Effect of Genetic Variation in CYP450 on Gonadal Impairment in a European Cohort of Female Childhood Cancer Survivors, Based on a Candidate Gene Approach: Results from the PanCareLIFE Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20
Stichting Kinderen Kankervrij
NA
Stichting Kinder Oncologisch Centrum Rotterdam
U01 CA195547
NCI NIH HHS - United States
NA
Princess Máxima Center Foundation
602030
Seventh Framework Programme
VU 2006-3622.
KWF Kankerbestrijding
PubMed
34572825
PubMed Central
PMC8470074
DOI
10.3390/cancers13184598
PII: cancers13184598
Knihovny.cz E-zdroje
- Klíčová slova
- anti-Müllerian hormone, candidate gene approach, chemotherapy, childhood cancer survivors, cytochrome P450 genes, ovarian function,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Female childhood cancer survivors (CCSs) carry a risk of therapy-related gonadal dysfunction. Alkylating agents (AA) are well-established risk factors, yet inter-individual variability in ovarian function is observed. Polymorphisms in CYP450 enzymes may explain this variability in AA-induced ovarian damage. We aimed to evaluate associations between previously identified genetic polymorphisms in CYP450 enzymes and AA-related ovarian function among adult CCSs. METHODS: Anti-Müllerian hormone (AMH) levels served as a proxy for ovarian function in a discovery cohort of adult female CCSs, from the pan-European PanCareLIFE cohort (n = 743; age (years): median 25.8, interquartile range (IQR) 22.1-30.6). Using two additive genetic models in linear and logistic regression, nine genetic variants in three CYP450 enzymes were analyzed in relation to cyclophosphamide equivalent dose (CED) score and their impact on AMH levels. The main model evaluated the effect of the variant on AMH and the interaction model evaluated the modifying effect of the variant on the impact of CED score on log-transformed AMH levels. Results were validated, and meta-analysis performed, using the USA-based St. Jude Lifetime Cohort (n = 391; age (years): median 31.3, IQR 26.6-37.4). RESULTS: CYP3A4*3 was significantly associated with AMH levels in the discovery and replication cohort. Meta-analysis revealed a significant main deleterious effect (Beta (95% CI): -0.706 (-1.11--0.298), p-value = 7 × 10-4) of CYP3A4*3 (rs4986910) on log-transformed AMH levels. CYP2B6*2 (rs8192709) showed a significant protective interaction effect (Beta (95% CI): 0.527 (0.126-0.928), p-value = 0.01) on log-transformed AMH levels in CCSs receiving more than 8000 mg/m2 CED. CONCLUSIONS: Female CCSs CYP3A4*3 carriers had significantly lower AMH levels, and CYP2B6*2 may have a protective effect on AMH levels. Identification of risk-contributing variants may improve individualized counselling regarding the treatment-related risk of infertility and fertility preservation options.
Boyne Research Institute 5 Bolton Square East Drogheda A92 RY6K Co Louth Ireland
Childhood Cancer Research Group Danish Cancer Society Research Center 2100 Copenhagen Denmark
Department of Epidemiology Netherlands Cancer Institute 1066 CX Amsterdam The Netherlands
Department of Haematology Radboud University Medical Center 6500 HB Nijmegen The Netherlands
Department of Intelligent Systems Delft University of Technology 2628 BL Delft The Netherlands
Department of Oncology Oslo University Hospital 0372 Oslo Norway
Department of Paediatric Oncology University Hospital 42 055 Saint Etienne France
