Sample preparation method for IR analysis of petroleum-contaminated soil: An innovative technology for ecological remediation using Miscanthus x giganteus

. 2024 Dec 15 ; 10 (23) : e40713. [epub] 20241126

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39669163
Odkazy

PubMed 39669163
PubMed Central PMC11635668
DOI 10.1016/j.heliyon.2024.e40713
PII: S2405-8440(24)16744-8
Knihovny.cz E-zdroje

Miscanthus x giganteus phytoremediation of soil contaminated with petroleum was assessed in this study. A method of soil sample preparation for determining the total content of petroleum products by infrared spectrophotometry has been developed. It is a one-stage extraction method with minimal use of carbon tetrachloride as an extractant. This soil sample preparation method was environmentally friendly and cost-effective, as it required a significantly lower amount of extractant (15-30 ml of tetrachloromethane) compared to the commonly used threefold extraction method, which uses up to 150 ml of extractant. The extraction degree of petroleum products (PP) was determined to be from 81.78 % to 94.22 % after two days of extraction using the additive method of determining PP. It was observed that the presence of different fertilizer additives in the soil samples led to a reduction in the determined PP content in the following series: "without fertilizer" - "Biochar" additive - "Biohumus" additive. These results were compared with reference samples that did not involve the use of Miscanthus x giganteus. Furthermore, the main thermolysis stages of petroleum products sorbed by the soil matrix and the thermal behavior of an artificial soil sample spiked with PP were examined. Detailed interpretation of thermograms of laboratory soil samples was conducted at various phytoremediation stages.

Zobrazit více v PubMed

Rodríguez-Rodríguez D., Martínez-Vega J. Springer International Publishing; 2022. Human Impact on the Biosphere: A Contemporary Ecocide: Effectiveness of Protected Areas in Conserving Biodiversity; pp. 882–889. DOI

Dongre R.S. Chromium & lead as soil pollutants: insights on toxicity profiles and their remediation. Journal of Advanced Biotechnology and Bioengineering. 2021;9:1–16. doi: 10.12970/2311-1755.2021.09.01. DOI

Chukwuka K.S., Alimba C.G., Ataguba G.A., Jimoh W.A. Elsevier Inc.; 2018. The Impacts of Petroleum Production on Terrestrial Fauna and Flora in the Oil-Producing Region of Nigeria; pp. 125–142. DOI

Pidlisnyuk V., Herts A., Khomenchuk V., Mamirova A., Kononchuk O., Ustak S. Dynamic of morphological and physiological parameters and variation of soil characteristics during miscanthus × giganteus cultivation in the diesel-contaminated land. Agronomy. 2021;11:798. doi: 10.3390/agronomy11040798. DOI

Suhail K., Souki A., Liné C., Louvel B., Waterlot C., Douay F., Pourrut B. Miscanthus x giganteus culture on soils highly contaminated by metals: modelling leaf decomposition impact on metal mobility and bioavailability in the soil–plant system. Ecotoxicol. Environ. Saf. 2020;199(10) doi: 10.1016/j.ecoenv.2020.110654. PubMed DOI

Nebeska D., Trogl J., Sevců A., Spanek R., Markova K., Davis L., Burdova H., Pidlisnyuk V. Miscanthus x giganteus role in phytodegradation and changes in bacterial community of soil contaminated by petroleum industry. Ecotoxicol. Environ. Saf. 2021;224(9) doi: 10.1016/j.ecoenv.2021.112630. PubMed DOI

Lutts S., Zhou M.X., Flores-Bavestrello A., Hainaut P., Dailly H., Debouche G., Foucart G. Season-dependent physiological behavior of Miscanthus x giganteus growing on heavy-metal contaminated areas in relation to soil properties. Heliyon. 2024;10(15) doi: 10.1016/j.heliyon.2024.e25943. PubMed DOI PMC

Guo H., Yao J., Cai M., Qian Y., Guo Y., Richnow H.H., Blake R.E., Doni S., Ceccanti B. Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere. 2012;87:1273–1280. doi: 10.1016/j.chemosphere.2012.01.034. PubMed DOI

Margesin R., Płaza G.A., Kasenbacher S. Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere. 2011;82:1583–1588. doi: 10.1016/j.chemosphere.2010.11.056. PubMed DOI

Ali N., Dashti N., Khanafer M., Al-Awadhi H., Radwan S. Bioremediation of soils saturated with spilled crude oil. Sci. Rep. 2020;10(9):1116. doi: 10.1038/s41598-019-57224-x. PubMed DOI PMC

Fester T., Giebler J., Wick L.Y., Schlosser D., Kästner M. Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr. Opin. Biotechnol. 2014;27:168–175. doi: 10.1016/j.copbio.2014.01.017. PubMed DOI

Ansari A.A., Gill S.S., Gill R., Lanza G.R., Newman L., editors. vol. 2. Springer International Publishing; 2016. p. 366. (Phytoremediation: Management of Environmental Contaminants). DOI

