Effect of Genetic Variation in CYP450 on Gonadal Impairment in a European Cohort of Female Childhood Cancer Survivors, Based on a Candidate Gene Approach: Results from the PanCareLIFE Study

. 2021 Sep 13 ; 13 (18) : . [epub] 20210913

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34572825

Grantová podpora
20 Stichting Kinderen Kankervrij
NA Stichting Kinder Oncologisch Centrum Rotterdam
U01 CA195547 NCI NIH HHS - United States
NA Princess Máxima Center Foundation
602030 Seventh Framework Programme
VU 2006-3622. KWF Kankerbestrijding

BACKGROUND: Female childhood cancer survivors (CCSs) carry a risk of therapy-related gonadal dysfunction. Alkylating agents (AA) are well-established risk factors, yet inter-individual variability in ovarian function is observed. Polymorphisms in CYP450 enzymes may explain this variability in AA-induced ovarian damage. We aimed to evaluate associations between previously identified genetic polymorphisms in CYP450 enzymes and AA-related ovarian function among adult CCSs. METHODS: Anti-Müllerian hormone (AMH) levels served as a proxy for ovarian function in a discovery cohort of adult female CCSs, from the pan-European PanCareLIFE cohort (n = 743; age (years): median 25.8, interquartile range (IQR) 22.1-30.6). Using two additive genetic models in linear and logistic regression, nine genetic variants in three CYP450 enzymes were analyzed in relation to cyclophosphamide equivalent dose (CED) score and their impact on AMH levels. The main model evaluated the effect of the variant on AMH and the interaction model evaluated the modifying effect of the variant on the impact of CED score on log-transformed AMH levels. Results were validated, and meta-analysis performed, using the USA-based St. Jude Lifetime Cohort (n = 391; age (years): median 31.3, IQR 26.6-37.4). RESULTS: CYP3A4*3 was significantly associated with AMH levels in the discovery and replication cohort. Meta-analysis revealed a significant main deleterious effect (Beta (95% CI): -0.706 (-1.11--0.298), p-value = 7 × 10-4) of CYP3A4*3 (rs4986910) on log-transformed AMH levels. CYP2B6*2 (rs8192709) showed a significant protective interaction effect (Beta (95% CI): 0.527 (0.126-0.928), p-value = 0.01) on log-transformed AMH levels in CCSs receiving more than 8000 mg/m2 CED. CONCLUSIONS: Female CCSs CYP3A4*3 carriers had significantly lower AMH levels, and CYP2B6*2 may have a protective effect on AMH levels. Identification of risk-contributing variants may improve individualized counselling regarding the treatment-related risk of infertility and fertility preservation options.

Boyne Research Institute 5 Bolton Square East Drogheda A92 RY6K Co Louth Ireland

Childhood Cancer Research Group Danish Cancer Society Research Center 2100 Copenhagen Denmark

Department of clinical chemistry Erasmus MC University Medical Center Rotterdam 3015 GD Rotterdam The Netherlands

Department of Clinical Medicine Faculty of Health Aarhus University and University Hospital 8200 Aarhus Denmark

Department of Epidemiology and Cancer Control St Jude Children's Research Hospital Memphis TN 38105 USA

Department of Epidemiology Netherlands Cancer Institute 1066 CX Amsterdam The Netherlands

Department of Haematology Radboud University Medical Center 6500 HB Nijmegen The Netherlands

Department of Intelligent Systems Delft University of Technology 2628 BL Delft The Netherlands

Department of Internal Medicine Rotterdam ErasmusMC University Medical Center Rotterdam 3015 GD Rotterdam The Netherlands

Department of Obstetrics and Gynaecology Amsterdam UMC Vrije Universiteit Amsterdam 1105 AZ Amsterdam The Netherlands

Department of Obstetrics and Gynaecology Radboud University Medical Center 6500 HB Nijmegen The Netherlands

Department of Obstetrics and Gynecology Erasmus MC University Medical Center 3015 GD Rotterdam The Netherlands

Department of Oncology Division of Survivorship St Jude Children's Research Hospital Memphis TN 38105 USA

Department of Oncology Oslo University Hospital 0372 Oslo Norway

Department of Paediatric Oncology University Hospital 42 055 Saint Etienne France

Department of Pediatric Oncology Haematology Emma Children's Hospital Amsterdam UMC Vrije Universiteit Amsterdam 1105 AZ Amsterdam The Netherlands

Department of Reproductive Medicine and Gynecology University Medical Center Utrecht 3584 CS Utrecht The Netherlands

