Effects of Metformin on Tissue Oxidative and Dicarbonyl Stress in Transgenic Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26963617
PubMed Central
PMC4786274
DOI
10.1371/journal.pone.0150924
PII: PONE-D-15-48262
Knihovny.cz E-zdroje
- MeSH
- C-reaktivní protein biosyntéza genetika MeSH
- cytokiny metabolismus MeSH
- exprese genu MeSH
- glukosa metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- lipolýza účinky léků genetika MeSH
- metformin farmakologie MeSH
- myokard metabolismus MeSH
- oxidační stres účinky léků genetika MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- proteinkinasy aktivované AMP genetika metabolismus MeSH
- pyruvaldehyd metabolismus MeSH
- srdeční komory metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- C-reaktivní protein MeSH
- cytokiny MeSH
- glukosa MeSH
- metformin MeSH
- proteinkinasy aktivované AMP MeSH
- pyruvaldehyd MeSH
Inflammation and oxidative and dicarbonyl stress play important roles in the pathogenesis of type 2 diabetes. Metformin is the first-line drug of choice for the treatment of type 2 diabetes because it effectively suppresses gluconeogenesis in the liver. However, its "pleiotropic" effects remain controversial. In the current study, we tested the effects of metformin on inflammation, oxidative and dicarbonyl stress in an animal model of inflammation and metabolic syndrome, using spontaneously hypertensive rats that transgenically express human C-reactive protein (SHR-CRP). We treated 8-month-old male transgenic SHR-CRP rats with metformin (5 mg/kg/day) mixed as part of a standard diet for 4 weeks. A corresponding untreated control group of male transgenic SHR-CRP rats were fed a standard diet without metformin. In a similar fashion, we studied a group of nontransgenic SHR treated with metformin and an untreated group of nontransgenic SHR controls. In each group, we studied 6 animals. Parameters of glucose and lipid metabolism and oxidative and dicarbonyl stress were measured using standard methods. Gene expression profiles were determined using Affymetrix GeneChip Arrays. Statistical significance was evaluated by two-way ANOVA. In the SHR-CRP transgenic strain, we found that metformin treatment decreased circulating levels of inflammatory response marker IL-6, TNFα and MCP-1 while levels of human CRP remained unchanged. Metformin significantly reduced oxidative stress (levels of conjugated dienes and TBARS) and dicarbonyl stress (levels of methylglyoxal) in left ventricles, but not in kidneys. No significant effects of metformin on oxidative and dicarbonyl stress were observed in SHR controls. In addition, metformin treatment reduced adipose tissue lipolysis associated with human CRP. Possible molecular mechanisms of metformin action-studied by gene expression profiling in the liver-revealed deregulated genes from inflammatory and insulin signaling, AMP-activated protein kinase (AMPK) signaling and gluconeogenesis pathways. It can be concluded that in the presence of high levels of human CRP, metformin protects against inflammation and oxidative and dicarbonyl stress in the heart, but not in the kidney. Accordingly, these cardioprotective effects of metformin might be especially effective in diabetic patients with high levels of CRP.
Institute of Molecular Genetics Czech Academy of Sciences Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Kahn SE, Haffner SM, Viberti G, Herman WH, Lachin JM, Barbara G. Kravitz BG, et al. (2010) Rosiglitazone decreases C-reactive protein to a greater extent relative to glyburide and metformin over four-years in spite of greater weight gain: Observations from ADOPT (A Diabetes Outcome Progression Trial). Diabetes Care 33: 177–183. 10.2337/dc09-1661 PubMed DOI PMC
Saisho Y (2015) Metformin and inflammation: Its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets 15: 1–10. PubMed
Agrawal NK, Kant S (2014) Targeting inflammation in diabetes: Newer therapeutic options. World J Diabetes 5: 697–710. 10.4239/wjd.v5.i5.697 PubMed DOI PMC
Pruski M, Krysiak R, Okopien B (2009) Pleiotropic action of short-term metformin and fenofibrate treatment, combined with lifestyle intervention, in type 2 diabetic patients with mixed dyslipidemia. Diabetes Care 32: 1421–1424. 10.2337/dc08-2335 PubMed DOI PMC
