed DOI PMC
Smith WA, Li C, Nottage KA, Mulrooney DA, Armstrong GT, Lanctot JQ, Chemaitilly W, Laver JH, Srivastava DK, Robison LL, et al. Lifestyle and metabolic syndrome in adult survivors of childhood cancer: A report from the St. Jude lifetime cohort study. Cancer. 2014;120:2742–2750. doi: 10.1002/cncr.28670. PubMed DOI PMC
Clemens E, van der Kooi ALF, Broer L, van Dulmen-den Broeder E, Visscher H, Kremer L, Tissing W, Loonen J, Ronckers CM, Pluijm SMF, et al. The influence of genetic variation on late toxicities in childhood cancer survivors: A review. Crit Rev Oncol Hematol. 2018;126:154–167. doi: 10.1016/j.critrevonc.2018.04.001. PubMed DOI
Ross JA, Oeffinger KC, Davies SM, Mertens AC, Langer EK, Kiffmeyer WR, Sklar CA, Stovall M, Yasui Y, Robison LL. Genetic variation in the leptin receptor gene and obesity in survivors of childhood acute lymphoblastic leukemia: A report from the childhood cancer survivor study. J Clin Oncol. 2004;22:3558–3562. doi: 10.1200/JCO.2004.11.152. PubMed DOI
Ravera S, Vigliarolo T, Bruno S, Morandi F, Marimpietri D, Sabatini F, Dagnino M, Petretto A, Bartolucci M, Muraca M, et al. Identification of biochemical and molecular markers of early aging in childhood cancer survivors. Cancers (Basel) 2021;13:5214. doi: 10.3390/cancers13205214. PubMed DOI PMC
Su HI, Kwan B, Whitcomb BW, Shliakhsitsava K, Dietz AC, Stark SS, Martinez E, Sluss PM, Sammel MD, Natarajan L. Modeling variation in the reproductive lifespan of female adolescent and young adult cancer survivors using AMH. J Clin Endocrinol Metab. 2020;105:2740–2751. doi: 10.1210/clinem/dgaa172. PubMed DOI PMC
George SA, Williamson Lewis R, Schirmer DA, Effinger KE, Spencer JB, Mertens AC, Meacham LR. Early detection of ovarian dysfunction by anti-mullerian hormone in adolescent and young adult-aged survivors of childhood cancer. J Adolesc Young Adult Oncol. 2019;8:18–25. doi: 10.1089/jayao.2018.0080. PubMed DOI
Elchuri SV, Patterson BC, Brown M, Bedient C, Record E, Wasilewski-Masker K, Mertens AC, Meacham LR. Low anti-müllerian hormone in pediatric cancer survivors in the early years after gonadotoxic therapy. J Pediatr Adolesc Gynecol. 2016;29:393–399. doi: 10.1016/j.jpag.2016.02.009. PubMed DOI
de Vet A, Laven JS, de Jong FH, Themmen AP, Fauser BC. Antimüllerian hormone serum levels: A putative marker for ovarian aging. Fertil Steril. 2002;77:357–362. doi: 10.1016/S0015-0282(01)02993-4. PubMed DOI
van Dorp W, van den Heuvel-Eibrink MM, Stolk L, Pieters R, Uitterlinden AG, Visser JA, Laven JS. Genetic variation may modify ovarian reserve in female childhood cancer survivors. Hum Reprod. 2013;28:1069–1076. doi: 10.1093/humrep/des472. PubMed DOI
van der Perk MEM, Broer L, Yasui Y, Robison LL, Hudson MM, Laven JSE, van der Pal HJ, Tissing WJE, Versluys B, Bresters D, et al. Effect of genetic variation in CYP450 on gonadal impairment in a european cohort of female childhood cancer survivors, based on a candidate gene approach: Results from the PanCareLIFE study. Cancers (Basel) 2021;13:4598. doi: 10.3390/cancers13184598. PubMed DOI PMC
Salas C, Niembro A, Lozano V, Gallardo E, Molina B, Sánchez S, Ramos S, Carnevale A, Pérez-Vera P, Rivera Luna R, Frias S. Persistent genomic instability in peripheral blood lymphocytes from Hodgkin lymphoma survivors. Environ Mol Mutagen. 2012;53:271–280. doi: 10.1002/em.21691. PubMed DOI
Smith LM, Evans JW, Mori M, Brown JM. The frequency of translocations after treatment for Hodgkin's disease. Int J Radiat Oncol Biol Phys. 1992;24:737–742. doi: 10.1016/0360-3016(92)90722-T. PubMed DOI
Song N, Li Z, Qin N, Howell CR, Wilson CL, Easton J, Mulder HL, Edmonson MN, Rusch MC, Zhang J, et al. Shortened leukocyte telomere length associates with an increased prevalence of chronic health conditions among survivors of childhood cancer: A report from the St. Jude lifetime cohort. Clin Cancer Res. 2020;26:2362–2371. doi: 10.1158/1078-0432.CCR-19-2503. PubMed DOI PMC