Division of Childhood Cancer Epidemiology German Childhood Cancer Registry Institute of Medical Biostatistics Epidemiology and Informatics University Medical Center of the Johannes Gutenberg University Mainz 55131 Mainz Germany

Division of Clinical Pharmacology Children's National Hospital Washington DC 20010 USA

Epidemiology and Biostatistics Unit and DOPO Clinic IRCCS Istituto Giannina Gaslini 16147 Genova Italy

German Cancer Research Centre DKTK Site Essen 45147 Essen Germany

Institute of Clinical Pharmacology Brandenburg Medical School Theodor Fontane Immanuel Klinik Rüdersdorf 16816 Neuruppin Germany

Lyon University Jean Monnet University INSERM U 1059 Sainbiose 42023 Saint Etienne France

Motol University Hospital 150 05 Prague Czech Republic

Princess Máxima Center for Pediatric Oncology 3584 CS Utrecht The Netherlands

The Edmond and Lily Safra Children's Hospital Chaim Sheba Medical Center Tel Hashomer and the Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel

University Hospital Brno International Clinical Research Center Masaryk University 656 91 Brno Czech Republic

University Hospital Essen Pediatrics 3 West German Cancer Centre 45147 Essen Germany

Zobrazit více v PubMed

Ward E., DeSantis C., Robbins A., Kohler B., Jemal A. Childhood and adolescent cancer statistics. CA A Cancer J. Clin. 2014;64:83–103. doi: 10.3322/caac.21219. PubMed DOI

Hudson M.M., Link M.P., Simone J.V. Milestones in the Curability of Pediatric Cancers. J. Clin. Oncol. 2014;32:2391–2397. doi: 10.1200/JCO.2014.55.6571. PubMed DOI PMC

Geenen M.M., Cardous-Ubbink M.C., Kremer L.C.M., Bos C.V.D., van der Pal H.J.H., Heinen R.C., Jaspers M.W.M., Koning C.C.E., Oldenburger F., Langeveld N.E., et al. Medical Assessment of Adverse Health Outcomes in Long-term Survivors of Childhood Cancer. JAMA. 2007;297:2705–2715. doi: 10.1001/jama.297.24.2705. PubMed DOI

Oeffinger K.C., Mertens A.C., Sklar C.A., Kawashima T., Hudson M.M., Meadows A.T., Friedman D.L., Marina N., Hobbie W., Kadan-Lottick N., et al. Chronic Health Conditions in Adult Survivors of Childhood Cancer. N. Engl. J. Med. 2006;355:1572–1582. doi: 10.1056/NEJMsa060185. PubMed DOI

Overbeek A., Berg M.H.V.D., Kremer L.C., Heuvel-Eibrink M.M.V.D., Tissing W.J., Loonen J.J., Versluys B., Bresters D., Kaspers G.J., Lambalk C.B., et al. A nationwide study on reproductive function, ovarian reserve, and risk of premature menopause in female survivors of childhood cancer: Design and methodological challenges. BMC Cancer. 2012;12:363. doi: 10.1186/1471-2407-12-363. PubMed DOI PMC

Bhakta N., Liu Q., Ness K.K., Baassiri M., Eissa H., Yeo F., Chemaitilly W., Ehrhardt M., Bass J., Bishop M.W., et al. The cumulative burden of surviving childhood cancer: An initial report from the St Jude Lifetime Cohort Study (SJLIFE) Lancet. 2017;390:2569–2582. doi: 10.1016/S0140-6736(17)31610-0. PubMed DOI PMC

Mostoufi-Moab S., Seidel K., Leisenring W., Armstrong G.T., Oeffinger K.C., Stovall M., Meacham L.R., Green D.M., Weathers R., Ginsberg J.P., et al. Endocrine Abnormalities in Aging Survivors of Childhood Cancer: A Report From the Childhood Cancer Survivor Study. J. Clin. Oncol. 2016;34:3240–3247. doi: 10.1200/JCO.2016.66.6545. PubMed DOI PMC

Berg M.V.D., Van Dijk M., Byrne J., Campbell H., Berger C., Borgmann-Staudt A., Calaminus G., Dirksen U., Winther J.F., Fossa S.D., et al. Fertility Among Female Survivors of Childhood, Adolescent, and Young Adult Cancer: Protocol for Two Pan-European Studies (PanCareLIFE) JMIR Res. Protoc. 2018;7:e10824. doi: 10.2196/10824. PubMed DOI PMC

