Applications of Liquid Biopsies in Non-Small-Cell Lung Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LTAUSA19080
Ministry of Education Youth and Sports
Cooperatio Program, research area MED/DIAG
Ministry of Education Youth and Sports
FNPl, 00669806
Ministry of Health
PubMed
35892510
PubMed Central
PMC9330570
DOI
10.3390/diagnostics12081799
PII: diagnostics12081799
Knihovny.cz E-zdroje
- Klíčová slova
- ALK, CTC, EGFR, KRAS, NSCLC, ctDNA, liquid biopsy, lung cancer,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The concept of liquid biopsy as an analysis tool for non-solid tissue carried out for the purpose of providing information about solid tumors was introduced approximately 20 years ago. Additional to the detection of circulating tumor cells (CTCs), the liquid biopsy approach quickly included the analysis of circulating tumor DNA (ctDNA) and other tumor-derived markers such as circulating cell-free RNA or extracellular vesicles. Liquid biopsy is a non-invasive technique for detecting multiple cancer-associated biomarkers that is easy to obtain and can reflect the characteristics of the entire tumor mass. Currently, ctDNA is the key component of the liquid biopsy approach from the point of view of the prognosis assessment, prediction, and monitoring of the treatment of non-small-cell lung cancer (NSCLC) patients. ctDNA in NSCLC patients carries variants or rearrangements that drive carcinogenesis, such as those in EGFR, KRAS, ALK, or ROS1. Due to advances in pharmacology, these variants are the subject of targeted therapy. Therefore, the detection of these variants has gained attention in clinical medicine. Recently, methods based on qPCR (ddPCR, BEAMing) and next-generation sequencing (NGS) are the most effective approaches for ctDNA analysis. This review addresses various aspects of the use of liquid biopsy with an emphasis on ctDNA as a biomarker in NSCLC patients.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
European Lung White Book. [(accessed on 24 February 2022)]. Available online: https://www.erswhitebook.org/
Sher T., Dy G.K., Adjei A.A. Small Cell Lung Cancer. Mayo Clin. Proc. 2008;83:355–367. doi: 10.4065/83.3.355. PubMed DOI
Uramoto H., Tanaka F. Recurrence after Surgery in Patients with NSCLC. Transl. Lung Cancer Res. 2014;3:242–249. doi: 10.3978/j.issn.2218-6751.2013.12.05. PubMed DOI PMC
Martins I., Ribeiro I.P., Jorge J., Gonçalves A.C., Sarmento-Ribeiro A.B., Melo J.B., Carreira I.M. Liquid Biopsies: Applications for Cancer Diagnosis and Monitoring. Genes. 2021;12:349. doi: 10.3390/genes12030349. PubMed DOI PMC
Cristofanilli M., Budd G.T., Ellis M.J., Stopeck A., Matera J., Miller M.C., Reuben J.M., Doyle G.V., Allard W.J., Terstappen L.W.M.M., et al. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004;351:781–791. doi: 10.1056/NEJMoa040766. PubMed DOI
Schwarzenbach H., Hoon D.S.B., Pantel K. Cell-Free Nucleic Acids as Biomarkers in Cancer Patients. Nat. Rev. Cancer. 2011;11:426–437. doi: 10.1038/nrc3066. PubMed DOI
Anfossi S., Babayan A., Pantel K., Calin G.A. Clinical Utility of Circulating Non-Coding RNAs—An Update. Nat. Rev. Clin. Oncol. 2018;15:541–563. doi: 10.1038/s41571-018-0035-x. PubMed DOI
Fleischhacker M., Beinert T., Ermitsch M., Seferi D., Possinger K., Engelmann C., Jandrig B. Detection of Amplifiable Messenger RNA in the Serum of Patients with Lung Cancer. Ann. N. Y. Acad. Sci. 2001;945:179–188. doi: 10.1111/j.1749-6632.2001.tb03883.x. PubMed DOI
Wang N., Song X., Liu L., Niu L., Wang X., Song X., Xie L. Circulating Exosomes Contain Protein Biomarkers of Metastatic Non-Small-Cell Lung Cancer. Cancer Sci. 2018;109:1701–1709. doi: 10.1111/cas.13581. PubMed DOI PMC
Chen X., Bonnefoi H., Diebold-Berger S., Lyautey J., Lederrey C., Faltin-Traub E., Stroun M., Anker P. Detecting Tumor-Related Alterations in Plasma or Serum DNA of Patients Diagnosed with Breast Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1999;5:2297–2303. PubMed
Goebel G., Zitt M., Zitt M., Müller H.M. Circulating Nucleic Acids in Plasma or Serum (CNAPS) as Prognostic and Predictive Markers in Patients with Solid Neoplasias. Dis. Markers. 2005;21:105–120. doi: 10.1155/2005/218759. PubMed DOI PMC
Calabuig-Fariñas S., Jantus-Lewintre E., Herreros-Pomares A., Camps C. Circulating Tumor Cells versus Circulating Tumor DNA in Lung Cancer—which One Will Win? Transl. Lung Cancer Res. 2016;5:466–482. doi: 10.21037/tlcr.2016.10.02. PubMed DOI PMC
Pesta M., Kulda V., Narsanska A., Fichtl J., Topolcan O. May CTC Technologies Promote Better Cancer Management? EPMA J. 2015;6:1. doi: 10.1186/s13167-014-0023-x. PubMed DOI PMC
The Cancer Genome Atlas Research Network Comprehensive Molecular Profiling of Lung Adenocarcinoma. Nature. 2014;511:543–550. doi: 10.1038/nature13385. PubMed DOI PMC
Bartels S., Persing S., Hasemeier B., Schipper E., Kreipe H., Lehmann U. Molecular Analysis of Circulating Cell-Free DNA from Lung Cancer Patients in Routine Laboratory Practice. J. Mol. Diagn. 2017;19:722–732. doi: 10.1016/j.jmoldx.2017.05.008. PubMed DOI
Ijzerman M.J., Berghuis A.M.S., de Bono J.S., Terstappen L.W.M.M. Health Economic Impact of Liquid Biopsies in Cancer Management. Expert Rev. Pharmacoecon. Outcomes Res. 2018;18:593–599. doi: 10.1080/14737167.2018.1505505. PubMed DOI
Park H.J., Lee S.H., Chang Y.S. Recent Advances in Diagnostic Technologies in Lung Cancer. Korean J. Intern. Med. 2020;35:257–268. doi: 10.3904/kjim.2020.030. PubMed DOI PMC
Normanno N., Denis M.G., Thress K.S., Ratcliffe M., Reck M. Guide to Detecting Epidermal Growth Factor Receptor (EGFR) Mutations in ctDNA of Patients with Advanced Non-Small-Cell Lung Cancer. Oncotarget. 2017;8:12501–12516. doi: 10.18632/oncotarget.13915. PubMed DOI PMC
Zhong X.Y., Ladewig A., Schmid S., Wight E., Hahn S., Holzgreve W. Elevated Level of Cell-Free Plasma DNA Is Associated with Breast Cancer. Arch. Gynecol. Obstet. 2007;276:327–331. doi: 10.1007/s00404-007-0345-1. PubMed DOI
Jaiswal S., Ebert B.L. Clonal Hematopoiesis in Human Aging and Disease. Science. 2019;366:eaan4673. doi: 10.1126/science.aan4673. PubMed DOI PMC
Zhang Y., Yao Y., Xu Y., Li L., Gong Y., Zhang K., Zhang M., Guan Y., Chang L., Xia X., et al. Pan-Cancer Circulating Tumor DNA Detection in over 10,000 Chinese Patients. Nat. Commun. 2021;12:11. doi: 10.1038/s41467-020-20162-8. PubMed DOI PMC
Qiu B., Guo W., Zhang F., Lv F., Ji Y., Peng Y., Chen X., Bao H., Xu Y., Shao Y., et al. Dynamic Recurrence Risk and Adjuvant Chemotherapy Benefit Prediction by ctDNA in Resected NSCLC. Nat. Commun. 2021;12:6770. doi: 10.1038/s41467-021-27022-z. PubMed DOI PMC
Ashworth T.R. A Case of Cancer in Which Cells Similar to Those in the Tumours Were Seen in the Blood after Death. Aust. Med. J. 1869;14:146–149.