Division of Clinical Pharmacology Children's National Hospital Washington DC 20010 USA
German Cancer Research Centre DKTK Site Essen 45147 Essen Germany
Lyon University Jean Monnet University INSERM U 1059 Sainbiose 42023 Saint Etienne France
Motol University Hospital 150 05 Prague Czech Republic
Princess Máxima Center for Pediatric Oncology 3584 CS Utrecht The Netherlands
University Hospital Essen Pediatrics 3 West German Cancer Centre 45147 Essen Germany
Zobrazit více v PubMed
Ward E., DeSantis C., Robbins A., Kohler B., Jemal A. Childhood and adolescent cancer statistics. CA A Cancer J. Clin. 2014;64:83–103. doi: 10.3322/caac.21219. PubMed DOI
Hudson M.M., Link M.P., Simone J.V. Milestones in the Curability of Pediatric Cancers. J. Clin. Oncol. 2014;32:2391–2397. doi: 10.1200/JCO.2014.55.6571. PubMed DOI PMC
Geenen M.M., Cardous-Ubbink M.C., Kremer L.C.M., Bos C.V.D., van der Pal H.J.H., Heinen R.C., Jaspers M.W.M., Koning C.C.E., Oldenburger F., Langeveld N.E., et al. Medical Assessment of Adverse Health Outcomes in Long-term Survivors of Childhood Cancer. JAMA. 2007;297:2705–2715. doi: 10.1001/jama.297.24.2705. PubMed DOI
Oeffinger K.C., Mertens A.C., Sklar C.A., Kawashima T., Hudson M.M., Meadows A.T., Friedman D.L., Marina N., Hobbie W., Kadan-Lottick N., et al. Chronic Health Conditions in Adult Survivors of Childhood Cancer. N. Engl. J. Med. 2006;355:1572–1582. doi: 10.1056/NEJMsa060185. PubMed DOI
Overbeek A., Berg M.H.V.D., Kremer L.C., Heuvel-Eibrink M.M.V.D., Tissing W.J., Loonen J.J., Versluys B., Bresters D., Kaspers G.J., Lambalk C.B., et al. A nationwide study on reproductive function, ovarian reserve, and risk of premature menopause in female survivors of childhood cancer: Design and methodological challenges. BMC Cancer. 2012;12:363. doi: 10.1186/1471-2407-12-363. PubMed DOI PMC
Bhakta N., Liu Q., Ness K.K., Baassiri M., Eissa H., Yeo F., Chemaitilly W., Ehrhardt M., Bass J., Bishop M.W., et al. The cumulative burden of surviving childhood cancer: An initial report from the St Jude Lifetime Cohort Study (SJLIFE) Lancet. 2017;390:2569–2582. doi: 10.1016/S0140-6736(17)31610-0. PubMed DOI PMC
Mostoufi-Moab S., Seidel K., Leisenring W., Armstrong G.T., Oeffinger K.C., Stovall M., Meacham L.R., Green D.M., Weathers R., Ginsberg J.P., et al. Endocrine Abnormalities in Aging Survivors of Childhood Cancer: A Report From the Childhood Cancer Survivor Study. J. Clin. Oncol. 2016;34:3240–3247. doi: 10.1200/JCO.2016.66.6545. PubMed DOI PMC
Berg M.V.D., Van Dijk M., Byrne J., Campbell H., Berger C., Borgmann-Staudt A., Calaminus G., Dirksen U., Winther J.F., Fossa S.D., et al. Fertility Among Female Survivors of Childhood, Adolescent, and Young Adult Cancer: Protocol for Two Pan-European Studies (PanCareLIFE) JMIR Res. Protoc. 2018;7:e10824. doi: 10.2196/10824. PubMed DOI PMC
Van Dorp W., Heuvel-Eibrink M.V.D., Stolk L., Pieters R., Uitterlinden A., Visser J., Laven J. Genetic variation may modify ovarian reserve in female childhood cancer survivors. Hum. Reprod. 2013;28:1069–1076. doi: 10.1093/humrep/des472. PubMed DOI
Fong S.L., Laven J., Hakvoort-Cammel F., Schipper I., Visser J., Themmen A., de Jong F., Heuvel-Eibrink M.V.D. Assessment of ovarian reserve in adult childhood cancer survivors using anti-Mullerian hormone. Hum. Reprod. 2008;24:982–990. doi: 10.1093/humrep/den487. PubMed DOI