Wang J, Van Den Berg D, Hwang AE, Weisenberger D, Triche T, Nathwani BN, Conti DV, Siegmund K, Mack TM, Horvath S, Cozen W. DNA methylation patterns of adult survivors of adolescent/young adult Hodgkin lymphoma compared to their unaffected monozygotic twin. Leuk Lymphoma. 2019;60:1429–1437. doi: 10.1080/10428194.2018.1533128. PubMed DOI PMC
Lipshultz SE, Anderson LM, Miller TL, Gerschenson M, Stevenson KE, Neuberg DS, Franco VI, LiButti DE, Silverman LB, Vrooman LM, et al. Impaired mitochondrial function is abrogated by dexrazoxane in doxorubicin-treated childhood acute lymphoblastic leukemia survivors. Cancer. 2016;22:946–953. doi: 10.1002/cncr.29872. PubMed DOI PMC
Krull KR, Hardy KK, Kahalley LS, Schuitema I, Kesler SR. Neurocognitive outcomes and interventions in long-term survivors of childhood cancer. J Clin Oncol. 2018;36:2181–2189. doi: 10.1200/JCO.2017.76.4696. PubMed DOI PMC
Armstrong GT, Reddick WE, Petersen RC, Santucci A, Zhang N, Srivastava D, Ogg RJ, Hillenbrand CM, Sabin N, Krasin MJ, et al. Evaluation of memory impairment in aging adult survivors of childhood acute lymphoblastic leukemia treated with cranial radiotherapy. J Natl Cancer Inst. 2013;105:899–907. doi: 10.1093/jnci/djt089. PubMed DOI PMC
Krull KR, Sabin ND, Reddick WE, Zhu L, Armstrong GT, Green DM, Arevalo AR, Krasin MJ, Srivastava DK, Robison LL, Hudson MM. Neurocognitive function and CNS integrity in adult survivors of childhood Hodgkin lymphoma. J Clin Oncol. 2012;30:3618–3624. doi: 10.1200/JCO.2012.42.6841. PubMed DOI PMC
Guida JL, Ahles TA, Belsky D, Campisi J, Cohen HJ, DeGregori J, Fuldner R, Ferrucci L, Gallicchio L, Gavrilov L, et al. Measuring aging and identifying aging phenotypes in cancer survivors. J Natl Cancer Inst. 2019;111:1245–1254. doi: 10.1093/jnci/djz136. PubMed DOI PMC
Guida JL, Agurs-Collins T, Ahles TA, Campisi J, Dale W, Demark-Wahnefried W, Dietrich J, Fuldner R, Gallicchio L, Green PA, et al. Strategies to prevent or remediate cancer and treatment-related aging. J Natl Cancer Inst. 2021;113:112–122. doi: 10.1093/jnci/djaa060. PubMed DOI PMC
van Kalsbeek RJ, van der Pal HJH, Kremer LCM, Bardi E, Brown MC, Effeney R, Winther JF, Follin C, den Hartogh J, Haupt R, et al. European PanCareFollowUp recommendations for surveillance of late effects of childhood, adolescent, and young adult cancer. Eur J Cancer. 2021;154:316–328. doi: 10.1016/j.ejca.2021.06.004. PubMed DOI
Trama A, Bernasconi A, Botta L, Byrne J, Grabow D, Reulen RC, Calaminus G, Terenziani M. Late mortality reduction among survivors of germ cell tumors in childhood and adolescence in Europe: A report from the PanCareSurFup cohort. Pediatr Blood Cancer. 2022;69:e29991. doi: 10.1002/pbc.29991. PubMed DOI
Grabow D, Kaiser M, Hjorth L, Byrne J, Alessi D, Allodji RS, Bagnasco F, Bárdi E, Bautz A, Bright CJ, et al. The PanCareSurFup cohort of 83,333 five-year survivors of childhood cancer: A cohort from 12 European countries. Eur J Epidemiol. 2018;33:335–349. doi: 10.1007/s10654-018-0370-3. PubMed DOI PMC
Braam KI, van der Torre P, Takken T, Veening MA, van Dulmen-den Broeder E, Kaspers GJ. Physical exercise training interventions for children and young adults during and after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;3:CD008796. PubMed PMC
Wiley CD, Campisi J. The metabolic roots of senescence: Mechanisms and opportunities for intervention. Nat Metab. 2021;3:1290–1301. doi: 10.1038/s42255-021-00483-8. PubMed DOI PMC
Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: Separating fact from fiction. Science. 2021;374:eabe7365. doi: 10.1126/science.abe7365. PubMed DOI PMC