Mandel P., Metais P. Nuclear Acids in Human Blood Plasma. C. R. Seances Soc. Biol. Fil. 1948;142:241–243. PubMed
Sorenson G.D., Pribish D.M., Valone F.H., Memoli V.A., Bzik D.J., Yao S.L. Soluble Normal and Mutated DNA Sequences from Single-Copy Genes in Human Blood. Cancer Epidemiol. Biomarkers Prev. 1994;3:67–71. PubMed
Khier S., Lohan L. Kinetics of Circulating Cell-Free DNA for Biomedical Applications: Critical Appraisal of the Literature. Future Sci. OA. 2018;4:FSO295. doi: 10.4155/fsoa-2017-0140. PubMed DOI PMC
Mouliere F., Robert B., Arnau Peyrotte E., Del Rio M., Ychou M., Molina F., Gongora C., Thierry A.R. High Fragmentation Characterizes Tumour-Derived Circulating DNA. PLoS ONE. 2011;6:e23418. doi: 10.1371/journal.pone.0023418. PubMed DOI PMC
Thierry A.R., El Messaoudi S., Gahan P.B., Anker P., Stroun M. Origins, Structures, and Functions of Circulating DNA in Oncology. Cancer Metastasis Rev. 2016;35:347–376. doi: 10.1007/s10555-016-9629-x. PubMed DOI PMC
Bohers E., Viailly P.-J., Jardin F. cfDNA Sequencing: Technological Approaches and Bioinformatic Issues. Pharmaceuticals. 2021;14:596. doi: 10.3390/ph14060596. PubMed DOI PMC
Gerlinger M., Rowan A.J., Horswell S., Math M., Larkin J., Endesfelder D., Gronroos E., Martinez P., Matthews N., Stewart A., et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012;366:883–892. doi: 10.1056/NEJMoa1113205. PubMed DOI PMC
Chan K.C.A., Jiang P., Zheng Y.W.L., Liao G.J.W., Sun H., Wong J., Siu S.S.N., Chan W.C., Chan S.L., Chan A.T.C., et al. Cancer Genome Scanning in Plasma: Detection of Tumor-Associated Copy Number Aberrations, Single-Nucleotide Variants, and Tumoral Heterogeneity by Massively Parallel Sequencing. Clin. Chem. 2013;59:211–224. doi: 10.1373/clinchem.2012.196014. PubMed DOI
Lindeman N.I., Cagle P.T., Beasley M.B., Chitale D.A., Dacic S., Giaccone G., Jenkins R.B., Kwiatkowski D.J., Saldivar J.-S., Squire J., et al. Molecular Testing Guideline for Selection of Lung Cancer Patients for EGFR and ALK Tyrosine Kinase Inhibitors: Guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J. Thorac. Oncol. 2013;8:823–859. doi: 10.1097/JTO.0b013e318290868f. PubMed DOI PMC
Pennell N.A., Arcila M.E., Gandara D.R., West H. Biomarker Testing for Patients with Advanced Non-Small Cell Lung Cancer: Real-World Issues and Tough Choices. Am. Soc. Clin. Oncol. Educ. Book. 2019;39:531–542. doi: 10.1200/EDBK_237863. PubMed DOI
Herbreteau G., Vallée A., Charpentier S., Normanno N., Hofman P., Denis M.G. Circulating Free Tumor DNA in Non-Small Cell Lung Cancer (NSCLC): Clinical Application and Future Perspectives. J. Thorac. Dis. 2019;11:S113–S126. doi: 10.21037/jtd.2018.12.18. PubMed DOI PMC
Merker J.D., Oxnard G.R., Compton C., Diehn M., Hurley P., Lazar A.J., Lindeman N., Lockwood C.M., Rai A.J., Schilsky R.L., et al. Circulating Tumor DNA Analysis in Patients with Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J. Clin. Oncol. 2018;36:1631–1641. doi: 10.1200/JCO.2017.76.8671. PubMed DOI
Wang X., Zhang S., MacLennan G.T., Eble J.N., Lopez-Beltran A., Yang X.J., Pan C.-X., Zhou H., Montironi R., Cheng L. Epidermal Growth Factor Receptor Protein Expression and Gene Amplification in Small Cell Carcinoma of the Urinary Bladder. Clin. Cancer Res. 2007;13:953–957. doi: 10.1158/1078-0432.CCR-06-2167. PubMed DOI
Herbst R.S., Heymach J.V., Lippman S.M. Lung Cancer. N. Engl. J. Med. 2008;359:1367–1380. doi: 10.1056/NEJMra0802714. PubMed DOI PMC
Sequist L.V., Bell D.W., Lynch T.J., Haber D.A. Molecular Predictors of Response to Epidermal Growth Factor Receptor Antagonists in Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2007;25:587–595. doi: 10.1200/JCO.2006.07.3585. PubMed DOI
Ladanyi M., Pao W. Lung Adenocarcinoma: Guiding EGFR-Targeted Therapy and beyond. Mod. Pathol. 2008;21:S16–S22. doi: 10.1038/modpathol.3801018. PubMed DOI
Yamamoto H., Toyooka S., Mitsudomi T. Impact of EGFR Mutation Analysis in Non-Small Cell Lung Cancer. Lung Cancer. 2009;63:315–321. doi: 10.1016/j.lungcan.2008.06.021. PubMed DOI
Leonetti A., Sharma S., Minari R., Perego P., Giovannetti E., Tiseo M. Resistance Mechanisms to Osimertinib in EGFR-Mutated Non-Small Cell Lung Cancer. Br. J. Cancer. 2019;121:725–737. doi: 10.1038/s41416-019-0573-8. PubMed DOI PMC
Zhang H., Chen J., Liu T., Dang J., Li G. First-Line Treatments in EGFR-Mutated Advanced Non-Small Cell Lung Cancer: A Network Meta-Analysis. PLoS ONE. 2019;14:e0223530. doi: 10.1371/journal.pone.0223530. PubMed DOI PMC
Luo J., Shen L., Zheng D. Diagnostic Value of Circulating Free DNA for the Detection of EGFR Mutation Status in NSCLC: A Systematic Review and Meta-Analysis. Sci. Rep. 2014;4:6269. doi: 10.1038/srep06269. PubMed DOI PMC
Mok T., Wu Y.-L., Lee J.S., Yu C.-J., Sriuranpong V., Sandoval-Tan J., Ladrera G., Thongprasert S., Srimuninnimit V., Liao M., et al. Detection and Dynamic Changes of EGFR Mutations from Circulating Tumor DNA as a Predictor of Survival Outcomes in NSCLC Patients Treated with First-Line Intercalated Erlotinib and Chemotherapy. Clin. Cancer Res. 2015;21:3196–3203. doi: 10.1158/1078-0432.CCR-14-2594. PubMed DOI
Ai X., Cui J., Zhang J., Chen R., Lin W., Xie C., Liu A., Zhang J., Yang W., Hu X., et al. Clonal Architecture of EGFR Mutation Predicts the Efficacy of EGFR-Tyrosine Kinase Inhibitors in Advanced NSCLC: A Prospective Multicenter Study (NCT03059641) Clin. Cancer Res. 2021;27:704–712. doi: 10.1158/1078-0432.CCR-20-3063. PubMed DOI
Del Re M., Petrini I., Mazzoni F., Valleggi S., Gianfilippo G., Pozzessere D., Chella A., Crucitta S., Rofi E., Restante G., et al. Incidence of T790M in Patients with NSCLC Progressed to Gefitinib, Erlotinib, and Afatinib: A Study on Circulating Cell-Free DNA. Clin. Lung Cancer. 2020;21:232–237. doi: 10.1016/j.cllc.2019.10.003. PubMed DOI