Van Beek R.D., Heuvel-Eibrink M.M.V.D., Laven J.S.E., De Jong F.H., Themmen A.P.N., Hakvoort-Cammel F.G., Bos C.V.D., Berg H.V.D., Pieters R., Keizer-Schrama S.M.P.F.D.M. Anti-Mullerian Hormone Is a Sensitive Serum Marker for Gonadal Function in Women Treated for Hodgkin’s Lymphoma during Childhood. J. Clin. Endocrinol. Metab. 2007;92:3869–3874. doi: 10.1210/jc.2006-2374. PubMed DOI
Van der Kooi A.-L.L.F., van Dijk M., Broer L., Berg M.H.V.D., Laven J.S.E., van Leeuwen F.E., Lambalk C.B., Overbeek A., Loonen J.J., van der Pal H.J., et al. Possible modification of BRSK1 on the risk of alkylating chemotherapy-related reduced ovarian function. Hum. Reprod. 2021;36:1120–1133. doi: 10.1093/humrep/deaa342. PubMed DOI PMC
Van Santen H.M., van de Wetering M.D., Bos A.M., Heuvel-Eibrink M.M.V., van der Pal H.J., Wallace W.H. Reproductive Complications in Childhood Cancer Survivors. Pediatric Clin. N. Am. 2020;67:1187–1202. doi: 10.1016/j.pcl.2020.08.003. PubMed DOI
Aminkeng F., Ross C., Rassekh S.R., Hwang S., Rieder M.J., Bhavsar A.P., Smith A., Sanatani S., Gelmon K.A., Bernstein D., et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016;82:683–695. doi: 10.1111/bcp.13008. PubMed DOI PMC
Clemens E., Van Der Kooi A., Broer L., Broeder E.V.D.-D., Visscher H., Kremer L., Tissing W., Loonen J., Ronckers C.M., Pluijm S., et al. The influence of genetic variation on late toxicities in childhood cancer survivors: A review. Crit. Rev. Oncol. 2018;126:154–167. doi: 10.1016/j.critrevonc.2018.04.001. PubMed DOI
Roy P., Yu L.J., Crespi C.L., Waxman D.J. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab. Dispos. 1999;27:655–666. PubMed
Lowenberg D., Thorn C.F., Desta Z., Flockhart D.A., Altman R.B., Klein T.E. PharmGKB summary: Ifosfamide pathways, pharmacokinetics and pharmacodynamics. Pharm. Genom. 2014;24:133–138. doi: 10.1097/FPC.0000000000000019. PubMed DOI PMC
Shu W., Guan S., Yang X., Liang L., Li J., Chen Z., Zhang Y., Chen L., Wang X., Huang M. Genetic markers inCYP2C19andCYP2B6for prediction of cyclophosphamide’s 4-hydroxylation, efficacy and side effects in Chinese patients with systemic lupus erythematosus. Br. J. Clin. Pharmacol. 2015;81:327–340. doi: 10.1111/bcp.12800. PubMed DOI PMC
Su H.I., Sammel M.D., Velders L., Horn M., Stankiewicz C., Matro J., Gracia C.R., Green J., DeMichele A. Association of cyclophosphamide drug–metabolizing enzyme polymorphisms and chemotherapy-related ovarian failure in breast cancer survivors. Fertil. Steril. 2010;94:645–654. doi: 10.1016/j.fertnstert.2009.03.034. PubMed DOI PMC
Ngamjanyaporn P., Thakkinstian A., Verasertniyom O., Chatchaipun P., Vanichapuntu M., Nantiruj K., Totemchokchyakarn K., Attia J., Janwityanujit S. Pharmacogenetics of cyclophosphamide and CYP2C19 polymorphism in Thai systemic lupus erythematosus. Rheumatol. Int. 2010;31:1215–1218. doi: 10.1007/s00296-010-1420-7. PubMed DOI
Ambrosone C.B., Sweeney C., Coles B.F., Thompson P.A., McClure G.Y., Korourian S., Fares M.Y., Stone A., Kadlubar F.F., Hutchins L.F. Polymorphisms in glutathione S-transferases (GSTM1 and GSTT1) and survival after treatment for breast cancer. Cancer Res. 2001;61:7130–7135. PubMed
DeMichele A., Gimotty P., Botbyl J., Aplenc R., Colligon T., Foulkes A.S., Rebbeck T.R. In Response to “Drug Metabolizing Enzyme Polymorphisms Predict Clinical Outcome in a Node-Positive Breast Cancer Cohort. J. Clin. Oncol. 2007;25:5675–5677. doi: 10.1200/JCO.2006.10.1485. PubMed DOI