Tran K.-Q., Werle S., Trinh T.T., Magdziarz A., Sobek S., Pogrzeba M. Fuel characterization and thermal degradation kinetics of biomass from phytoremediation plants. Biomass Bioenergy. 2020;134(7) doi: 10.1016/j.biombioe.2020.105469. DOI

Romantschuk L., Matviichuk N., Mozharivska I., Matviichuk B., Ustymenko V., Tryboi O. Phytoremediation of soils by cultivation miscanthus x giganteus L. And phalaris arundinacea L. Ecological Engineering & Environmental Technology. 2024;25:137–147. doi: 10.12912/27197050/186902. DOI

Pidlisnyuk V., Erickson L., Stefanovska T., Popelka J., Hettiarachchi G., Davis L., Trögl J. Potential phytomanagement of military polluted sites and biomass production using biofuel crop Miscanthus x giganteus. Environ. Pollut. 2019;249:330–337. doi: 10.1016/j.envpol.2019.03.018. PubMed DOI

Huminilovych R., Stadnik V., Sozanskyi M., Pidlisnyuk V., Ivaniuk A. International Conference of Young Professionals «GeoTerrace-2023». European Association of Geoscientists and Engineers EAGE; 2023. Monitoring of soils contaminated by military activities during phytoremediation using miscanthus X giganteus. DOI

Pidlisnyuk V., Stefanovska T., Lewis E., Erickson L., Davis L. Miscanthus as a productive biofuel crop for phytoremediation. Crit. Rev. Plant Sci. 2014;32:1–16. doi: 10.1080/07352689.2014.847616. DOI

Nurzhanova A., Pidlisnyuk V., Abit K., Nurzhanov C., Kenessov B., Stefanovska T., Erickson L. Comparative assessment of using Miscanthus x giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites. Environ. Sci. Pollut. Res. 2019;26:13320–13333. doi: 10.1007/s11356-019-04707-z. PubMed DOI

Esterhuizen M., Pflugmacher S. Springer International Publishing; 2023. The “Green Liver” Concept: Green Liver Systems as Low-Impact Systems for Bioremediation Using Aquatic Macrophytes; pp. 193–214. DOI

Heldt H.W., Piechulla B. fifth ed. Elsevier Inc.; 2021. Plant Biochemistry; p. 609. DOI

Huang S., Dai C., Zhou Y., Peng H., Yi K., Qin P., Luo S., Zhang X. Comparisons of three plant species in accumulating polycyclic aromatic hydrocarbons (PAHs) from the atmosphere: a review. Environ. Sci. Pollut. Control Ser. 2018;25:16548–16566. doi: 10.1007/s11356-018-2167-z. PubMed DOI

Trapp S. Modeling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag. Sci. 2000;56:767–778. doi: 10.1002/1526-4998(200009)56:9<767::AID-PS198>3.0.CO;2-Q. DOI

Nazim T., Lusina A., Cegłowski M. Recent developments in the detection of organic contaminants using molecularly imprinted polymers combined with various analytical techniques. Polymers. 2023;15(19):386. doi: 10.3390/polym15193868. PubMed DOI PMC

Fauvelle V., Castro-Jiménez J., Schmidt N., Carlez B., Panagiotopoulos C., Sempéré R. One-single extraction procedure for the simultaneous determination of a wide range of polar and nonpolar organic contaminants in seawater. Front. Mar. Sci. 2018;5 doi: 10.3389/fmars.2018.00295. DOI

J. Szejtli, E. Fenyves, Extraction of organic pollutants from contaminated soils, EUROPEAN PATENT SPECIFICATION EP 0613735 B1, https://patents.google.com/patent/EP0613735B1/en10.1016/S1002-0160(13)60038-7. DOI

Wu Guo-Zhong, Coulon F., Yang Yue-Wei, Li Hong, Sui Hong. Combining solvent extraction and bioremediation for removing weathered petroleum from contaminated soil. Pedosphere. 2013;23(4):455–463. doi: 10.1016/S1002-0160(13)60038-7. DOI

Medynska-Juraszek A., Rivier P.-A., Rasse D., Joner E.J. Biochar affects heavy metal uptake in plants through interactions in the rhizosphere. Appl. Sci. 2020;10:5105. doi: 10.3390/app10155105. 12. DOI

Horodnii M.M., Lisoval A.P., Bykin A.V. Ahrokhimichnyi analiz; Kyiv: Aristei. 2005:476. https://e.eruditor.link/file/1764364/ ISBN: 9668458400.

Pansu M., Gautheyrou J. Springer-Verlag; 2006. Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods; p. 992. DOI

http://www.cromlab.es/Articulos/Metodos/EPA/400/418_1.PDF.

