Transgenic human C-reactive protein affects oxidative stress but not inflammation biomarkers in the aorta of spontaneously hypertensive rats
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LX22NPO5104
Program EXCELES
SVV 260 633
Specific University Research
CZ.02.1.01/0.0/0.0/16_019/0000841
EFSA-CDN
PubMed
38627621
PubMed Central
PMC11020172
DOI
10.1186/s12872-024-03870-7
PII: 10.1186/s12872-024-03870-7
Knihovny.cz E-zdroje
- Klíčová slova
- Aorta, C-reactive protein, Endothelial dysfunction, Oxidative stress, Spontaneously hypertensive rat,
- MeSH
- adiponektin MeSH
- aorta MeSH
- biologické markery metabolismus MeSH
- C-reaktivní protein metabolismus MeSH
- chemokin CCL2 MeSH
- hypertenze * MeSH
- inzuliny * metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metabolický syndrom * diagnóza genetika MeSH
- oxidační stres MeSH
- potkani inbrední SHR MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adiponektin MeSH
- biologické markery MeSH
- C-reaktivní protein MeSH
- chemokin CCL2 MeSH
- CRP protein, human MeSH Prohlížeč
- inzuliny * MeSH
BACKGROUND: C-reactive protein (CRP) is an acute inflammatory protein detected in obese patients with metabolic syndrome. Moreover, increased CRP levels have been linked with atherosclerotic disease, congestive heart failure, and ischemic heart disease, suggesting that it is not only a biomarker but also plays an active role in the pathophysiology of cardiovascular diseases. Since endothelial dysfunction plays an essential role in various cardiovascular pathologies and is characterized by increased expression of cell adhesion molecules and inflammatory markers, we aimed to detect specific markers of endothelial dysfunction, inflammation, and oxidative stress in spontaneously hypertensive rats (SHR) expressing human CRP. This model is genetically predisposed to the development of the metabolic syndrome. METHODS: Transgenic SHR male rats (SHR-CRP) and non-transgenic SHR (SHR) at the age of 8 months were used. Metabolic profile (including serum and tissue triglyceride (TAG), serum insulin concentrations, insulin-stimulated incorporation of glucose, and serum non-esterified fatty acids (NEFA) levels) was measured. In addition, human serum CRP, MCP-1 (monocyte chemoattractant protein-1), and adiponectin were evaluated by means of ELISA, histological analysis was used to study morphological changes in the aorta, and western blot analysis of aortic tissue was performed to detect expression of endothelial, inflammatory, and oxidative stress markers. RESULTS: The presence of human CRP was associated with significantly decreased insulin-stimulated glycogenesis in skeletal muscle, increased muscle and hepatic accumulation of TAG and decreased plasmatic cGMP concentrations, reduced adiponectin levels, and increased monocyte chemoattractant protein-1 (MCP-1) levels in the blood, suggesting pro-inflammatory and presence of multiple features of metabolic syndrome in SHR-CRP animals. Histological analysis of aortic sections did not reveal any visible morphological changes in animals from both SHR and SHR-CRP rats. Western blot analysis of the expression of proteins related to the proper function of endothelium demonstrated significant differences in the expression of p-eNOS/eNOS in the aorta, although endoglin (ENG) protein expression remained unaffected. In addition, the presence of human CRP in SHR in this study did not affect the expression of inflammatory markers, namely p-NFkB, P-selectin, and COX2 in the aorta. On the other hand, biomarkers related to oxidative stress, such as HO-1 and SOD3, were significantly changed, indicating the induction of oxidative stress. CONCLUSIONS: Our findings demonstrate that CRP alone cannot fully induce the expression of endothelial dysfunction biomarkers, suggesting other risk factors of cardiovascular disorders are necessary to be involved to induce endothelial dysfunction with CRP.