Van Dorp W., Heuvel-Eibrink M.V.D., Stolk L., Pieters R., Uitterlinden A., Visser J., Laven J. Genetic variation may modify ovarian reserve in female childhood cancer survivors. Hum. Reprod. 2013;28:1069–1076. doi: 10.1093/humrep/des472. PubMed DOI

Fong S.L., Laven J., Hakvoort-Cammel F., Schipper I., Visser J., Themmen A., de Jong F., Heuvel-Eibrink M.V.D. Assessment of ovarian reserve in adult childhood cancer survivors using anti-Mullerian hormone. Hum. Reprod. 2008;24:982–990. doi: 10.1093/humrep/den487. PubMed DOI

Van Beek R.D., Heuvel-Eibrink M.M.V.D., Laven J.S.E., De Jong F.H., Themmen A.P.N., Hakvoort-Cammel F.G., Bos C.V.D., Berg H.V.D., Pieters R., Keizer-Schrama S.M.P.F.D.M. Anti-Mullerian Hormone Is a Sensitive Serum Marker for Gonadal Function in Women Treated for Hodgkin’s Lymphoma during Childhood. J. Clin. Endocrinol. Metab. 2007;92:3869–3874. doi: 10.1210/jc.2006-2374. PubMed DOI

Van der Kooi A.-L.L.F., van Dijk M., Broer L., Berg M.H.V.D., Laven J.S.E., van Leeuwen F.E., Lambalk C.B., Overbeek A., Loonen J.J., van der Pal H.J., et al. Possible modification of BRSK1 on the risk of alkylating chemotherapy-related reduced ovarian function. Hum. Reprod. 2021;36:1120–1133. doi: 10.1093/humrep/deaa342. PubMed DOI PMC

Van Santen H.M., van de Wetering M.D., Bos A.M., Heuvel-Eibrink M.M.V., van der Pal H.J., Wallace W.H. Reproductive Complications in Childhood Cancer Survivors. Pediatric Clin. N. Am. 2020;67:1187–1202. doi: 10.1016/j.pcl.2020.08.003. PubMed DOI

Aminkeng F., Ross C., Rassekh S.R., Hwang S., Rieder M.J., Bhavsar A.P., Smith A., Sanatani S., Gelmon K.A., Bernstein D., et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016;82:683–695. doi: 10.1111/bcp.13008. PubMed DOI PMC

Clemens E., Van Der Kooi A., Broer L., Broeder E.V.D.-D., Visscher H., Kremer L., Tissing W., Loonen J., Ronckers C.M., Pluijm S., et al. The influence of genetic variation on late toxicities in childhood cancer survivors: A review. Crit. Rev. Oncol. 2018;126:154–167. doi: 10.1016/j.critrevonc.2018.04.001. PubMed DOI

Roy P., Yu L.J., Crespi C.L., Waxman D.J. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab. Dispos. 1999;27:655–666. PubMed

Lowenberg D., Thorn C.F., Desta Z., Flockhart D.A., Altman R.B., Klein T.E. PharmGKB summary: Ifosfamide pathways, pharmacokinetics and pharmacodynamics. Pharm. Genom. 2014;24:133–138. doi: 10.1097/FPC.0000000000000019. PubMed DOI PMC

Shu W., Guan S., Yang X., Liang L., Li J., Chen Z., Zhang Y., Chen L., Wang X., Huang M. Genetic markers inCYP2C19andCYP2B6for prediction of cyclophosphamide’s 4-hydroxylation, efficacy and side effects in Chinese patients with systemic lupus erythematosus. Br. J. Clin. Pharmacol. 2015;81:327–340. doi: 10.1111/bcp.12800. PubMed DOI PMC

Su H.I., Sammel M.D., Velders L., Horn M., Stankiewicz C., Matro J., Gracia C.R., Green J., DeMichele A. Association of cyclophosphamide drug–metabolizing enzyme polymorphisms and chemotherapy-related ovarian failure in breast cancer survivors. Fertil. Steril. 2010;94:645–654. doi: 10.1016/j.fertnstert.2009.03.034. PubMed DOI PMC

Ngamjanyaporn P., Thakkinstian A., Verasertniyom O., Chatchaipun P., Vanichapuntu M., Nantiruj K., Totemchokchyakarn K., Attia J., Janwityanujit S. Pharmacogenetics of cyclophosphamide and CYP2C19 polymorphism in Thai systemic lupus erythematosus. Rheumatol. Int. 2010;31:1215–1218. doi: 10.1007/s00296-010-1420-7. PubMed DOI