Kitazono S., Sakai K., Yanagitani N., Ariyasu R., Yoshizawa T., Dotsu Y., Koyama J., Saiki M., Sonoda T., Nishikawa S., et al. Barcode Sequencing Identifies Resistant Mechanisms to Epidermal Growth Factor Receptor Inhibitors in Circulating Tumor DNA of Lung Cancer Patients. Cancer Sci. 2019;110:3350–3357. doi: 10.1111/cas.14153. PubMed DOI PMC
Deng Q., Xie B., Wu L., Ji X., Li C., Feng L., Fang Q., Bao Y., Li J., Jin S., et al. Competitive Evolution of NSCLC Tumor Clones and the Drug Resistance Mechanism of First-Generation EGFR-TKIs in Chinese NSCLC Patients. Heliyon. 2018;4:e01031. doi: 10.1016/j.heliyon.2018.e01031. PubMed DOI PMC
Romero A., Serna-Blasco R., Alfaro C., Sánchez-Herrero E., Barquín M., Turpin M.C., Chico S., Sanz-Moreno S., Rodrigez-Festa A., Laza-Briviesca R., et al. ctDNA Analysis Reveals Different Molecular Patterns upon Disease Progression in Patients Treated with Osimertinib. Transl. Lung Cancer Res. 2020;9:532–540. doi: 10.21037/tlcr.2020.04.01. PubMed DOI PMC
Ishii H., Azuma K., Sakai K., Naito Y., Matsuo N., Tokito T., Yamada K., Hoshino T., Nishio K. Determination of Somatic Mutations and Tumor Mutation Burden in Plasma by CAPP-Seq during Afatinib Treatment in NSCLC Patients Resistance to Osimertinib. Sci. Rep. 2020;10:691. doi: 10.1038/s41598-020-57624-4. PubMed DOI PMC
Shaw A.T., Kim D.-W., Nakagawa K., Seto T., Crinó L., Ahn M.-J., De Pas T., Besse B., Solomon B.J., Blackhall F., et al. Crizotinib versus Chemotherapy in Advanced ALK -Positive Lung Cancer. N. Engl. J. Med. 2013;368:2385–2394. doi: 10.1056/NEJMoa1214886. PubMed DOI
Camidge D.R., Bang Y.-J., Kwak E.L., Iafrate A.J., Varella-Garcia M., Fox S.B., Riely G.J., Solomon B., Ou S.-H.I., Kim D.-W., et al. Activity and Safety of Crizotinib in Patients with ALK-Positive Non-Small-Cell Lung Cancer: Updated Results from a Phase 1 Study. Lancet Oncol. 2012;13:1011–1019. doi: 10.1016/S1470-2045(12)70344-3. PubMed DOI PMC
Shaw A.T., Yeap B.Y., Solomon B.J., Riely G.J., Gainor J., Engelman J.A., Shapiro G.I., Costa D.B., Ou S.-H.I., Butaney M., et al. Effect of Crizotinib on Overall Survival in Patients with Advanced Non-Small-Cell Lung Cancer Harbouring ALK Gene Rearrangement: A Retrospective Analysis. Lancet Oncol. 2011;12:1004–1012. doi: 10.1016/S1470-2045(11)70232-7. PubMed DOI PMC
Devarakonda S., Morgensztern D., Govindan R. Genomic Alterations in Lung Adenocarcinoma. Lancet Oncol. 2015;16:e342–e351. doi: 10.1016/S1470-2045(15)00077-7. PubMed DOI
Bruno R., Fontanini G. Next Generation Sequencing for Gene Fusion Analysis in Lung Cancer: A Literature Review. Diagnostics. 2020;10:521. doi: 10.3390/diagnostics10080521. PubMed DOI PMC
Gainor J.F., Dardaei L., Yoda S., Friboulet L., Leshchiner I., Katayama R., Dagogo-Jack I., Gadgeel S., Schultz K., Singh M., et al. Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer. Cancer Discov. 2016;6:1118–1133. doi: 10.1158/2159-8290.CD-16-0596. PubMed DOI PMC
Shaw A.T., Friboulet L., Leshchiner I., Gainor J.F., Bergqvist S., Brooun A., Burke B.J., Deng Y.-L., Liu W., Dardaei L., et al. Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F. N. Engl. J. Med. 2016;374:54–61. doi: 10.1056/NEJMoa1508887. PubMed DOI PMC
Elliott J., Bai Z., Hsieh S.-C., Kelly S.E., Chen L., Skidmore B., Yousef S., Zheng C., Stewart D.J., Wells G.A. ALK Inhibitors for Non-Small Cell Lung Cancer: A Systematic Review and Network Meta-Analysis. PLoS ONE. 2020;15:e0229179. doi: 10.1371/journal.pone.0229179. PubMed DOI PMC
Solomon B.J., Mok T., Kim D.-W., Wu Y.-L., Nakagawa K., Mekhail T., Felip E., Cappuzzo F., Paolini J., Usari T., et al. First-Line Crizotinib versus Chemotherapy in ALK-Positive Lung Cancer. N. Engl. J. Med. 2014;371:2167–2177. doi: 10.1056/NEJMoa1408440. PubMed DOI
Qiao H., Lovly C.M. Cracking the Code of Resistance across Multiple Lines of ALK Inhibitor Therapy in Lung Cancer. Cancer Discov. 2016;6:1084–1086. doi: 10.1158/2159-8290.CD-16-0910. PubMed DOI PMC
McCoach C.E., Le A.T., Gowan K., Jones K., Schubert L., Doak A., Estrada-Bernal A., Davies K.D., Merrick D.T., Bunn P.A., et al. Resistance Mechanisms to Targeted Therapies in ROS1+ and ALK+ Non-Small Cell Lung Cancer. Clin. Cancer Res. 2018;24:3334–3347. doi: 10.1158/1078-0432.CCR-17-2452. PubMed DOI PMC
Ali S.M., Hensing T., Schrock A.B., Allen J., Sanford E., Gowen K., Kulkarni A., He J., Suh J.H., Lipson D., et al. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization. Oncologist. 2016;21:762–770. doi: 10.1634/theoncologist.2015-0497. PubMed DOI PMC
McCoach C.E., Blakely C.M., Banks K.C., Levy B., Chue B.M., Raymond V.M., Le A.T., Lee C.E., Diaz J., Waqar S.N., et al. Clinical Utility of Cell-Free DNA for the Detection of ALK Fusions and Genomic Mechanisms of ALK Inhibitor Resistance in Non–Small Cell Lung Cancer. Clin. Cancer Res. 2018;24:2758–2770. doi: 10.1158/1078-0432.CCR-17-2588. PubMed DOI PMC
Wang Y., Tian P.-W., Wang W.-Y., Wang K., Zhang Z., Chen B.-J., He Y.-Q., Li L., Liu H., Chuai S., et al. Noninvasive Genotyping and Monitoring of Anaplastic Lymphoma Kinase (ALK) Rearranged Non-Small Cell Lung Cancer by Capture-Based next-Generation Sequencing. Oncotarget. 2016;7:65208–65217. doi: 10.18632/oncotarget.11569. PubMed DOI PMC
Bordi P., Tiseo M., Rofi E., Petrini I., Restante G., Danesi R., Del Re M. Detection of ALK and KRAS Mutations in Circulating Tumor DNA of Patients with Advanced ALK-Positive NSCLC with Disease Progression During Crizotinib Treatment. Clin. Lung Cancer. 2017;18:692–697. doi: 10.1016/j.cllc.2017.04.013. PubMed DOI
