Sample preparation method for IR analysis of petroleum-contaminated soil: An innovative technology for ecological remediation using Miscanthus x giganteus
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39669163
PubMed Central
PMC11635668
DOI
10.1016/j.heliyon.2024.e40713
PII: S2405-8440(24)16744-8
Knihovny.cz E-zdroje
- Klíčová slova
- Extraction, Infrared spectrophotometry, Miscanthus x giganteus, Petroleum products, Phytoremediation, Thermal analysis,
- Publikační typ
- časopisecké články MeSH
Miscanthus x giganteus phytoremediation of soil contaminated with petroleum was assessed in this study. A method of soil sample preparation for determining the total content of petroleum products by infrared spectrophotometry has been developed. It is a one-stage extraction method with minimal use of carbon tetrachloride as an extractant. This soil sample preparation method was environmentally friendly and cost-effective, as it required a significantly lower amount of extractant (15-30 ml of tetrachloromethane) compared to the commonly used threefold extraction method, which uses up to 150 ml of extractant. The extraction degree of petroleum products (PP) was determined to be from 81.78 % to 94.22 % after two days of extraction using the additive method of determining PP. It was observed that the presence of different fertilizer additives in the soil samples led to a reduction in the determined PP content in the following series: "without fertilizer" - "Biochar" additive - "Biohumus" additive. These results were compared with reference samples that did not involve the use of Miscanthus x giganteus. Furthermore, the main thermolysis stages of petroleum products sorbed by the soil matrix and the thermal behavior of an artificial soil sample spiked with PP were examined. Detailed interpretation of thermograms of laboratory soil samples was conducted at various phytoremediation stages.
Zobrazit více v PubMed
Rodríguez-Rodríguez D., Martínez-Vega J. Springer International Publishing; 2022. Human Impact on the Biosphere: A Contemporary Ecocide: Effectiveness of Protected Areas in Conserving Biodiversity; pp. 882–889. DOI
Dongre R.S. Chromium & lead as soil pollutants: insights on toxicity profiles and their remediation. Journal of Advanced Biotechnology and Bioengineering. 2021;9:1–16. doi: 10.12970/2311-1755.2021.09.01. DOI
Chukwuka K.S., Alimba C.G., Ataguba G.A., Jimoh W.A. Elsevier Inc.; 2018. The Impacts of Petroleum Production on Terrestrial Fauna and Flora in the Oil-Producing Region of Nigeria; pp. 125–142. DOI
Pidlisnyuk V., Herts A., Khomenchuk V., Mamirova A., Kononchuk O., Ustak S. Dynamic of morphological and physiological parameters and variation of soil characteristics during miscanthus × giganteus cultivation in the diesel-contaminated land. Agronomy. 2021;11:798. doi: 10.3390/agronomy11040798. DOI
Suhail K., Souki A., Liné C., Louvel B., Waterlot C., Douay F., Pourrut B. Miscanthus x giganteus culture on soils highly contaminated by metals: modelling leaf decomposition impact on metal mobility and bioavailability in the soil–plant system. Ecotoxicol. Environ. Saf. 2020;199(10) doi: 10.1016/j.ecoenv.2020.110654. PubMed DOI
Nebeska D., Trogl J., Sevců A., Spanek R., Markova K., Davis L., Burdova H., Pidlisnyuk V. Miscanthus x giganteus role in phytodegradation and changes in bacterial community of soil contaminated by petroleum industry. Ecotoxicol. Environ. Saf. 2021;224(9) doi: 10.1016/j.ecoenv.2021.112630. PubMed DOI
Lutts S., Zhou M.X., Flores-Bavestrello A., Hainaut P., Dailly H., Debouche G., Foucart G. Season-dependent physiological behavior of Miscanthus x giganteus growing on heavy-metal contaminated areas in relation to soil properties. Heliyon. 2024;10(15) doi: 10.1016/j.heliyon.2024.e25943. PubMed DOI PMC
Guo H., Yao J., Cai M., Qian Y., Guo Y., Richnow H.H., Blake R.E., Doni S., Ceccanti B. Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere. 2012;87:1273–1280. doi: 10.1016/j.chemosphere.2012.01.034. PubMed DOI
Margesin R., Płaza G.A., Kasenbacher S. Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere. 2011;82:1583–1588. doi: 10.1016/j.chemosphere.2010.11.056. PubMed DOI
Ali N., Dashti N., Khanafer M., Al-Awadhi H., Radwan S. Bioremediation of soils saturated with spilled crude oil. Sci. Rep. 2020;10(9):1116. doi: 10.1038/s41598-019-57224-x. PubMed DOI PMC