Ambrosone C.B., Sweeney C., Coles B.F., Thompson P.A., McClure G.Y., Korourian S., Fares M.Y., Stone A., Kadlubar F.F., Hutchins L.F. Polymorphisms in glutathione S-transferases (GSTM1 and GSTT1) and survival after treatment for breast cancer. Cancer Res. 2001;61:7130–7135. PubMed

DeMichele A., Gimotty P., Botbyl J., Aplenc R., Colligon T., Foulkes A.S., Rebbeck T.R. In Response to “Drug Metabolizing Enzyme Polymorphisms Predict Clinical Outcome in a Node-Positive Breast Cancer Cohort. J. Clin. Oncol. 2007;25:5675–5677. doi: 10.1200/JCO.2006.10.1485. PubMed DOI

Sweeney C., Ambrosone C.B., Joseph L., Stone A., Hutchins L.F., Kadlubar F.F., Coles B.F. Association between a glutathioneS-transferase A1 promoter polymorphism and survival after breast cancer treatment. Int. J. Cancer. 2003;103:810–814. doi: 10.1002/ijc.10896. PubMed DOI

Sweeney C., McClure G.Y., Fares M.Y., Stone A., Coles B.F., Thompson P.A., Korourian S., Hutchins L.F., Kadlubar F.F., Ambrosone C.B. Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism. Cancer Res. 2000;60:5621–5624. PubMed

Giraud B., Hebert G., Deroussent A., Veal G.J., Vassal G., Paci A. Oxazaphosphorines: New therapeutic strategies for an old class of drugs. Expert Opin. Drug Metab. Toxicol. 2010;6:919–938. doi: 10.1517/17425255.2010.487861. PubMed DOI

Van der Kooi A.L.L.F., Clemens E., Broer L., Zolk O., Byrne J., Campbell H., van den Berg M., Berger C., Calaminus G., Dirksen U., et al. Genetic variation in gonadal impairment in female survivors of childhood cancer: A PanCareLIFE study protocol. BMC Cancer. 2018;18:930. doi: 10.1186/s12885-018-4834-3. PubMed DOI PMC

Hudson M.M., Ehrhardt M., Bhakta N., Baassiri M., Eissa H., Chemaitilly W., Green D.M., Mulrooney D.A., Armstrong G.T., Brinkman T.M., et al. Approach for Classification and Severity Grading of Long-term and Late-Onset Health Events among Childhood Cancer Survivors in the St. Jude Lifetime Cohort. Cancer Epidemiol. Prev. Biomark. 2017;26:666–674. doi: 10.1158/1055-9965.EPI-16-0812. PubMed DOI PMC

Byrne J., Grabow D., Campbell H., O’Brien K., Bielack S., Zehnhoff-Dinnesen A.A., Calaminus G., Kremer L., Langer T., Heuvel-Eibrink M.M.V.D., et al. PanCareLIFE: The scientific basis for a European project to improve long-term care regarding fertility, ototoxicity and health-related quality of life after cancer occurring among children and adolescents. Eur. J. Cancer. 2018;103:227–237. doi: 10.1016/j.ejca.2018.08.007. PubMed DOI

Kaatsch P., Byrne J., Grabow D., On Behalf of the PanCareLIFE Consortium Managing a Pan-European Consortium on Late Effects among Long-Term Survivors of Childhood and Adolescent Cancer—The PanCareLIFE Project. Int. J. Environ. Res. Public Health. 2021;18:3918. doi: 10.3390/ijerph18083918. PubMed DOI PMC

Howell C.R., Bjornard K.L., Ness K.K., Alberts N., Armstrong G.T., Bhakta N., Brinkman T., Caron E., Chemaitilly W., Green D.M., et al. Cohort Profile: The St. Jude Lifetime Cohort Study (SJLIFE) for paediatric cancer survivors. Int. J. Epidemiol. 2021;50:39–49. doi: 10.1093/ije/dyaa203. PubMed DOI PMC

Gassner D., Jung R. First fully automated immunoassay for anti-Müllerian hormone. Clin. Chem. Lab. Med. 2014;52:1143–1152. doi: 10.1515/cclm-2014-0022. PubMed DOI

Green D.M., Nolan V.G., Ms P.J.G., Ms J.A.W., Srivastava D., Leisenring W.M., Neglia J., Sklar C.A., Kaste S.C., Hudson M.M., et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: A report from the childhood cancer survivor study. Pediatric Blood Cancer. 2014;61:53–67. doi: 10.1002/pbc.24679. PubMed DOI PMC