Dagogo-Jack I., Rooney M., Nagy R.J., Lin J.J., Chin E., Ferris L.A., Ackil J., Lennerz J.K., Lanman R.B., Gainor J.F., et al. Molecular Analysis of Plasma from Patients with ROS1-Positive NSCLC. J. Thorac. Oncol. 2019;14:816–824. doi: 10.1016/j.jtho.2019.01.009. PubMed DOI PMC
Mezquita L., Swalduz A., Jovelet C., Ortiz-Cuaran S., Howarth K., Planchard D., Avrillon V., Recondo G., Marteau S., Benitez J.C., et al. Clinical Relevance of an Amplicon-Based Liquid Biopsy for Detecting ALK and ROS1 Fusion and Resistance Mutations in Patients with Non–Small-Cell Lung Cancer. JCO Precis. Oncol. 2020;4:272–282. doi: 10.1200/PO.19.00281. PubMed DOI PMC
Horn L., Whisenant J.G., Wakelee H., Reckamp K.L., Qiao H., Leal T.A., Du L., Hernandez J., Huang V., Blumenschein G.R., et al. Monitoring Therapeutic Response and Resistance: Analysis of Circulating Tumor DNA in Patients with ALK+ Lung Cancer. J. Thorac. Oncol. 2019;14:1901–1911. doi: 10.1016/j.jtho.2019.08.003. PubMed DOI PMC
Wang R., Hu H., Pan Y., Li Y., Ye T., Li C., Luo X., Wang L., Li H., Zhang Y., et al. RET Fusions Define a Unique Molecular and Clinicopathologic Subtype of Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2012;30:4352–4359. doi: 10.1200/JCO.2012.44.1477. PubMed DOI
Drilon A., Wang L., Arcila M.E., Balasubramanian S., Greenbowe J.R., Ross J.S., Stephens P., Lipson D., Miller V.A., Kris M.G., et al. Broad, Hybrid Capture–Based Next-Generation Sequencing Identifies Actionable Genomic Alterations in Lung Adenocarcinomas Otherwise Negative for Such Alterations by Other Genomic Testing Approaches. Clin. Cancer Res. 2015;21:3631–3639. doi: 10.1158/1078-0432.CCR-14-2683. PubMed DOI PMC
Piotrowska Z., Isozaki H., Lennerz J.K., Gainor J.F., Lennes I.T., Zhu V.W., Marcoux N., Banwait M.K., Digumarthy S.R., Su W., et al. Landscape of Acquired Resistance to Osimertinib in EGFR-Mutant NSCLC and Clinical Validation of Combined EGFR and RET Inhibition with Osimertinib and BLU-667 for Acquired RET Fusion. Cancer Discov. 2018;8:1529–1539. doi: 10.1158/2159-8290.CD-18-1022. PubMed DOI PMC
Rich T.A., Reckamp K.L., Chae Y.K., Doebele R.C., Iams W.T., Oh M., Raymond V.M., Lanman R.B., Riess J.W., Stinchcombe T.E., et al. Analysis of Cell-Free DNA from 32,989 Advanced Cancers Reveals Novel Co-Occurring Activating RET Alterations and Oncogenic Signaling Pathway Aberrations. Clin. Cancer Res. 2019;25:5832–5842. doi: 10.1158/1078-0432.CCR-18-4049. PubMed DOI PMC
Subbiah V., Yang D., Velcheti V., Drilon A., Meric-Bernstam F. State-of-the-Art Strategies for Targeting RET-Dependent Cancers. J. Clin. Oncol. 2020;38:1209–1221. doi: 10.1200/JCO.19.02551. PubMed DOI PMC
Gautschi O., Milia J., Filleron T., Wolf J., Carbone D.P., Owen D., Camidge R., Narayanan V., Doebele R.C., Besse B., et al. Targeting RET in Patients with RET-Rearranged Lung Cancers: Results from the Global, Multicenter RET Registry. J. Clin. Oncol. 2017;35:1403–1410. doi: 10.1200/JCO.2016.70.9352. PubMed DOI PMC
Sarfaty M., Moore A., Neiman V., Dudnik E., Ilouze M., Gottfried M., Katznelson R., Nechushtan H., Sorotsky H.G., Paz K., et al. RET Fusion Lung Carcinoma: Response to Therapy and Clinical Features in a Case Series of 14 Patients. Clin. Lung Cancer. 2017;18:e223–e232. doi: 10.1016/j.cllc.2016.09.003. PubMed DOI
Solomon B.J., Tan L., Lin J.J., Wong S.Q., Hollizeck S., Ebata K., Tuch B.B., Yoda S., Gainor J.F., Sequist L.V., et al. RET Solvent Front Mutations Mediate Acquired Resistance to Selective RET Inhibition in RET-Driven Malignancies. J. Thorac. Oncol. 2020;15:541–549. doi: 10.1016/j.jtho.2020.01.006. PubMed DOI PMC
Barlesi F., Mazieres J., Merlio J.-P., Debieuvre D., Mosser J., Lena H., Ouafik L., Besse B., Rouquette I., Westeel V., et al. Routine Molecular Profiling of Patients with Advanced Non-Small-Cell Lung Cancer: Results of a 1-Year Nationwide Programme of the French Cooperative Thoracic Intergroup (IFCT) Lancet. 2016;387:1415–1426. doi: 10.1016/S0140-6736(16)00004-0. PubMed DOI
Paik P.K., Arcila M.E., Fara M., Sima C.S., Miller V.A., Kris M.G., Ladanyi M., Riely G.J. Clinical Characteristics of Patients with Lung Adenocarcinomas Harboring BRAF Mutations. J. Clin. Oncol. 2011;29:2046–2051. doi: 10.1200/JCO.2010.33.1280. PubMed DOI PMC
Alvarez J.G.B., Otterson G.A. Agents to Treat BRAF-Mutant Lung Cancer. Drugs Context. 2019;8:212566. doi: 10.7573/dic.212566. PubMed DOI PMC
Maemondo M., Inoue A., Kobayashi K., Sugawara S., Oizumi S., Isobe H., Gemma A., Harada M., Yoshizawa H., Kinoshita I., et al. Gefitinib or Chemotherapy for Non–Small-Cell Lung Cancer with Mutated EGFR. N. Engl. J. Med. 2010;362:2380–2388. doi: 10.1056/NEJMoa0909530. PubMed DOI
Rosell R., Carcereny E., Gervais R., Vergnenegre A., Massuti B., Felip E., Palmero R., Garcia-Gomez R., Pallares C., Sanchez J.M., et al. Erlotinib versus Standard Chemotherapy as First-Line Treatment for European Patients with Advanced EGFR Mutation-Positive Non-Small-Cell Lung Cancer (EURTAC): A Multicentre, Open-Label, Randomised Phase 3 Trial. Lancet Oncol. 2012;13:239–246. doi: 10.1016/S1470-2045(11)70393-X. PubMed DOI
Chung C. Tyrosine Kinase Inhibitors for Epidermal Growth Factor Receptor Gene Mutation–positive Non-Small Cell Lung Cancers: An Update for Recent Advances in Therapeutics. J. Oncol. Pharm. Pract. 2016;22:461–476. doi: 10.1177/1078155215577810. PubMed DOI
Yang Y., Shen X., Li R., Shen J., Zhang H., Yu L., Liu B., Wang L. The Detection and Significance of EGFR and BRAF in Cell-Free DNA of Peripheral Blood in NSCLC. Oncotarget. 2017;8:49773–49782. doi: 10.18632/oncotarget.17937. PubMed DOI PMC