Fester T., Giebler J., Wick L.Y., Schlosser D., Kästner M. Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr. Opin. Biotechnol. 2014;27:168–175. doi: 10.1016/j.copbio.2014.01.017. PubMed DOI
Ansari A.A., Gill S.S., Gill R., Lanza G.R., Newman L., editors. vol. 2. Springer International Publishing; 2016. p. 366. (Phytoremediation: Management of Environmental Contaminants). DOI
Tran K.-Q., Werle S., Trinh T.T., Magdziarz A., Sobek S., Pogrzeba M. Fuel characterization and thermal degradation kinetics of biomass from phytoremediation plants. Biomass Bioenergy. 2020;134(7) doi: 10.1016/j.biombioe.2020.105469. DOI
Romantschuk L., Matviichuk N., Mozharivska I., Matviichuk B., Ustymenko V., Tryboi O. Phytoremediation of soils by cultivation miscanthus x giganteus L. And phalaris arundinacea L. Ecological Engineering & Environmental Technology. 2024;25:137–147. doi: 10.12912/27197050/186902. DOI
Pidlisnyuk V., Erickson L., Stefanovska T., Popelka J., Hettiarachchi G., Davis L., Trögl J. Potential phytomanagement of military polluted sites and biomass production using biofuel crop Miscanthus x giganteus. Environ. Pollut. 2019;249:330–337. doi: 10.1016/j.envpol.2019.03.018. PubMed DOI
Huminilovych R., Stadnik V., Sozanskyi M., Pidlisnyuk V., Ivaniuk A. International Conference of Young Professionals «GeoTerrace-2023». European Association of Geoscientists and Engineers EAGE; 2023. Monitoring of soils contaminated by military activities during phytoremediation using miscanthus X giganteus. DOI
Pidlisnyuk V., Stefanovska T., Lewis E., Erickson L., Davis L. Miscanthus as a productive biofuel crop for phytoremediation. Crit. Rev. Plant Sci. 2014;32:1–16. doi: 10.1080/07352689.2014.847616. DOI
Nurzhanova A., Pidlisnyuk V., Abit K., Nurzhanov C., Kenessov B., Stefanovska T., Erickson L. Comparative assessment of using Miscanthus x giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites. Environ. Sci. Pollut. Res. 2019;26:13320–13333. doi: 10.1007/s11356-019-04707-z. PubMed DOI
Esterhuizen M., Pflugmacher S. Springer International Publishing; 2023. The “Green Liver” Concept: Green Liver Systems as Low-Impact Systems for Bioremediation Using Aquatic Macrophytes; pp. 193–214. DOI
Heldt H.W., Piechulla B. fifth ed. Elsevier Inc.; 2021. Plant Biochemistry; p. 609. DOI
Huang S., Dai C., Zhou Y., Peng H., Yi K., Qin P., Luo S., Zhang X. Comparisons of three plant species in accumulating polycyclic aromatic hydrocarbons (PAHs) from the atmosphere: a review. Environ. Sci. Pollut. Control Ser. 2018;25:16548–16566. doi: 10.1007/s11356-018-2167-z. PubMed DOI
Trapp S. Modeling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag. Sci. 2000;56:767–778. doi: 10.1002/1526-4998(200009)56:9<767::AID-PS198>3.0.CO;2-Q. DOI
Nazim T., Lusina A., Cegłowski M. Recent developments in the detection of organic contaminants using molecularly imprinted polymers combined with various analytical techniques. Polymers. 2023;15(19):386. doi: 10.3390/polym15193868. PubMed DOI PMC
Fauvelle V., Castro-Jiménez J., Schmidt N., Carlez B., Panagiotopoulos C., Sempéré R. One-single extraction procedure for the simultaneous determination of a wide range of polar and nonpolar organic contaminants in seawater. Front. Mar. Sci. 2018;5 doi: 10.3389/fmars.2018.00295. DOI
J. Szejtli, E. Fenyves, Extraction of organic pollutants from contaminated soils, EUROPEAN PATENT SPECIFICATION EP 0613735 B1, https://patents.google.com/patent/EP0613735B1/en10.1016/S1002-0160(13)60038-7. DOI
Wu Guo-Zhong, Coulon F., Yang Yue-Wei, Li Hong, Sui Hong. Combining solvent extraction and bioremediation for removing weathered petroleum from contaminated soil. Pedosphere. 2013;23(4):455–463. doi: 10.1016/S1002-0160(13)60038-7. DOI
Medynska-Juraszek A., Rivier P.-A., Rasse D., Joner E.J. Biochar affects heavy metal uptake in plants through interactions in the rhizosphere. Appl. Sci. 2020;10:5105. doi: 10.3390/app10155105. 12. DOI
Horodnii M.M., Lisoval A.P., Bykin A.V. Ahrokhimichnyi analiz; Kyiv: Aristei. 2005:476. https://e.eruditor.link/file/1764364/ ISBN: 9668458400.
Pansu M., Gautheyrou J. Springer-Verlag; 2006. Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods; p. 992. DOI
http://www.cromlab.es/Articulos/Metodos/EPA/400/418_1.PDF.