R Core Team R: A Language and Environment for Statistical Computing. [(accessed on 13 January 2021)]. Available online: https://www.R-project.org/

Van Schaik R.H., De Wildt S.N., Brosens R., Van Fessem M., Anker J.N.V.D., Lindemans J. The CYP3A4*3 allele: Is it really rare? Clin. Chem. 2001;47:1104–1106. doi: 10.1093/clinchem/47.6.1104. PubMed DOI

Sata F., Sapone A., Elizondo G., Stocker P., Miller V.P., Zheng W., Raunio H., Crespi C.L., Gonzalez F.J. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: Evidence for an allelic variant with altered catalytic activity. Clin. Pharmacol. Ther. 2000;67:48–56. doi: 10.1067/mcp.2000.104391. PubMed DOI

Tang P.-F., Zheng X., Hu X.-X., Yang C.-C., Chen Z., Qian J.-C., Cai J.-P., Hu G.-X. Functional Measurement of CYP2C9 and CYP3A4 Allelic Polymorphism on Sildenafil Metabolism. Drug Des. Dev. Ther. 2020;14:5129–5141. doi: 10.2147/DDDT.S268796. PubMed DOI PMC

Amirimani B., Ning B., Deitz A., Weber B., Kadlubar F., Rebbeck T. Increased transcriptional activity of theCYP3A4*1B promoter variant. Environ. Mol. Mutagen. 2003;42:299–305. doi: 10.1002/em.10199. PubMed DOI

Amirimani B., Walker A.H., Weber B.L., Rebbeck T.R. Modification of Clinical Presentation of Prostate Tumors by a Novel Genetic Variant in CYP3A. JNCI J. Natl. Cancer Inst. 1999;91:1588–1590. doi: 10.1093/jnci/91.18.1588. PubMed DOI

DeMichele A., Aplenc R., Botbyl J., Colligan T., Wray L., Klein-Cabral M., Foulkes A., Gimotty P., Glick J., Weber B., et al. Drug-Metabolizing Enzyme Polymorphisms Predict Clinical Outcome in a Node-Positive Breast Cancer Cohort. J. Clin. Oncol. 2005;23:5552–5559. doi: 10.1200/JCO.2005.06.208. PubMed DOI

Paris P.L., Kupelian P.A., Hall J.M., Williams T.L., Levin H., Klein E.A., Casey G., Witte J.S. Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients. Cancer Epidemiol. Prev. Biomark. 1999;8:901–905. PubMed

Rebbeck T.R., Jaffe J.M., Walker A.H., Wein A.J., Malkowicz S.B. Modification of Clinical Presentation of Prostate Tumors by a Novel Genetic Variant in CYP3A. JNCI J. Natl. Cancer Inst. 1998;90:1225–1229. doi: 10.1093/jnci/90.16.1225. PubMed DOI

Sinues B., Vicente J., Fanlo A., Vasquez P., Medina J.C., Mayayo E., Conde B., Arenaz I., Martinez-Jarreta B. CYP3A5*3 and CYP3A4*1B Allele Distribution and Genotype Combinations: Differences Between Spaniards and Central Americans. Ther. Drug Monit. 2007;29:412–416. doi: 10.1097/FTD.0b013e31811f390a. PubMed DOI

Miao J., Jin Y., Marunde R.L., Kim S., Quinney S., Radovich M., Li L., Hall S.D. Association of genotypes of the CYP3A cluster with midazolam disposition in vivo. Pharm. J. 2009;9:319–326. doi: 10.1038/tpj.2009.21. PubMed DOI PMC

Kuehl P.M., Zhang J., Lin Y., Lamba J.K., Assem M., Schuetz J.D., Watkins P.B., Daly A., Wrighton S.A., Hall S.D., et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001;27:383–391. doi: 10.1038/86882. PubMed DOI

Gervasini G., Garcia M., Macias R.M., Cubero J.J., Caravaca F., Benitez J. Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transpl. Int. 2012;25:471–480. doi: 10.1111/j.1432-2277.2012.01446.x. PubMed DOI

Floyd M.D., Gervasini G., Masica A.L., Mayo G., George A.L., Bhat K., Kim R.B., Wilkinson G.R. Genotype—phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharm. Genom. 2003;13:595–606. doi: 10.1097/00008571-200310000-00003. PubMed DOI