Ortiz-Cuaran S., Mezquita L., Swalduz A., Aldea M., Mazieres J., Leonce C., Jovelet C., Pradines A., Avrillon V., Chumbi Flores W.R., et al. Circulating Tumor DNA Genomics Reveal Potential Mechanisms of Resistance to BRAF-Targeted Therapies in Patients with BRAF-Mutant Metastatic Non–Small Cell Lung Cancer. Clin. Cancer Res. 2020;26:6242–6253. doi: 10.1158/1078-0432.CCR-20-1037. PubMed DOI
Blumenschein G.R., Mills G.B., Gonzalez-Angulo A.M. Targeting the Hepatocyte Growth Factor-cMET Axis in Cancer Therapy. J. Clin. Oncol. 2012;30:3287–3296. doi: 10.1200/JCO.2011.40.3774. PubMed DOI PMC
Sadiq A.A., Salgia R. MET as a Possible Target for Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2013;31:1089–1096. doi: 10.1200/JCO.2012.43.9422. PubMed DOI PMC
Engelman J.A., Zejnullahu K., Mitsudomi T., Song Y., Hyland C., Park J.O., Lindeman N., Gale C.-M., Zhao X., Christensen J., et al. MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling. Science. 2007;316:1039–1043. doi: 10.1126/science.1141478. PubMed DOI
Frampton G.M., Ali S.M., Rosenzweig M., Chmielecki J., Lu X., Bauer T.M., Akimov M., Bufill J.A., Lee C., Jentz D., et al. Activation of MET via Diverse Exon 14 Splicing Alterations Occurs in Multiple Tumor Types and Confers Clinical Sensitivity to MET Inhibitors. Cancer Discov. 2015;5:850–859. doi: 10.1158/2159-8290.CD-15-0285. PubMed DOI
Paik P.K., Drilon A., Fan P.-D., Yu H., Rekhtman N., Ginsberg M.S., Borsu L., Schultz N., Berger M.F., Rudin C.M., et al. Response to MET Inhibitors in Patients with Stage IV Lung Adenocarcinomas Harboring MET Mutations Causing Exon 14 Skipping. Cancer Discov. 2015;5:842–849. doi: 10.1158/2159-8290.CD-14-1467. PubMed DOI PMC
Li A., Yang J.-J., Zhang X.-C., Zhang Z., Su J., Gou L.-Y., Bai Y., Zhou Q., Yang Z., Han-Zhang H., et al. Acquired MET Y1248H and D1246N Mutations Mediate Resistance to MET Inhibitors in Non-Small Cell Lung Cancer. Clin. Cancer Res. 2017;23:4929–4937. doi: 10.1158/1078-0432.CCR-16-3273. PubMed DOI
Brahmer J., Reckamp K.L., Baas P., Crinò L., Eberhardt W.E.E., Poddubskaya E., Antonia S., Pluzanski A., Vokes E.E., Holgado E., et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015;373:123–135. doi: 10.1056/NEJMoa1504627. PubMed DOI PMC
Gandhi L., Rodríguez-Abreu D., Gadgeel S., Esteban E., Felip E., De Angelis F., Domine M., Clingan P., Hochmair M.J., Powell S.F., et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018;378:2078–2092. doi: 10.1056/NEJMoa1801005. PubMed DOI
Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E., Chow L.Q., Vokes E.E., Felip E., Holgado E., et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015;373:1627–1639. doi: 10.1056/NEJMoa1507643. PubMed DOI PMC
Paz-Ares L., Luft A., Vicente D., Tafreshi A., Gümüş M., Mazières J., Hermes B., Çay Şenler F., Csőszi T., Fülöp A., et al. Pembrolizumab plus Chemotherapy for Squamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018;379:2040–2051. doi: 10.1056/NEJMoa1810865. PubMed DOI
Savill K.M.Z., Zettler M.E., Feinberg B.A., Jeune-Smith Y., Gajra A. Awareness and Utilization of Tumor Mutation Burden (TMB) as a Biomarker for Administration of Immuno-Oncology (I-O) Therapeutics by Practicing Community Oncologists in the United States (U.S.) J. Clin. Oncol. 2021;39:2608. doi: 10.1200/JCO.2021.39.15_suppl.2608. DOI
Büttner R., Longshore J.W., López-Ríos F., Merkelbach-Bruse S., Normanno N., Rouleau E., Penault-Llorca F. Implementing TMB Measurement in Clinical Practice: Considerations on Assay Requirements. ESMO Open. 2019;4:e000442. doi: 10.1136/esmoopen-2018-000442. PubMed DOI PMC
Vilimas T. Measuring Tumor Mutational Burden Using Whole-Exome Sequencing. Methods Mol. Biol. Clifton N. J. 2020;2055:63–91. doi: 10.1007/978-1-4939-9773-2_3. PubMed DOI
Fancello L., Gandini S., Pelicci P.G., Mazzarella L. Tumor Mutational Burden Quantification from Targeted Gene Panels: Major Advancements and Challenges. J. Immunother. Cancer. 2019;7:183. doi: 10.1186/s40425-019-0647-4. PubMed DOI PMC
Friedlaender A., Nouspikel T., Christinat Y., Ho L., McKee T., Addeo A. Tissue-Plasma TMB Comparison and Plasma TMB Monitoring in Patients with Metastatic Non-Small Cell Lung Cancer Receiving Immune Checkpoint Inhibitors. Front. Oncol. 2020;10:142. doi: 10.3389/fonc.2020.00142. PubMed DOI PMC
Gandara D.R., Paul S.M., Kowanetz M., Schleifman E., Zou W., Li Y., Rittmeyer A., Fehrenbacher L., Otto G., Malboeuf C., et al. Blood-Based Tumor Mutational Burden as a Predictor of Clinical Benefit in Non-Small-Cell Lung Cancer Patients Treated with Atezolizumab. Nat. Med. 2018;24:1441–1448. doi: 10.1038/s41591-018-0134-3. PubMed DOI
Chae Y.K., Davis A.A., Agte S., Pan A., Simon N.I., Iams W.T., Cruz M.R., Tamragouri K., Rhee K., Mohindra N., et al. Clinical Implications of Circulating Tumor DNA Tumor Mutational Burden (ctDNA TMB) in Non-Small Cell Lung Cancer. Oncologist. 2019;24:820–828. doi: 10.1634/theoncologist.2018-0433. PubMed DOI PMC
Wang Z., Duan J., Wang G., Zhao J., Xu J., Han J., Zhao Z., Zhao J., Zhu B., Zhuo M., et al. Allele Frequency-Adjusted Blood-Based Tumor Mutational Burden as a Predictor of Overall Survival for Patients with NSCLC Treated with PD-(L)1 Inhibitors. J. Thorac. Oncol. 2020;15:556–567. doi: 10.1016/j.jtho.2019.12.001. PubMed DOI
Rosell R., Gomez-Codina J., Camps C., Maestre J., Padille J., Canto A., Mate J.L., Li S., Roig J., Olazabal A., et al. A Randomized Trial Comparing Preoperative Chemotherapy Plus Surgery with Surgery Alone in Patients with Non-Small-Cell Lung Cancer. N. Engl. J. Med. 1994;330:153–158. doi: 10.1056/NEJM199401203300301. PubMed DOI