Sweeney C., Ambrosone C.B., Joseph L., Stone A., Hutchins L.F., Kadlubar F.F., Coles B.F. Association between a glutathioneS-transferase A1 promoter polymorphism and survival after breast cancer treatment. Int. J. Cancer. 2003;103:810–814. doi: 10.1002/ijc.10896. PubMed DOI
Sweeney C., McClure G.Y., Fares M.Y., Stone A., Coles B.F., Thompson P.A., Korourian S., Hutchins L.F., Kadlubar F.F., Ambrosone C.B. Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism. Cancer Res. 2000;60:5621–5624. PubMed
Giraud B., Hebert G., Deroussent A., Veal G.J., Vassal G., Paci A. Oxazaphosphorines: New therapeutic strategies for an old class of drugs. Expert Opin. Drug Metab. Toxicol. 2010;6:919–938. doi: 10.1517/17425255.2010.487861. PubMed DOI
Van der Kooi A.L.L.F., Clemens E., Broer L., Zolk O., Byrne J., Campbell H., van den Berg M., Berger C., Calaminus G., Dirksen U., et al. Genetic variation in gonadal impairment in female survivors of childhood cancer: A PanCareLIFE study protocol. BMC Cancer. 2018;18:930. doi: 10.1186/s12885-018-4834-3. PubMed DOI PMC
Hudson M.M., Ehrhardt M., Bhakta N., Baassiri M., Eissa H., Chemaitilly W., Green D.M., Mulrooney D.A., Armstrong G.T., Brinkman T.M., et al. Approach for Classification and Severity Grading of Long-term and Late-Onset Health Events among Childhood Cancer Survivors in the St. Jude Lifetime Cohort. Cancer Epidemiol. Prev. Biomark. 2017;26:666–674. doi: 10.1158/1055-9965.EPI-16-0812. PubMed DOI PMC
Byrne J., Grabow D., Campbell H., O’Brien K., Bielack S., Zehnhoff-Dinnesen A.A., Calaminus G., Kremer L., Langer T., Heuvel-Eibrink M.M.V.D., et al. PanCareLIFE: The scientific basis for a European project to improve long-term care regarding fertility, ototoxicity and health-related quality of life after cancer occurring among children and adolescents. Eur. J. Cancer. 2018;103:227–237. doi: 10.1016/j.ejca.2018.08.007. PubMed DOI
Kaatsch P., Byrne J., Grabow D., On Behalf of the PanCareLIFE Consortium Managing a Pan-European Consortium on Late Effects among Long-Term Survivors of Childhood and Adolescent Cancer—The PanCareLIFE Project. Int. J. Environ. Res. Public Health. 2021;18:3918. doi: 10.3390/ijerph18083918. PubMed DOI PMC
Howell C.R., Bjornard K.L., Ness K.K., Alberts N., Armstrong G.T., Bhakta N., Brinkman T., Caron E., Chemaitilly W., Green D.M., et al. Cohort Profile: The St. Jude Lifetime Cohort Study (SJLIFE) for paediatric cancer survivors. Int. J. Epidemiol. 2021;50:39–49. doi: 10.1093/ije/dyaa203. PubMed DOI PMC
Gassner D., Jung R. First fully automated immunoassay for anti-Müllerian hormone. Clin. Chem. Lab. Med. 2014;52:1143–1152. doi: 10.1515/cclm-2014-0022. PubMed DOI
Green D.M., Nolan V.G., Ms P.J.G., Ms J.A.W., Srivastava D., Leisenring W.M., Neglia J., Sklar C.A., Kaste S.C., Hudson M.M., et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: A report from the childhood cancer survivor study. Pediatric Blood Cancer. 2014;61:53–67. doi: 10.1002/pbc.24679. PubMed DOI PMC
R Core Team R: A Language and Environment for Statistical Computing. [(accessed on 13 January 2021)]. Available online: https://www.R-project.org/
Van Schaik R.H., De Wildt S.N., Brosens R., Van Fessem M., Anker J.N.V.D., Lindemans J. The CYP3A4*3 allele: Is it really rare? Clin. Chem. 2001;47:1104–1106. doi: 10.1093/clinchem/47.6.1104. PubMed DOI