Clinical Pharmacogenetics Implementation Consortium (St. Jude Children’s Research Hospital and Stanford University), C. ClinVar CYP2C19. [(accessed on 27 May 2021)];2018 Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/39357/

Rudberg I., Mohebi B., Hermann M., Refsum H., Molden E. Impact of the Ultrarapid CYP2C19*17 Allele on Serum Concentration of Escitalopram in Psychiatric Patients. Clin. Pharmacol. Ther. 2008;83:322–327. doi: 10.1038/sj.clpt.6100291. PubMed DOI

Tęcza K., Pamuła-Piłat J., Lanuszewska J., Butkiewicz D., Grzybowska E. Pharmacogenetics of toxicity of 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget. 2018;9:9114–9136. doi: 10.18632/oncotarget.24148. PubMed DOI PMC

Whirl-Carrillo M., McDonagh E.M., Hebert J.M., Gong L., Sangkuhl K., Thorn C.F., Altman R.B., Klein T.E. Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2012;92:414–417. doi: 10.1038/clpt.2012.96. PubMed DOI PMC

Brooke R.J., Im C., Wilson C.L., Krasin M.J., Liu Q., Li Z., Sapkota Y., Moon W., Morton L.M., Wu G., et al. A High-risk Haplotype for Premature Menopause in Childhood Cancer Survivors Exposed to Gonadotoxic Therapy. JNCI J. Natl. Cancer Inst. 2018;110:895–904. doi: 10.1093/jnci/djx281. PubMed DOI PMC

Anderson R., Nelson S., Wallace W. Measuring anti-Müllerian hormone for the assessment of ovarian reserve: When and for whom is it indicated? Maturitas. 2012;71:28–33. doi: 10.1016/j.maturitas.2011.11.008. PubMed DOI

Charpentier A.-M., Chong A.L., Gingras-Hill G., Ahmed S., Cigsar C., Gupta A.A., Greenblatt E., Hodgson D.C. Anti-Müllerian hormone screening to assess ovarian reserve among female survivors of childhood cancer. J. Cancer Surviv. 2014;8:548–554. doi: 10.1007/s11764-014-0364-4. PubMed DOI

Lunsford A.J., Whelan K., McCormick K., McLaren J.F. Antimüllerian hormone as a measure of reproductive function in female childhood cancer survivors. Fertil. Steril. 2014;101:227–231. doi: 10.1016/j.fertnstert.2013.08.052. PubMed DOI

Dólleman M., Verschuren W.M., Eijkemans M.J., Broekmans F.J., Van Der Schouw Y.T. Added value of anti-Müllerian hormone in prediction of menopause: Results from a large prospective cohort study. Hum. Reprod. 2015;30:1974–1981. doi: 10.1093/humrep/dev145. PubMed DOI

Freeman E.W., Sammel M.D., Lin H., Boorman D.W., Gracia C.R. Contribution of the rate of change of antimüllerian hormone in estimating time to menopause for late reproductive-age women. Fertil. Steril. 2012;98:1254–1259.e2. doi: 10.1016/j.fertnstert.2012.07.1139. PubMed DOI PMC

Freeman E.W., Sammel M.D., Lin H., Gracia C.R. Anti-Mullerian Hormone as a Predictor of Time to Menopause in Late Reproductive Age Women. J. Clin. Endocrinol. Metab. 2012;97:1673–1680. doi: 10.1210/jc.2011-3032. PubMed DOI PMC

De Kat A.C., van der Schouw Y., Eijkemans M.J.C., Herber-Gast G.C., Visser J.A., Verschuren W.M.M., Broekmans F.J.M. Back to the basics of ovarian aging: A population-based study on longitudinal anti-Müllerian hormone decline. BMC Med. 2016;14:151. doi: 10.1186/s12916-016-0699-y. PubMed DOI PMC

Dewailly D., Andersen C.Y., Balen A., Broekmans F., Dilaver N., Fanchin R., Griesinger G., Kelsey T.W., La Marca A., Lambalk C., et al. The physiology and clinical utility of anti-Müllerian hormone in women. Hum. Reprod. Updat. 2014;20:804. doi: 10.1093/humupd/dmu043. PubMed DOI

Day F., The PRACTICAL Consortium. Ruth K.S., Thompson D.J., Lunetta K.L., Pervjakova N., Chasman D.I., Stolk L., Finucane H.K., Sulem P., et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat. Genet. 2015;47:1294–1303. doi: 10.1038/ng.3412. PubMed DOI PMC