Dean J., Xiong G. Extraction of organic pollutants from environmental matrices: selection of extraction technique. TrAC, Trends Anal. Chem. 2000;19(9):553–564. doi: 10.1016/S0165-9936(00)00038-8. DOI

Osman R., Saim N. Selective extraction of organic contaminants from soil using pressurised liquid extraction. J. Chem. 2013:8. doi: 10.1155/2013/357252. Article ID 357252. DOI

Ren H.-Y., Wei Z.-J., Wang Y., Deng Y.-P., Li M.-Y., Wang B. Effects of biochar properties on the bioremediation of the petroleum-contaminated soil from a shale-gas field. Environ. Sci. Pollut. Res. 2020;27:36427–36438. doi: 10.1007/s11356-020-09715-y. PubMed DOI

Cai L., Zhang Y., Zhou Y., Zhang X., Ji L., Song W., Zhang H., Liu J. Effective adsorption of diesel oil by crab-shell-derived biochar nanomaterials. Materials. 2019;12:236. doi: 10.3390/ma12020236. PubMed DOI PMC

Dai Y., Zhang N., Xing C., Cui Q., Sun Q. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere. 2019;223:12–27. doi: 10.1016/j.chemosphere.2019.01.161. PubMed DOI

Gurav R., Bhatia S.K., Choi T.-R., Choi Y.-K., Kima H.J., Song H.-S., Lee Park S., Lee H.S., Lee S.M., Choi K.-Y., Yang Y.-H. Adsorptive removal of crude petroleum oil from water using floating pinewood biochar decorated with coconut oil-derived fatty acids. Sci. Total Environ. 2021;781 doi: 10.1016/j.scitotenv.2021.146636. PubMed DOI

Wei Z., Wei Y., Liu Y., Niu S., Xu Y., Park J.-H., Wang J.J. Biochar-based materials as remediation strategy in petroleum hydrocarbon-contaminated soil and water: performances, mechanisms, and environmental impact. J. Environ. Sci. 2024;138:350–372. doi: 10.1016/j.jes.2023.04.008. PubMed DOI

Giniyatullin K.G., Shinkarev A.A., Shinkarev A.A., Krinari G.A., Lygina T.Z., Gubaidullina A.M., Suchkova G.G. Binding of organic matter into an oxidation-resistant form during the interaction of clay minerals with plant residues. Eurasian Soil Sci. 2010;43:1159–1173. doi: 10.1134/S1064229310100091. DOI

Lagaly G., Ogawa M., Dékány I. Clay mineral organic interactions. Dev. Clay Sci. 2006;1:309–377. doi: 10.1016/S1572-4352(05)01010-X. DOI

Bergaya F. second ed. Elsevier Inc.; 2013. Handbook of Clay Science; p. 814.https://shop.elsevier.com/books/handbook-of-clay-science/bergaya/978-0-08-099364-5 ISBN: 9780080993713.

Yaremchuk Ya, Vovniuk S., Hryniv S., Tarik M., Meng F., Bilyk L., Kochubei V. Umovy utvorennia hlynystykh mineraliv verkhnoneoproterozoisko-nyzhnokembriiskoi kamianoi soli formatsii Solianyi kriazh. Pakystan. Mineralohichnyi zbirnyk. 2017;67:72–90. https://journals.lnu.lviv.ua/index.php/mineralogy/article/view/272

Shehunova S., Yaremchuk Ya, Shevchenko O., Kochubei V. Osoblyvosti asotsiatsii hlynystykh mineraliv solenosnykh formatsii Dniprovsko-Donetskoi zapadyny. Mineralohichnyi zbirnyk. 2010;60:92–112. http://publications.lnu.edu.ua/collections/index.php/mineralogy/article/view/1058/1048

Frangipane G., Pistolato M., Molinaroli E., Guerzoni S., Tagliapietra D. Comparison of loss on ignition and thermal analysis stepwise methods for determination of sedimentary organic matter. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009;19(1):24–33. doi: 10.1002/aqc.970. DOI

Manning D.A.C., Lopez-Capel E., Barker S. Seeing soil carbon: use of thermal analysis in the characterization of soil C reservoirs of differing stability. Mineral. Mag. 2005;69(4):425–435. doi: 10.1180/0026461056940260. DOI

Lopez-Capel E., Sohi S.P., Gaunt J.L., Manning D.A.C. Use of thermogravimetry–differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci. Soc. Am. J. 2005;69(1):136–140. doi: 10.2136/sssaj2005.0136a. DOI

Fernández J.M., Plante A.F., Leifeld J., Rasmussen C. Methodological considerations for using thermal analysis in the characterization of soil organic matter. Journal of Thermal Analysis and Calorimetry. 2011;104(1):389–398. doi: 10.1007/s10973-010-1145-6. DOI

Leinweber P., Schulten H.-R. Differential thermal analysis, thermogravimetry and in-source pyrolysis-mass spectrometry studies on the formation of soil organic matter. Thermochim. Acta. 1992;200:151–167. doi: 10.1016/0040-6031(92)85112-9. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...