Zobrazit více v PubMed
Ridker PM, Silvertown JD, Inflammation. C-reactive protein, and atherothrombosis. Journal of periodontology. 2008;79(8 Suppl):1544-51. 10.1902/jop.2008.080249. PubMed PMID: 18673009. PubMed
Sepulveda JL, Mehta JL. C-reactive protein and cardiovascular disease: a critical appraisal. Curr Opin Cardiol. 2005;20(5):407–16. PubMed
Keaney JF. Jr. Atherosclerosis: from lesion formation to plaque activation and endothelial dysfunction. Mol Aspects Med. 2000;21(4–5):99–166. doi: 10.1016/S0098-2997(00)00005-4. PubMed DOI
Rathouska J, Jezkova K, Nemeckova I, Nachtigal P. Soluble endoglin, hypercholesterolemia and endothelial dysfunction. Atherosclerosis. 2015;243(2):383–8. doi: 10.1016/j.atherosclerosis.2015.10.003. PubMed DOI
Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III27–32. PubMed
Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation. 2002;106(12):1439–41. doi: 10.1161/01.CIR.0000033116.22237.F9. PubMed DOI
Iacoviello L, Donati MB, de Gaetano G. [Novel risk factors for atherosclerosis. A comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a) and cholesterol as predictors of peripheral arteriopathy] Ital Heart J Suppl. 2001;2(9):1031–3. PubMed
Bisoendial RJ, Boekholdt SM, Vergeer M, Stroes ES, Kastelein JJ. C-reactive protein is a mediator of cardiovascular disease. Eur Heart J. 2010;31(17):2087–91. doi: 10.1093/eurheartj/ehq238. PubMed DOI
Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med. 2008;359(18):1897–908. doi: 10.1056/NEJMoa0707402. PubMed DOI
Abramson JL, Hooper WC, Jones DP, Ashfaq S, Rhodes SD, Weintraub WS, et al. Association between novel oxidative stress markers and C-reactive protein among adults without clinical coronary heart disease. Atherosclerosis. 2005;178(1):115–21. doi: 10.1016/j.atherosclerosis.2004.08.007. PubMed DOI
Durante W. Protective role of heme oxygenase-1 against inflammation in atherosclerosis. Front Biosci. 2012;17:2372–88. PubMed PMC
Hosick PA, Stec DE. Heme oxygenase, a novel target for the treatment of hypertension and obesity? Am J Physiol Regul Integr Comp Physiol. 2012;302(2):R207-14. Epub 2011/11/11. 10.1152/ajpregu.00517.2011 [pii]. PubMed PMID: 22071158. PubMed PMC
Pravenec M, Kajiya T, Zidek V, Landa V, Mlejnek P, Simakova M, et al. Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome. Hypertension. 2011;57(4):731–7. doi: 10.1161/HYPERTENSIONAHA.110.164350. PubMed DOI PMC
Silhavy J, Mlejnek P, Simakova M, Malinska H, Markova I, Huttl M, et al. Hypolipidemic effects of beetroot juice in SHR-CRP and HHTg rat models of metabolic syndrome: analysis of hepatic proteome. Metabolites. 2023;13(2). 10.3390/metabo13020192. Epub 20230128. PubMed PMC
Tejera-Munoz A, Guerra-Menendez L, Amor S, Gonzalez-Hedstrom D, Garcia-Villalon AL, Granado M. Postnatal overfeeding during lactation induces endothelial dysfunction and cardiac insulin resistance in adult rats. Int J Mol Sci. 2023;24(19). 10.3390/ijms241914443. Epub 20230922. PubMed PMC
Brazao SC, Lima GF, Autran LJ, Mendes ABA, Dos Santos BA, Magliano DC, et al. Subacute administration of cilostazol modulates PLC-gamma/PKC-alpha/p38/NF-kB pathway and plays vascular protective effects through eNOS activation in early stages of atherosclerosis development. Life Sci. 2023;332:122082. doi: 10.1016/j.lfs.2023.122082. PubMed DOI
Nemeckova I, Serwadczak A, Oujo B et al. High soluble endoglin levels do not induce endothelial dysfunction in mouse aorta. PLoS ONE. 2015:e0119665. PubMed PMC
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116(7):1784–92. doi: 10.1172/JCI29126. PubMed DOI PMC
Scheid MP, Sweeney G. The role of adiponectin signaling in metabolic syndrome and cancer. Reviews Endocr Metabolic Disorders. 2014;15(2):157–67. doi: 10.1007/s11154-013-9265-5. PubMed DOI
Santibanez JF, Letamendia A, Perez-Barriocanal F, Silvestri C, Saura M, Vary CP, et al. Endoglin increases eNOS expression by modulating Smad2 protein levels and Smad2-dependent TGF-beta signaling. J Cell Physiol. 2007;210(2):456–68. doi: 10.1002/jcp.20878. PubMed DOI
Vitverova B, Blazickova K, Najmanova I, Vicen M, Hyspler R, Dolezelova E, et al. Soluble endoglin and hypercholesterolemia aggravate endothelial and vessel wall dysfunction in mouse aorta. Atherosclerosis. 2018;271:15–25. doi: 10.1016/j.atherosclerosis.2018.02.008. PubMed DOI
Lahera V, Goicoechea M, de Vinuesa SG, Miana M, de las Heras N, Cachofeiro V, et al. Endothelial dysfunction, oxidative stress and inflammation in atherosclerosis: beneficial effects of statins. Curr Med Chem. 2007;14(2):243–8. doi: 10.2174/092986707779313381. PubMed DOI
Araujo JA, Zhang M, Yin F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol. 2012;3:119. doi: 10.3389/fphar.2012.00119. PubMed DOI PMC
Lund DD, Gunnett CA, Chu Y, Brooks RM, Faraci FM, Heistad DD. Gene transfer of extracellular superoxide dismutase improves relaxation of aorta after treatment with endotoxin. Am J Physiol Heart Circ Physiol. 2004;287(2):H805–11. doi: 10.1152/ajpheart.00907.2003. PubMed DOI
Iida S, Chu Y, Francis J, Weiss RM, Gunnett CA, Faraci FM, et al. Gene transfer of extracellular superoxide dismutase improves endothelial function in rats with heart failure. Am J Physiol Heart Circ Physiol. 2005;289(2):H525–32. doi: 10.1152/ajpheart.00108.2005. PubMed DOI
Foresman EL, Miller FJ. Jr. Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction. Redox Biol. 2013;1:292–6. doi: 10.1016/j.redox.2013.04.003. PubMed DOI PMC