Sata F., Sapone A., Elizondo G., Stocker P., Miller V.P., Zheng W., Raunio H., Crespi C.L., Gonzalez F.J. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: Evidence for an allelic variant with altered catalytic activity. Clin. Pharmacol. Ther. 2000;67:48–56. doi: 10.1067/mcp.2000.104391. PubMed DOI
Tang P.-F., Zheng X., Hu X.-X., Yang C.-C., Chen Z., Qian J.-C., Cai J.-P., Hu G.-X. Functional Measurement of CYP2C9 and CYP3A4 Allelic Polymorphism on Sildenafil Metabolism. Drug Des. Dev. Ther. 2020;14:5129–5141. doi: 10.2147/DDDT.S268796. PubMed DOI PMC
Amirimani B., Ning B., Deitz A., Weber B., Kadlubar F., Rebbeck T. Increased transcriptional activity of theCYP3A4*1B promoter variant. Environ. Mol. Mutagen. 2003;42:299–305. doi: 10.1002/em.10199. PubMed DOI
Amirimani B., Walker A.H., Weber B.L., Rebbeck T.R. Modification of Clinical Presentation of Prostate Tumors by a Novel Genetic Variant in CYP3A. JNCI J. Natl. Cancer Inst. 1999;91:1588–1590. doi: 10.1093/jnci/91.18.1588. PubMed DOI
DeMichele A., Aplenc R., Botbyl J., Colligan T., Wray L., Klein-Cabral M., Foulkes A., Gimotty P., Glick J., Weber B., et al. Drug-Metabolizing Enzyme Polymorphisms Predict Clinical Outcome in a Node-Positive Breast Cancer Cohort. J. Clin. Oncol. 2005;23:5552–5559. doi: 10.1200/JCO.2005.06.208. PubMed DOI
Paris P.L., Kupelian P.A., Hall J.M., Williams T.L., Levin H., Klein E.A., Casey G., Witte J.S. Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients. Cancer Epidemiol. Prev. Biomark. 1999;8:901–905. PubMed
Rebbeck T.R., Jaffe J.M., Walker A.H., Wein A.J., Malkowicz S.B. Modification of Clinical Presentation of Prostate Tumors by a Novel Genetic Variant in CYP3A. JNCI J. Natl. Cancer Inst. 1998;90:1225–1229. doi: 10.1093/jnci/90.16.1225. PubMed DOI
Sinues B., Vicente J., Fanlo A., Vasquez P., Medina J.C., Mayayo E., Conde B., Arenaz I., Martinez-Jarreta B. CYP3A5*3 and CYP3A4*1B Allele Distribution and Genotype Combinations: Differences Between Spaniards and Central Americans. Ther. Drug Monit. 2007;29:412–416. doi: 10.1097/FTD.0b013e31811f390a. PubMed DOI
Miao J., Jin Y., Marunde R.L., Kim S., Quinney S., Radovich M., Li L., Hall S.D. Association of genotypes of the CYP3A cluster with midazolam disposition in vivo. Pharm. J. 2009;9:319–326. doi: 10.1038/tpj.2009.21. PubMed DOI PMC
Kuehl P.M., Zhang J., Lin Y., Lamba J.K., Assem M., Schuetz J.D., Watkins P.B., Daly A., Wrighton S.A., Hall S.D., et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001;27:383–391. doi: 10.1038/86882. PubMed DOI
Gervasini G., Garcia M., Macias R.M., Cubero J.J., Caravaca F., Benitez J. Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transpl. Int. 2012;25:471–480. doi: 10.1111/j.1432-2277.2012.01446.x. PubMed DOI
Floyd M.D., Gervasini G., Masica A.L., Mayo G., George A.L., Bhat K., Kim R.B., Wilkinson G.R. Genotype—phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharm. Genom. 2003;13:595–606. doi: 10.1097/00008571-200310000-00003. PubMed DOI
Clinical Pharmacogenetics Implementation Consortium (St. Jude Children’s Research Hospital and Stanford University), C. ClinVar CYP2C19. [(accessed on 27 May 2021)];2018 Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/39357/
Rudberg I., Mohebi B., Hermann M., Refsum H., Molden E. Impact of the Ultrarapid CYP2C19*17 Allele on Serum Concentration of Escitalopram in Psychiatric Patients. Clin. Pharmacol. Ther. 2008;83:322–327. doi: 10.1038/sj.clpt.6100291. PubMed DOI