Loomba R (2014) Rationale for conducting a randomized trial to examine the efficacy of metformin in improving survival in cirrhosis: Pleiotropic effects hypothesis. Hepatology 60: 1818–1822. 10.1002/hep.27314 PubMed DOI
Fleming T, Cuni J, Nawroth G, Djuric Z, Humpert PM, Zeier M, et al. (2012) Is diabetes an acquired disorder of reactive glucose metabolites and their intermediates? Diabetologia 55: 1151–1155. 10.1007/s00125-012-2452-1 PubMed DOI
Sena CM, Matafome P, Crisostomo J, Rodrigues L, Fernandes R, Pereira P, et al. (2012) Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res 65: 497–506. 10.1016/j.phrs.2012.03.004 PubMed DOI
Matafome P, Santos-Silva D, Crisostomo J, Rodrigues T, Rodrigues L, Sena CM, et al. (2012) Methylglyoxal cause structural and functional alterations in adipose tissue independently of obesity. Arch Physiol Biochem 118: 58–68. 10.3109/13813455.2012.658065 PubMed DOI
Tikellis C, Pickering RJ, Tsorotes D, Huet O, Cooper ME, Jandeleit-Dahm K, et al. (2014) Dicarbonyl stress in the absence of hyperglycemia increases endothelial inflammation and atherogenesis similar to that observed in diabetes. Diabetes 63: 3915–3925. 10.2337/db13-0932 PubMed DOI
Poulsen MW, Hedegaard RV, Andresesn JM, deCourten B, Bügel S, Nielsen J, et al. (2013) Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 60: 10–37. 10.1016/j.fct.2013.06.052 PubMed DOI
Rabbani N, Thornalley PJ (2015) Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun 458:221–226. 10.1016/j.bbrc.2015.01.140 PubMed DOI
Beisswenger PJ (2012) Glycation and biomarkers of vascular complications of diabetes. Amino Acids 42: 1171–1183. 10.1007/s00726-010-0784-z PubMed DOI
Pravenec M, Kajiya T, Zídek V, Landa V, Mlejnek P, Šimáková M, et al. (2011) Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome. Hypertension 57: 731–717. 10.1161/HYPERTENSIONAHA.110.164350 PubMed DOI PMC
Kender Z, Fleming T, Kopf S, Torzsa P, Grolmusz V, Herzig S, et al. (2014) Effect of metformin on methylglyoxal metabolism in patients with type 2 diabetes. Exp Clin Endocrinol Diabetes 122: 316–319. 10.1055/s-0034-1371818 PubMed DOI
Ruggiero-Lopez D, Lecomte M, Moinet G, Patereau G, Lagarde M, Wiernsperger N (1999) Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem Pharmacol 58: 1765–1773. PubMed
Frederico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121: 2381–2386. PubMed
Leverve XM, Guigas B, Detaille D, Batandier C, Koceir EA, Chauvin C, et al. (2003) Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. Diabetes Metab 29(4 Pt 2):6S88–94. PubMed
Maruthur NM, Gribble MO, Bennett WL, Bolen S, Wilson LM, et al. (2014) The pharmacogenetics of type 2 diabetes: a systematic review. Diabetes Care 37: 876–886. 10.2337/dc13-1276 PubMed DOI PMC
Barnea M, Haviv L, Gutman R, Chapnik N, Madar Z, Balakrishnan P, et al. (2012) Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner. Biochim Biophys Acta 1822: 1796–1806. 10.1016/j.bbadis.2012.08.005 PubMed DOI
Šilhavý J, Zídek V, Landa V, Šimáková M, Mlejnek P, Škop V, et al. (2014) Rosuvastatin can block pro-inflammatory actions of transgenic human C-reactive protein without reducing its circulating levels. Cardiovasc Ther 32: 59–65. 10.1111/1755-5922.12061 PubMed DOI
Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344: 109–116. PubMed PMC
Beneš J, Kazdová L, Drahota Z, Houštěk J, Medříková D, Kopecký J, et al. (2011) Effect of metformin therapy on cardiac function and survival in a volume-overload model of heart failure in rats. Clin Sci (London) 121: 29–41. PubMed
Smyth GK (2005) Limma: linear models for microarray data In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and computational biology solutions using R and bioconductor. NewYork: Springer; Pp. 397–420.
Storey JD (2003) The positive false discovery rate: a Bayesian interpretation and the q-value. Annals Statistics 31: 2013–2035.
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80 PubMed PMC
Tarca AL, Draghici S, Khatri P, Hassan S, Mital P, Kim JS, et al. (2009) A signaling pathway impact analysis for microarray experiments. Bioinformatics 25: 75–82. PubMed PMC
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. Series B 57: 289–300.