Day F., The LifeLines Cohort Study. Thompson D.J., Helgason H., Chasman D.I., Finucane H., Sulem P., Ruth K.S., Whalen S., Sarkar A.K., et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 2017;49:834–841. doi: 10.1038/ng.3841. PubMed DOI PMC

He C., Kraft P., Chasman D.I., Buring J.E., Chen C., Hankinson S.E., Pare G., Chanock S., Ridker P.M., Hunter D.J. A large-scale candidate gene association study of age at menarche and age at natural menopause. Hum. Genet. 2010;128:515–527. doi: 10.1007/s00439-010-0878-4. PubMed DOI PMC

Perry J.R.B., Stolk L., Franceschini N., Lunetta K., Zhai G., McArdle P.F., Smith A.V., Aspelund T., Bandinelli S., Boerwinkle E., et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat. Genet. 2009;41:648–650. doi: 10.1038/ng.386. PubMed DOI PMC

Stolk L., Zhai G., Van Meurs J.B.J., Verbiest M.M.P.J., Visser J.A., Estrada K., Rivadeneira F., Williams F.M., Cherkas L., Deloukas P., et al. Loci at chromosomes 13, 19 and 20 influence age at natural menopause. Nat. Genet. 2009;41:645–647. doi: 10.1038/ng.387. PubMed DOI PMC

Perry J.R.B., Corre T., Esko T., Chasman D.I., Fischer K., Franceschini N., He C., Kutalik Z., Mangino M., Rose L.M., et al. A genome-wide association study of early menopause and the combined impact of identified variants. Hum. Mol. Genet. 2013;22:1465–1472. doi: 10.1093/hmg/dds551. PubMed DOI PMC

Li H.W.R., Ko J.K.Y., Lee V.C.Y., Yung S.S.F., Lau E.Y.L., Yeung W.S.B., Ho P.C., Ng E.H.Y. Comparison of antral follicle count and serum anti-Müllerian hormone level for determination of gonadotropin dosing in in-vitro fertilization: Randomized trial. Ultrasound Obstet. Gynecol. 2020;55:303–309. doi: 10.1002/uog.20402. PubMed DOI

Fleming R., Seifer D.B., Frattarelli J.L., Ruman J. Assessing ovarian response: Antral follicle count versus anti-Müllerian hormone. Reprod. Biomed. Online. 2015;31:486–496. doi: 10.1016/j.rbmo.2015.06.015. PubMed DOI

Ersahin A.A., Arpaci H., Ersahin S.S., Celik N., Acet M. AFC vs. AMH: Prediction of ovarian response in women with endometrioma undergoing controlled ovarian stimulation. Eur. Rev. Med Pharmacol. Sci. 2017;21:2499–2503. PubMed

Barbakadze L., Kristesashvili J., Khonelidze N., Tsagareishvili G. The Correlations of Anti-Mullerian Hormone, Follicle-Stimulating Hormone and Antral Follicle Count in Different Age Groups of Infertile Women. Int. J. Fertil. Steril. 2015;8:393–398. PubMed PMC

Zhang Y., Xu Y., Xue Q., Shang J., Yang X., Shan X., Kuai Y., Wang S., Zeng C. Discordance between antral follicle counts and anti-Müllerian hormone levels in women undergoing in vitro fertilization. Reprod. Biol. Endocrinol. 2019;17:1–6. doi: 10.1186/s12958-019-0497-4. PubMed DOI PMC

Broer S.L., Broekmans F.J., Laven J.S., Fauser B.C. Anti-Müllerian hormone: Ovarian reserve testing and its potential clinical implications. Hum. Reprod. Update. 2014;20:688–701. doi: 10.1093/humupd/dmu020. PubMed DOI

Ioannidis J.P.A. Why Most Published Research Findings Are False. PLoS Med. 2005;2:e124. doi: 10.1371/journal.pmed.0020124. PubMed DOI PMC

Moonesinghe R., Khoury M.J., Janssens A.C. Most Published Research Findings Are False—But a Little Replication Goes a Long Way. PLoS Med. 2007;4:e28. doi: 10.1371/journal.pmed.0040028. PubMed DOI PMC

Mulder R.L., Font-Gonzalez A., Green D.M., Loeffen E.A.H., Hudson M.M., Loonen J., Yu R., Ginsberg J.P., Mitchell R.T., Byrne J., et al. Fertility preservation for male patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021;22:e57–e67. doi: 10.1016/S1470-2045(20)30582-9. PubMed DOI