Tęcza K., Pamuła-Piłat J., Lanuszewska J., Butkiewicz D., Grzybowska E. Pharmacogenetics of toxicity of 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget. 2018;9:9114–9136. doi: 10.18632/oncotarget.24148. PubMed DOI PMC
Whirl-Carrillo M., McDonagh E.M., Hebert J.M., Gong L., Sangkuhl K., Thorn C.F., Altman R.B., Klein T.E. Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2012;92:414–417. doi: 10.1038/clpt.2012.96. PubMed DOI PMC
Brooke R.J., Im C., Wilson C.L., Krasin M.J., Liu Q., Li Z., Sapkota Y., Moon W., Morton L.M., Wu G., et al. A High-risk Haplotype for Premature Menopause in Childhood Cancer Survivors Exposed to Gonadotoxic Therapy. JNCI J. Natl. Cancer Inst. 2018;110:895–904. doi: 10.1093/jnci/djx281. PubMed DOI PMC
Anderson R., Nelson S., Wallace W. Measuring anti-Müllerian hormone for the assessment of ovarian reserve: When and for whom is it indicated? Maturitas. 2012;71:28–33. doi: 10.1016/j.maturitas.2011.11.008. PubMed DOI
Charpentier A.-M., Chong A.L., Gingras-Hill G., Ahmed S., Cigsar C., Gupta A.A., Greenblatt E., Hodgson D.C. Anti-Müllerian hormone screening to assess ovarian reserve among female survivors of childhood cancer. J. Cancer Surviv. 2014;8:548–554. doi: 10.1007/s11764-014-0364-4. PubMed DOI
Lunsford A.J., Whelan K., McCormick K., McLaren J.F. Antimüllerian hormone as a measure of reproductive function in female childhood cancer survivors. Fertil. Steril. 2014;101:227–231. doi: 10.1016/j.fertnstert.2013.08.052. PubMed DOI
Dólleman M., Verschuren W.M., Eijkemans M.J., Broekmans F.J., Van Der Schouw Y.T. Added value of anti-Müllerian hormone in prediction of menopause: Results from a large prospective cohort study. Hum. Reprod. 2015;30:1974–1981. doi: 10.1093/humrep/dev145. PubMed DOI
Freeman E.W., Sammel M.D., Lin H., Boorman D.W., Gracia C.R. Contribution of the rate of change of antimüllerian hormone in estimating time to menopause for late reproductive-age women. Fertil. Steril. 2012;98:1254–1259.e2. doi: 10.1016/j.fertnstert.2012.07.1139. PubMed DOI PMC
Freeman E.W., Sammel M.D., Lin H., Gracia C.R. Anti-Mullerian Hormone as a Predictor of Time to Menopause in Late Reproductive Age Women. J. Clin. Endocrinol. Metab. 2012;97:1673–1680. doi: 10.1210/jc.2011-3032. PubMed DOI PMC
De Kat A.C., van der Schouw Y., Eijkemans M.J.C., Herber-Gast G.C., Visser J.A., Verschuren W.M.M., Broekmans F.J.M. Back to the basics of ovarian aging: A population-based study on longitudinal anti-Müllerian hormone decline. BMC Med. 2016;14:151. doi: 10.1186/s12916-016-0699-y. PubMed DOI PMC
Dewailly D., Andersen C.Y., Balen A., Broekmans F., Dilaver N., Fanchin R., Griesinger G., Kelsey T.W., La Marca A., Lambalk C., et al. The physiology and clinical utility of anti-Müllerian hormone in women. Hum. Reprod. Updat. 2014;20:804. doi: 10.1093/humupd/dmu043. PubMed DOI
Day F., The PRACTICAL Consortium. Ruth K.S., Thompson D.J., Lunetta K.L., Pervjakova N., Chasman D.I., Stolk L., Finucane H.K., Sulem P., et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat. Genet. 2015;47:1294–1303. doi: 10.1038/ng.3412. PubMed DOI PMC
Day F., The LifeLines Cohort Study. Thompson D.J., Helgason H., Chasman D.I., Finucane H., Sulem P., Ruth K.S., Whalen S., Sarkar A.K., et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 2017;49:834–841. doi: 10.1038/ng.3841. PubMed DOI PMC