Roth J.A., Fossella F., Komaki R., Ryan M.B., Putnam J.B., Lee J.S., Dhingra H., De Caro L., Chasen M., McGavran M., et al. A Randomized Trial Comparing Perioperative Chemotherapy and Surgery with Surgery Alone in Resectable Stage IIIA Non-Small-Cell Lung Cancer. JNCI J. Natl. Cancer Inst. 1994;86:673–680. doi: 10.1093/jnci/86.9.673. PubMed DOI
Coco S., Alama A., Vanni I., Fontana V., Genova C., Dal Bello M.G., Truini A., Rijavec E., Biello F., Sini C., et al. Circulating Cell-Free DNA and Circulating Tumor Cells as Prognostic and Predictive Biomarkers in Advanced Non-Small Cell Lung Cancer Patients Treated with First-Line Chemotherapy. Int. J. Mol. Sci. 2017;18:1035. doi: 10.3390/ijms18051035. PubMed DOI PMC
Han X., Han Y., Tan Q., Huang Y., Yang J., Yang S., He X., Zhou S., Song Y., Pi J., et al. Tracking Longitudinal Genetic Changes of Circulating Tumor DNA (ctDNA) in Advanced Lung Adenocarcinoma Treated with Chemotherapy. J. Transl. Med. 2019;17:339. doi: 10.1186/s12967-019-2087-9. PubMed DOI PMC
Xu R., Zhong G., Huang T., He W., Kong C., Zhang X., Wang Y., Liu M., Xu M., Chen S. Sequencing of Circulating Tumor DNA for Dynamic Monitoring of Gene Mutations in Advanced Non-Small Cell Lung Cancer. Oncol. Lett. 2018;15:3726–3734. doi: 10.3892/ol.2018.7808. PubMed DOI PMC
Chiou C.-C., Wang C.-L., Luo J.-D., Liu C.-Y., Ko H.-W., Yang C.-T. Targeted Sequencing of Circulating Cell Free DNA Can Be Used to Monitor Therapeutic Efficacy of Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer Patients. Cancer Genom.-Proteom. 2020;17:417–423. doi: 10.21873/cgp.20200. PubMed DOI PMC
Sakai K., Takahama T., Shimokawa M., Azuma K., Takeda M., Kato T., Daga H., Okamoto I., Akamatsu H., Teraoka S., et al. Predicting Osimertinib-treatment Outcomes through EGFR Mutant-fraction Monitoring in the Circulating Tumor DNA of EGFR T790M-positive Patients with Non-small Cell Lung Cancer (WJOG8815L) Mol. Oncol. 2021;15:126–137. doi: 10.1002/1878-0261.12841. PubMed DOI PMC
Iwama E., Sakai K., Azuma K., Harada T., Harada D., Nosaki K., Hotta K., Ohyanagi F., Kurata T., Fukuhara T., et al. Monitoring of Somatic Mutations in Circulating Cell-Free DNA by Digital PCR and next-Generation Sequencing during Afatinib Treatment in Patients with Lung Adenocarcinoma Positive for EGFR Activating Mutations. Ann. Oncol. 2017;28:136–141. doi: 10.1093/annonc/mdw531. PubMed DOI
Dietz S., Christopoulos P., Yuan Z., Angeles A.K., Gu L., Volckmar A.-L., Ogrodnik S.J., Janke F., Fratte C.D., Zemojtel T., et al. Longitudinal Therapy Monitoring of ALK-Positive Lung Cancer by Combined Copy Number and Targeted Mutation Profiling of Cell-Free DNA. EBioMedicine. 2020;62:103103. doi: 10.1016/j.ebiom.2020.103103. PubMed DOI PMC
Hodi F.S., Sznol M., Kluger H.M., McDermott D.F., Carvajal R.D., Lawrence D.P., Topalian S.L., Atkins M.B., Powderly J.D., Sharfman W.H., et al. Long-Term Survival of Ipilimumab-Naive Patients (pts) with Advanced Melanoma (MEL) Treated with Nivolumab (anti-PD-1, BMS-936558, ONO-4538) in a Phase I Trial. J. Clin. Oncol. 2014;32:9002. doi: 10.1200/jco.2014.32.15_suppl.9002. PubMed DOI
Guibert N., Mazières J. Nivolumab for Treating Non-Small Cell Lung Cancer. Expert Opin. Biol. Ther. 2015;15:1789–1797. doi: 10.1517/14712598.2015.1114097. PubMed DOI
Goldberg S.B., Narayan A., Kole A.J., Decker R.H., Teysir J., Carriero N.J., Lee A., Nemati R., Nath S.K., Mane S.M., et al. Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA. Clin. Cancer Res. 2018;24:1872–1880. doi: 10.1158/1078-0432.CCR-17-1341. PubMed DOI PMC
Guibert N., Mazieres J., Delaunay M., Casanova A., Farella M., Keller L., Favre G., Pradines A. Monitoring of KRAS-Mutated ctDNA to Discriminate Pseudo-Progression from True Progression during Anti-PD-1 Treatment of Lung Adenocarcinoma. Oncotarget. 2017;8:38056–38060. doi: 10.18632/oncotarget.16935. PubMed DOI PMC
Anagnostou V., Forde P.M., White J.R., Niknafs N., Hruban C., Naidoo J., Marrone K., Sivakumar I.K.A., Bruhm D.C., Rosner S., et al. Dynamics of Tumor and Immune Responses during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. Cancer Res. 2019;79:1214–1225. doi: 10.1158/0008-5472.CAN-18-1127. PubMed DOI PMC
Jiang T., Li X., Wang J., Su C., Han W., Zhao C., Wu F., Gao G., Li W., Chen X., et al. Mutational Landscape of cfDNA Identifies Distinct Molecular Features Associated with Therapeutic Response to First-Line Platinum-Based Doublet Chemotherapy in Patients with Advanced NSCLC. Theranostics. 2017;7:4753–4762. doi: 10.7150/thno.21687. PubMed DOI PMC
Guibert N., Pradines A., Farella M., Casanova A., Gouin S., Keller L., Favre G., Mazieres J. Monitoring KRAS Mutations in Circulating DNA and Tumor Cells Using Digital Droplet PCR during Treatment of KRAS-Mutated Lung Adenocarcinoma. Lung Cancer. 2016;100:1–4. doi: 10.1016/j.lungcan.2016.07.021. PubMed DOI
Kageyama S.-I., Nihei K., Karasawa K., Sawada T., Koizumi F., Yamaguchi S., Kato S., Hojo H., Motegi A., Tsuchihara K., et al. Radiotherapy Increases Plasma Levels of Tumoral Cell-Free DNA in Non-Small Cell Lung Cancer Patients. Oncotarget. 2018;9:19368–19378. doi: 10.18632/oncotarget.25053. PubMed DOI PMC
Walls G.M., McConnell L., McAleese J., Murray P., Lynch T.B., Savage K., Hanna G.G., de Castro D.G. Early Circulating Tumour DNA Kinetics Measured by Ultra-Deep next-Generation Sequencing during Radical Radiotherapy for Non-Small Cell Lung Cancer: A Feasibility Study. Radiat. Oncol. 2020;15:132. doi: 10.1186/s13014-020-01583-7. PubMed DOI PMC
Cohen J.D., Li L., Wang Y., Thoburn C., Afsari B., Danilova L., Douville C., Javed A.A., Wong F., Mattox A., et al. Detection and Localization of Surgically Resectable Cancers with a Multi-Analyte Blood Test. Science. 2018;359:926–930. doi: 10.1126/science.aar3247. PubMed DOI PMC