Dean J., Xiong G. Extraction of organic pollutants from environmental matrices: selection of extraction technique. TrAC, Trends Anal. Chem. 2000;19(9):553–564. doi: 10.1016/S0165-9936(00)00038-8. DOI
Osman R., Saim N. Selective extraction of organic contaminants from soil using pressurised liquid extraction. J. Chem. 2013:8. doi: 10.1155/2013/357252. Article ID 357252. DOI
Ren H.-Y., Wei Z.-J., Wang Y., Deng Y.-P., Li M.-Y., Wang B. Effects of biochar properties on the bioremediation of the petroleum-contaminated soil from a shale-gas field. Environ. Sci. Pollut. Res. 2020;27:36427–36438. doi: 10.1007/s11356-020-09715-y. PubMed DOI
Cai L., Zhang Y., Zhou Y., Zhang X., Ji L., Song W., Zhang H., Liu J. Effective adsorption of diesel oil by crab-shell-derived biochar nanomaterials. Materials. 2019;12:236. doi: 10.3390/ma12020236. PubMed DOI PMC
Dai Y., Zhang N., Xing C., Cui Q., Sun Q. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere. 2019;223:12–27. doi: 10.1016/j.chemosphere.2019.01.161. PubMed DOI
Gurav R., Bhatia S.K., Choi T.-R., Choi Y.-K., Kima H.J., Song H.-S., Lee Park S., Lee H.S., Lee S.M., Choi K.-Y., Yang Y.-H. Adsorptive removal of crude petroleum oil from water using floating pinewood biochar decorated with coconut oil-derived fatty acids. Sci. Total Environ. 2021;781 doi: 10.1016/j.scitotenv.2021.146636. PubMed DOI
Wei Z., Wei Y., Liu Y., Niu S., Xu Y., Park J.-H., Wang J.J. Biochar-based materials as remediation strategy in petroleum hydrocarbon-contaminated soil and water: performances, mechanisms, and environmental impact. J. Environ. Sci. 2024;138:350–372. doi: 10.1016/j.jes.2023.04.008. PubMed DOI
Giniyatullin K.G., Shinkarev A.A., Shinkarev A.A., Krinari G.A., Lygina T.Z., Gubaidullina A.M., Suchkova G.G. Binding of organic matter into an oxidation-resistant form during the interaction of clay minerals with plant residues. Eurasian Soil Sci. 2010;43:1159–1173. doi: 10.1134/S1064229310100091. DOI
Lagaly G., Ogawa M., Dékány I. Clay mineral organic interactions. Dev. Clay Sci. 2006;1:309–377. doi: 10.1016/S1572-4352(05)01010-X. DOI
Bergaya F. second ed. Elsevier Inc.; 2013. Handbook of Clay Science; p. 814.https://shop.elsevier.com/books/handbook-of-clay-science/bergaya/978-0-08-099364-5 ISBN: 9780080993713.
Yaremchuk Ya, Vovniuk S., Hryniv S., Tarik M., Meng F., Bilyk L., Kochubei V. Umovy utvorennia hlynystykh mineraliv verkhnoneoproterozoisko-nyzhnokembriiskoi kamianoi soli formatsii Solianyi kriazh. Pakystan. Mineralohichnyi zbirnyk. 2017;67:72–90. https://journals.lnu.lviv.ua/index.php/mineralogy/article/view/272
Shehunova S., Yaremchuk Ya, Shevchenko O., Kochubei V. Osoblyvosti asotsiatsii hlynystykh mineraliv solenosnykh formatsii Dniprovsko-Donetskoi zapadyny. Mineralohichnyi zbirnyk. 2010;60:92–112. http://publications.lnu.edu.ua/collections/index.php/mineralogy/article/view/1058/1048
Frangipane G., Pistolato M., Molinaroli E., Guerzoni S., Tagliapietra D. Comparison of loss on ignition and thermal analysis stepwise methods for determination of sedimentary organic matter. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009;19(1):24–33. doi: 10.1002/aqc.970. DOI
Manning D.A.C., Lopez-Capel E., Barker S. Seeing soil carbon: use of thermal analysis in the characterization of soil C reservoirs of differing stability. Mineral. Mag. 2005;69(4):425–435. doi: 10.1180/0026461056940260. DOI
Lopez-Capel E., Sohi S.P., Gaunt J.L., Manning D.A.C. Use of thermogravimetry–differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci. Soc. Am. J. 2005;69(1):136–140. doi: 10.2136/sssaj2005.0136a. DOI
Fernández J.M., Plante A.F., Leifeld J., Rasmussen C. Methodological considerations for using thermal analysis in the characterization of soil organic matter. Journal of Thermal Analysis and Calorimetry. 2011;104(1):389–398. doi: 10.1007/s10973-010-1145-6. DOI
Leinweber P., Schulten H.-R. Differential thermal analysis, thermogravimetry and in-source pyrolysis-mass spectrometry studies on the formation of soil organic matter. Thermochim. Acta. 1992;200:151–167. doi: 10.1016/0040-6031(92)85112-9. DOI