He C., Kraft P., Chasman D.I., Buring J.E., Chen C., Hankinson S.E., Pare G., Chanock S., Ridker P.M., Hunter D.J. A large-scale candidate gene association study of age at menarche and age at natural menopause. Hum. Genet. 2010;128:515–527. doi: 10.1007/s00439-010-0878-4. PubMed DOI PMC
Perry J.R.B., Stolk L., Franceschini N., Lunetta K., Zhai G., McArdle P.F., Smith A.V., Aspelund T., Bandinelli S., Boerwinkle E., et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat. Genet. 2009;41:648–650. doi: 10.1038/ng.386. PubMed DOI PMC
Stolk L., Zhai G., Van Meurs J.B.J., Verbiest M.M.P.J., Visser J.A., Estrada K., Rivadeneira F., Williams F.M., Cherkas L., Deloukas P., et al. Loci at chromosomes 13, 19 and 20 influence age at natural menopause. Nat. Genet. 2009;41:645–647. doi: 10.1038/ng.387. PubMed DOI PMC
Perry J.R.B., Corre T., Esko T., Chasman D.I., Fischer K., Franceschini N., He C., Kutalik Z., Mangino M., Rose L.M., et al. A genome-wide association study of early menopause and the combined impact of identified variants. Hum. Mol. Genet. 2013;22:1465–1472. doi: 10.1093/hmg/dds551. PubMed DOI PMC
Li H.W.R., Ko J.K.Y., Lee V.C.Y., Yung S.S.F., Lau E.Y.L., Yeung W.S.B., Ho P.C., Ng E.H.Y. Comparison of antral follicle count and serum anti-Müllerian hormone level for determination of gonadotropin dosing in in-vitro fertilization: Randomized trial. Ultrasound Obstet. Gynecol. 2020;55:303–309. doi: 10.1002/uog.20402. PubMed DOI
Fleming R., Seifer D.B., Frattarelli J.L., Ruman J. Assessing ovarian response: Antral follicle count versus anti-Müllerian hormone. Reprod. Biomed. Online. 2015;31:486–496. doi: 10.1016/j.rbmo.2015.06.015. PubMed DOI
Ersahin A.A., Arpaci H., Ersahin S.S., Celik N., Acet M. AFC vs. AMH: Prediction of ovarian response in women with endometrioma undergoing controlled ovarian stimulation. Eur. Rev. Med Pharmacol. Sci. 2017;21:2499–2503. PubMed
Barbakadze L., Kristesashvili J., Khonelidze N., Tsagareishvili G. The Correlations of Anti-Mullerian Hormone, Follicle-Stimulating Hormone and Antral Follicle Count in Different Age Groups of Infertile Women. Int. J. Fertil. Steril. 2015;8:393–398. PubMed PMC
Zhang Y., Xu Y., Xue Q., Shang J., Yang X., Shan X., Kuai Y., Wang S., Zeng C. Discordance between antral follicle counts and anti-Müllerian hormone levels in women undergoing in vitro fertilization. Reprod. Biol. Endocrinol. 2019;17:1–6. doi: 10.1186/s12958-019-0497-4. PubMed DOI PMC
Broer S.L., Broekmans F.J., Laven J.S., Fauser B.C. Anti-Müllerian hormone: Ovarian reserve testing and its potential clinical implications. Hum. Reprod. Update. 2014;20:688–701. doi: 10.1093/humupd/dmu020. PubMed DOI
Ioannidis J.P.A. Why Most Published Research Findings Are False. PLoS Med. 2005;2:e124. doi: 10.1371/journal.pmed.0020124. PubMed DOI PMC
Moonesinghe R., Khoury M.J., Janssens A.C. Most Published Research Findings Are False—But a Little Replication Goes a Long Way. PLoS Med. 2007;4:e28. doi: 10.1371/journal.pmed.0040028. PubMed DOI PMC
Mulder R.L., Font-Gonzalez A., Green D.M., Loeffen E.A.H., Hudson M.M., Loonen J., Yu R., Ginsberg J.P., Mitchell R.T., Byrne J., et al. Fertility preservation for male patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021;22:e57–e67. doi: 10.1016/S1470-2045(20)30582-9. PubMed DOI
Mulder R.L., Font-Gonzalez A., Hudson M.M., van Santen H.M., Loeffen E.A.H., Burns K.C., Quinn G.P., Broeder E.V.D.-D., Byrne J., Haupt R., et al. Fertility preservation for female patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021;22:e45–e56. doi: 10.1016/S1470-2045(20)30594-5. PubMed DOI