Locke W.J., Guanzon D., Ma C., Liew Y.J., Duesing K.R., Fung K.Y.C., Ross J.P. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front. Genet. 2019;10:1150. doi: 10.3389/fgene.2019.01150. PubMed DOI PMC
Yang Z., Qi W., Sun L., Zhou H., Zhou B., Hu Y. DNA Methylation Analysis of Selected Genes for the Detection of Early-Stage Lung Cancer Using Circulating Cell-Free DNA. Adv. Clin. Exp. Med. 2019;28:355–360. doi: 10.17219/acem/84935. PubMed DOI
Ooki A., Maleki Z., Tsay J.-C.J., Goparaju C., Brait M., Turaga N., Nam H.-S., Rom W.N., Pass H.I., Sidransky D., et al. A Panel of Novel Detection and Prognostic Methylated DNA Markers in Primary Non–Small Cell Lung Cancer and Serum DNA. Clin. Cancer Res. 2017;23:7141–7152. doi: 10.1158/1078-0432.CCR-17-1222. PubMed DOI
Passiglia F., Rizzo S., Di Maio M., Galvano A., Badalamenti G., Listì A., Gulotta L., Castiglia M., Fulfaro F., Bazan V., et al. The Diagnostic Accuracy of Circulating Tumor DNA for the Detection of EGFR-T790M Mutation in NSCLC: A Systematic Review and Meta-Analysis. Sci. Rep. 2018;8:13379. doi: 10.1038/s41598-018-30780-4. PubMed DOI PMC
Czarnecka A.M., Brodziak A., Sobczuk P., Dendek C., Labochka D., Korniluk J., Bartnik E., Szczylik C. Metastatic Tumor Burden and Loci as Predictors of First Line Sunitinib Treatment Efficacy in Patients with Renal Cell Carcinoma. Sci. Rep. 2019;9:7754. doi: 10.1038/s41598-019-44226-y. PubMed DOI PMC
Tateishi U., Tatsumi M., Terauchi T., Ando K., Niitsu N., Kim W.S., Suh C., Ogura M., Tobinai K. Prognostic Significance of Metabolic Tumor Burden by Positron Emission Tomography/computed Tomography in Patients with Relapsed/refractory Diffuse Large B-cell Lymphoma. Cancer Sci. 2015;106:186–193. doi: 10.1111/cas.12588. PubMed DOI PMC
Gobbi P.G., Broglia C., Di Giulio G., Mantelli M., Anselmo P., Merli F., Zinzani P.L., Rossi G., Callea V., Iannitto E., et al. The Clinical Value of Tumor Burden at Diagnosis in Hodgkin Lymphoma. Cancer. 2004;101:1824–1834. doi: 10.1002/cncr.20568. PubMed DOI
Leek R.D., Landers R.J., Harris A.L., Lewis C.E. Necrosis Correlates with High Vascular Density and Focal Macrophage Infiltration in Invasive Carcinoma of the Breast. Br. J. Cancer. 1999;79:991–995. doi: 10.1038/sj.bjc.6690158. PubMed DOI PMC
Diehl F., Li M., Dressman D., He Y., Shen D., Szabo S., Diaz L.A., Goodman S.N., David K.A., Juhl H., et al. Detection and Quantification of Mutations in the Plasma of Patients with Colorectal Tumors. Proc. Natl. Acad. Sci. USA. 2005;102:16368–16373. doi: 10.1073/pnas.0507904102. PubMed DOI PMC
Cho M.-S., Park C.H., Lee S., Park H.S. Clinicopathological Parameters for Circulating Tumor DNA Shedding in Surgically Resected Non-Small Cell Lung Cancer with EGFR or KRAS Mutation. PLoS ONE. 2020;15:e0230622. doi: 10.1371/journal.pone.0230622. PubMed DOI PMC
Zhu Y.-J., Zhang H.-B., Liu Y.-H., Zhang F.-L., Zhu Y.-Z., Li Y., Bai J.-P., Liu L.-R., Qu Y.-C., Qu X., et al. Quantitative Cell-Free Circulating EGFR Mutation Concentration Is Correlated with Tumor Burden in Advanced NSCLC Patients. Lung Cancer. 2017;109:124–127. doi: 10.1016/j.lungcan.2017.05.005. PubMed DOI
Yanagita M., Redig A.J., Paweletz C.P., Dahlberg S.E., O’Connell A., Feeney N., Taibi M., Boucher D., Oxnard G.R., Johnson B.E., et al. A Prospective Evaluation of Circulating Tumor Cells and Cell-Free DNA in EGFR-Mutant Non–Small Cell Lung Cancer Patients Treated with Erlotinib on a Phase II Trial. Clin. Cancer Res. 2016;22:6010–6020. doi: 10.1158/1078-0432.CCR-16-0909. PubMed DOI
Chalmers Z.R., Connelly C.F., Fabrizio D., Gay L., Ali S.M., Ennis R., Schrock A., Campbell B., Shlien A., Chmielecki J., et al. Analysis of 100,000 Human Cancer Genomes Reveals the Landscape of Tumor Mutational Burden. Genome Med. 2017;9:34. doi: 10.1186/s13073-017-0424-2. PubMed DOI PMC
Heitzer E., Ulz P., Geigl J.B. Circulating Tumor DNA as a Liquid Biopsy for Cancer. Clin. Chem. 2015;61:112–123. doi: 10.1373/clinchem.2014.222679. PubMed DOI
Fan G., Zhang K., Yang X., Ding J., Wang Z., Li J. Prognostic Value of Circulating Tumor DNA in Patients with Colon Cancer: Systematic Review. PLoS ONE. 2017;12:e0171991. doi: 10.1371/journal.pone.0171991. PubMed DOI PMC
Jia J., Huang B., Zhuang Z., Chen S. Circulating Tumor DNA as Prognostic Markers for Late Stage NSCLC with Bone Metastasis. Int. J. Biol. Markers. 2018;33:222–230. doi: 10.1177/1724600817753576. PubMed DOI
Michaelidou K., Koutoulaki C., Mavridis K., Vorrias E., Papadaki M.A., Koutsopoulos A.V., Mavroudis D., Agelaki S. Detection of KRAS G12/G13 Mutations in Cell Free-DNA by Droplet Digital PCR, Offers Prognostic Information for Patients with Advanced Non-Small Cell Lung Cancer. Cells. 2020;9:2514. doi: 10.3390/cells9112514. PubMed DOI PMC
Liu Z., Xie Z., Zhao S., Ye D., Cai X., Cheng B., Li C., Xiong S., Li J., Liang H., et al. Presence of Allele Frequency Heterogeneity Defined by ctDNA Profiling Predicts Unfavorable Overall Survival of NSCLC. Transl. Lung Cancer Res. 2019;8:1045–1050. doi: 10.21037/tlcr.2019.12.10. PubMed DOI PMC
Song Y., Hu C., Xie Z., Wu L., Zhu Z., Rao C., Liu L., Chen Y., Liang N., Chen J., et al. Circulating Tumor DNA Clearance Predicts Prognosis across Treatment Regimen in a Large Real-World Longitudinally Monitored Advanced Non-Small Cell Lung Cancer Cohort. Transl. Lung Cancer Res. 2020;9:269–279. doi: 10.21037/tlcr.2020.03.17. PubMed DOI PMC
Diehl F., Schmidt K., Choti M.A., Romans K., Goodman S., Li M., Thornton K., Agrawal N., Sokoll L., Szabo S.A., et al. Circulating Mutant DNA to Assess Tumor Dynamics. Nat. Med. 2008;14:985–990. doi: 10.1038/nm.1789. PubMed DOI PMC