Mulder R.L., Font-Gonzalez A., Hudson M.M., van Santen H.M., Loeffen E.A.H., Burns K.C., Quinn G.P., Broeder E.V.D.-D., Byrne J., Haupt R., et al. Fertility preservation for female patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021;22:e45–e56. doi: 10.1016/S1470-2045(20)30594-5. PubMed DOI

Mulder R.L., Font-Gonzalez A., Broeder E.V.D.-D., Quinn G.P., Ginsberg J.P., Loeffen E.A.H., Hudson M.M., Burns K.C., van Santen H.M., Berger C., et al. Communication and ethical considerations for fertility preservation for patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021;22:e68–e80. doi: 10.1016/s1470-2045(20)30595-7. PubMed DOI

Deshpande N.A., Braun I.M., Meyer F.L. Impact of fertility preservation counseling and treatment on psychological outcomes among women with cancer: A systematic review. Cancer. 2015;121:3938–3947. doi: 10.1002/cncr.29637. PubMed DOI

Letourneau J.M., Ebbel E.E., Katz P.P., Katz A., Ai W.Z., Chien A.J., Melisko M.E., Cedars M.I., Rosen M.P. Pretreatment fertility counseling and fertility preservation improve quality of life in reproductive age women with cancer. Cancer. 2011;118:1710–1717. doi: 10.1002/cncr.26459. PubMed DOI PMC

Bjelland E.K., Wilkosz P., Tanbo T.G., Eskild A. Is unilateral oophorectomy associated with age at menopause? A population study (the HUNT2 Survey) Hum. Reprod. 2014;29:835–841. doi: 10.1093/humrep/deu026. PubMed DOI

Coccia M.E., Rizzello F., Mariani G., Bulletti C., Palagiano A., Scarselli G. Ovarian surgery for bilateral endometriomas influences age at menopause. Hum. Reprod. 2011;26:3000–3007. doi: 10.1093/humrep/der286. PubMed DOI

Yasui T., Hayashi K., Mizunuma H., Kubota T., Aso T., Matsumura Y., Lee J.-S., Suzuki S. Factors associated with premature ovarian failure, early menopause and earlier onset of menopause in Japanese women. Maturitas. 2012;72:249–255. doi: 10.1016/j.maturitas.2012.04.002. PubMed DOI

Van der Perk M.E.M., van der Kooi A.-L.L.F., van de Wetering M.D., Ijgosse I.M., Broeder E.V.D.-D., Broer S.L., Klijn A.J., Versluys A.B., Arends B., Ophuis R.J.A.O., et al. Oncofertility care for newly diagnosed girls with cancer in a national pediatric oncology setting, the first full year experience from the Princess Máxima Center, the PEARL study. PLoS ONE. 2021;16:e0246344. doi: 10.1371/journal.pone.0246344. PubMed DOI PMC

Stevens A., De Leonibus C., Hanson D., Whatmore A., Murray P., Donn R., Meyer S., Chatelain P., Clayton P. Pediatric perspective on pharmacogenomics. Pharmacogenomics. 2013;14:1889–1905. doi: 10.2217/pgs.13.193. PubMed DOI

Fernandez E., Perez R., Hernandez A., Tejada P., Arteta M., Ramos J.T. Factors and Mechanisms for Pharmacokinetic Differences between Pediatric Population and Adults. Pharmaceutics. 2011;3:53–72. doi: 10.3390/pharmaceutics3010053. PubMed DOI PMC

Sassen S.D., Zwaan C.M., Van Der Sluis I.M., Mathôt R.A. Pharmacokinetics and population pharmacokinetics in pediatric oncology. Pediatric Blood Cancer. 2019;67:e28132. doi: 10.1002/pbc.28132. PubMed DOI

Van den Anker J., Reed M.D., Allegaert K., Kearns G.L. Developmental Changes in Pharmacokinetics and Pharmacodynamics. J. Clin. Pharmacol. 2018;58:S10–S25. doi: 10.1002/jcph.1284. PubMed DOI

Conklin L.S., Hoffman E., van den Anker J. Developmental Pharmacodynamics and Modeling in Pediatric Drug Development. J. Clin. Pharmacol. 2019;59:S87–S94. doi: 10.1002/jcph.1482. PubMed DOI PMC

Andersen S.W. Identifying Biomarkers for Risk of Premature Menopause Among Childhood Cancer Survivors May Lead to Targeted Interventions and Wellness Strategies. J. Natl. Cancer Inst. 2018;110:801–802. doi: 10.1093/jnci/djx291. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...