Mulder R.L., Font-Gonzalez A., Broeder E.V.D.-D., Quinn G.P., Ginsberg J.P., Loeffen E.A.H., Hudson M.M., Burns K.C., van Santen H.M., Berger C., et al. Communication and ethical considerations for fertility preservation for patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021;22:e68–e80. doi: 10.1016/s1470-2045(20)30595-7. PubMed DOI
Deshpande N.A., Braun I.M., Meyer F.L. Impact of fertility preservation counseling and treatment on psychological outcomes among women with cancer: A systematic review. Cancer. 2015;121:3938–3947. doi: 10.1002/cncr.29637. PubMed DOI
Letourneau J.M., Ebbel E.E., Katz P.P., Katz A., Ai W.Z., Chien A.J., Melisko M.E., Cedars M.I., Rosen M.P. Pretreatment fertility counseling and fertility preservation improve quality of life in reproductive age women with cancer. Cancer. 2011;118:1710–1717. doi: 10.1002/cncr.26459. PubMed DOI PMC
Bjelland E.K., Wilkosz P., Tanbo T.G., Eskild A. Is unilateral oophorectomy associated with age at menopause? A population study (the HUNT2 Survey) Hum. Reprod. 2014;29:835–841. doi: 10.1093/humrep/deu026. PubMed DOI
Coccia M.E., Rizzello F., Mariani G., Bulletti C., Palagiano A., Scarselli G. Ovarian surgery for bilateral endometriomas influences age at menopause. Hum. Reprod. 2011;26:3000–3007. doi: 10.1093/humrep/der286. PubMed DOI
Yasui T., Hayashi K., Mizunuma H., Kubota T., Aso T., Matsumura Y., Lee J.-S., Suzuki S. Factors associated with premature ovarian failure, early menopause and earlier onset of menopause in Japanese women. Maturitas. 2012;72:249–255. doi: 10.1016/j.maturitas.2012.04.002. PubMed DOI
Van der Perk M.E.M., van der Kooi A.-L.L.F., van de Wetering M.D., Ijgosse I.M., Broeder E.V.D.-D., Broer S.L., Klijn A.J., Versluys A.B., Arends B., Ophuis R.J.A.O., et al. Oncofertility care for newly diagnosed girls with cancer in a national pediatric oncology setting, the first full year experience from the Princess Máxima Center, the PEARL study. PLoS ONE. 2021;16:e0246344. doi: 10.1371/journal.pone.0246344. PubMed DOI PMC
Stevens A., De Leonibus C., Hanson D., Whatmore A., Murray P., Donn R., Meyer S., Chatelain P., Clayton P. Pediatric perspective on pharmacogenomics. Pharmacogenomics. 2013;14:1889–1905. doi: 10.2217/pgs.13.193. PubMed DOI
Fernandez E., Perez R., Hernandez A., Tejada P., Arteta M., Ramos J.T. Factors and Mechanisms for Pharmacokinetic Differences between Pediatric Population and Adults. Pharmaceutics. 2011;3:53–72. doi: 10.3390/pharmaceutics3010053. PubMed DOI PMC
Sassen S.D., Zwaan C.M., Van Der Sluis I.M., Mathôt R.A. Pharmacokinetics and population pharmacokinetics in pediatric oncology. Pediatric Blood Cancer. 2019;67:e28132. doi: 10.1002/pbc.28132. PubMed DOI
Van den Anker J., Reed M.D., Allegaert K., Kearns G.L. Developmental Changes in Pharmacokinetics and Pharmacodynamics. J. Clin. Pharmacol. 2018;58:S10–S25. doi: 10.1002/jcph.1284. PubMed DOI
Conklin L.S., Hoffman E., van den Anker J. Developmental Pharmacodynamics and Modeling in Pediatric Drug Development. J. Clin. Pharmacol. 2019;59:S87–S94. doi: 10.1002/jcph.1482. PubMed DOI PMC
Andersen S.W. Identifying Biomarkers for Risk of Premature Menopause Among Childhood Cancer Survivors May Lead to Targeted Interventions and Wellness Strategies. J. Natl. Cancer Inst. 2018;110:801–802. doi: 10.1093/jnci/djx291. PubMed DOI PMC
Premature aging in childhood cancer survivors