Chen K., Zhao H., Shi Y., Yang F., Wang L.T., Kang G., Nie Y., Wang J. Perioperative Dynamic Changes in Circulating Tumor DNA in Patients with Lung Cancer (DYNAMIC) Clin. Cancer Res. 2019;25:7058–7067. doi: 10.1158/1078-0432.CCR-19-1213. PubMed DOI
Guo N., Lou F., Ma Y., Li J., Yang B., Chen W., Ye H., Zhang J.-B., Zhao M.-Y., Wu W.-J., et al. Circulating Tumor DNA Detection in Lung Cancer Patients before and after Surgery. Sci. Rep. 2016;6:33519. doi: 10.1038/srep33519. PubMed DOI PMC
Zhang R., Zhang X., Huang Z., Wang F., Lin Y., Wen Y., Liu L., Li J., Liu X., Xie W., et al. Development and Validation of a Preoperative Noninvasive Predictive Model Based on Circular Tumor DNA for Lymph Node Metastasis in Resectable Non-Small Cell Lung Cancer. Transl. Lung Cancer Res. 2020;9:722–730. doi: 10.21037/tlcr-20-593. PubMed DOI PMC
Ettinger D.S., Wood D.E., Aisner D.L., Akerley W., Bauman J., Chirieac L.R., D’Amico T.A., DeCamp M.M., Dilling T.J., Dobelbower M., et al. Non-Small Cell Lung Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2017;15:504–535. doi: 10.6004/jnccn.2017.0050. PubMed DOI
Liang H., Huang J., Wang B., Liu Z., He J., Liang W. The Role of Liquid Biopsy in Predicting Post-Operative Recurrence of Non-Small Cell Lung Cancer. J. Thorac. Dis. 2018;10:S838–S845. doi: 10.21037/jtd.2018.04.08. PubMed DOI PMC
Chaudhuri A.A., Chabon J.J., Lovejoy A.F., Newman A.M., Stehr H., Azad T.D., Khodadoust M.S., Esfahani M.S., Liu C.L., Zhou L., et al. Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling. Cancer Discov. 2017;7:1394–1403. doi: 10.1158/2159-8290.CD-17-0716. PubMed DOI PMC
De Mattos-Arruda L., Mayor R., Ng C.K.Y., Weigelt B., Martínez-Ricarte F., Torrejon D., Oliveira M., Arias A., Raventos C., Tang J., et al. Cerebrospinal Fluid-Derived Circulating Tumour DNA Better Represents the Genomic Alterations of Brain Tumours than Plasma. Nat. Commun. 2015;6:8839. doi: 10.1038/ncomms9839. PubMed DOI PMC
Paik P.K., Shen R., Won H., Rekhtman N., Wang L., Sima C.S., Arora A., Seshan V., Ladanyi M., Berger M.F., et al. Next-Generation Sequencing of Stage IV Squamous Cell Lung Cancers Reveals an Association of PI3K Aberrations and Evidence of Clonal Heterogeneity in Patients with Brain Metastases. Cancer Discov. 2015;5:610–621. doi: 10.1158/2159-8290.CD-14-1129. PubMed DOI PMC
Schuette W. Treatment of Brain Metastases from Lung Cancer: Chemotherapy. Lung Cancer. 2004;45:S253–S257. doi: 10.1016/j.lungcan.2004.07.967. PubMed DOI
Ma C., Yang X., Xing W., Yu H., Si T., Guo Z. Detection of Circulating Tumor DNA from Non-Small Cell Lung Cancer Brain Metastasis in Cerebrospinal Fluid Samples. Thorac. Cancer. 2020;11:588–593. doi: 10.1111/1759-7714.13300. PubMed DOI PMC
Huang R., Xu X., Li D., Chen K., Zhan Q., Ge M., Zhou X., Liang X., Guan M. Digital PCR-Based Detection of EGFR Mutations in Paired Plasma and CSF Samples of Lung Adenocarcinoma Patients with Central Nervous System Metastases. Target. Oncol. 2019;14:343–350. doi: 10.1007/s11523-019-00645-5. PubMed DOI
Reungwetwattana T., Nakagawa K., Cho B.C., Cobo M., Cho E.K., Bertolini A., Bohnet S., Zhou C., Lee K.H., Nogami N., et al. CNS Response to Osimertinib Versus Standard Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018;36:3290–3297. doi: 10.1200/JCO.2018.78.3118. PubMed DOI
Zheng M.-M., Li Y.-S., Tu H.-Y., Jiang B.-Y., Yang J.-J., Zhou Q., Xu C.-R., Yang X.-R., Wu Y.-L. Genotyping of Cerebrospinal Fluid Associated with Osimertinib Response and Resistance for Leptomeningeal Metastases in EGFR-Mutated NSCLC. J. Thorac. Oncol. 2021;16:250–258. doi: 10.1016/j.jtho.2020.10.008. PubMed DOI
Botezatu I., Serdyuk O., Potapova G., Shelepov V., Alechina R., Molyaka Y., Ananév V., Bazin I., Garin A., Narimanov M., et al. Genetic Analysis of DNA Excreted in Urine: A New Approach for Detecting Specific Genomic DNA Sequences from Cells Dying in an Organism. Clin. Chem. 2000;46:1078–1084. doi: 10.1093/clinchem/46.8.1078. PubMed DOI
Reckamp K.L., Melnikova V.O., Karlovich C., Sequist L.V., Camidge D.R., Wakelee H., Perol M., Oxnard G.R., Kosco K., Croucher P., et al. A Highly Sensitive and Quantitative Test Platform for Detection of NSCLC EGFR Mutations in Urine and Plasma. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer. 2016;11:1690–1700. doi: 10.1016/j.jtho.2016.05.035. PubMed DOI
Zhang H., He B., Cui J., Zhao M., Zhang Z. Comparison of Circulating DNA from Plasma and Urine for EGFR Mutations in NSCLC Patients. Cancer Biomark. Sect. Dis. Markers. 2018;23:427–436. doi: 10.3233/CBM-181511. PubMed DOI
Hu T., Shen H., Huang H., Song M., Yang Z., Zhou Y., Zhao G. Urinary Circulating DNA Profiling in Non-Small Cell Lung Cancer Patients Following Treatment Shows Prognostic Potential. J. Thorac. Dis. 2018;10:4137–4146. doi: 10.21037/jtd.2018.06.50. PubMed DOI PMC
Husain H., Melnikova V.O., Kosco K., Woodward B., More S., Pingle S.C., Weihe E., Park B.H., Tewari M., Erlander M.G., et al. Monitoring Daily Dynamics of Early Tumor Response to Targeted Therapy by Detecting Circulating Tumor DNA in Urine. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017;23:4716–4723. doi: 10.1158/1078-0432.CCR-17-0454. PubMed DOI PMC
Tchekmedyian N., Mudad R., Blanco F.F., Raymond V.M., Garst J., Erlander M.G., Haura E., Berz D. Longitudinal Monitoring of ctDNA EGFR Mutation Burden from Urine Correlates with Patient Response to EGFR TKIs: A Case Series. Lung Cancer. 2017;108:22–28. doi: 10.1016/j.lungcan.2017.02.010. PubMed DOI
Next Generation Sequencing Analysis and its Benefit for Targeted Therapy of Lung Adenocarcinoma