Time-resolved quantitative inter-eye comparison of cardiac cycle-induced blood volume changes in the human retina

. 2018 Dec 01 ; 9 (12) : 6237-6254. [epub] 20181114

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31065425

We describe a low-cost, easy to use binocular instrument to acquire retinal video sequences of both eyes simultaneously. After image registration, cardiac cycle-induced pulsatile light attenuation changes can be measured quantitatively with high spatial and temporal resolution. Parameters such as amplitude, pulse form, and time shift between light attenuation changes can be calculated and compared between eye sides. Deviation from inter-eye symmetry can be not only an early sign of beginning eye diseases such as glaucoma but also a sign of pathological changes in the carotid arteries; hence, this method can improve the early detection of pathological changes. Important features compared to existing monocular instruments are a narrow band light source with the wavelength close to the peak of the blood extinction, and a proportional relationship of image intensity and light intensity, which are the main requirements for quantitative evaluation.

Zobrazit více v PubMed

Beintema D. K., Mook G. A., Worst J. G. F., “Recording of Arm-to-Retina Circulation-Time by Means of Fundus Reflectometry,” Ophthalmologica 148(3), 163–168 (1964).10.1159/000304680 PubMed DOI

Matsuo H., Kogure F., Takahasi K., “Studies of the photoelectric plethysmogram of the eye,” Procceedings XX Int. Congr. Ophthalmol. 1966 178–182 (1966).

Lovasik J. V., Gagnon M., Kergoat H., “A novel noninvasive videographic method for quantifying changes in the chromaticity of the optic nerve head with changes in the intraocular pressure, pulsatile choroidal blood flow and visual neural function in humans,” Surv. Ophthalmol. 38(Suppl), S35–S51 (1994).10.1016/0039-6257(94)90045-0 PubMed DOI

Lawrence C., Schlegel W. A., “Ophthalmic pulse studies. I. Influence of intraocular pressure,” Invest. Ophthalmol. 5(5), 515–525 (1966). PubMed

Best M., “Carotid hemodynamics and the ocular pulse in carotid stenosis,” Neurology 21(10), 982–990 (1971).10.1212/WNL.21.10.982 PubMed DOI

Tornow R. P., Kopp O., Schultheiss B., “Time Course of Fundus Reflection Changes According to the Cardiac Cycle,” Invest. Ophthalmol. Vis. Sci. 44, 1296 (2003).

Tornow R. P., Kopp O., “Time Course and Frequency Spectrum (0 to 12,5 Hz) of Fundus Reflection,” Invest. Ophthalmol. Vis. Sci. 47, 3753 (2006).

Morgan W. H., Lind C. R. P., Kain S., Fatehee N., Bala A., Yu D. Y., “Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure,” Invest. Ophthalmol. Vis. Sci. 53(8), 4676–4681 (2012).10.1167/iovs.12-9837 PubMed DOI

Knecht P. B., Menghini M., Bachmann L. M., Baumgartner R. W., Landau K., “The ocular pulse amplitude as a noninvasive parameter for carotid artery stenosis screening: A test accuracy study,” Ophthalmology 119(6), 1244–1249 (2012).10.1016/j.ophtha.2011.12.040 PubMed DOI

Garhöfer G., Zawinka C., Resch H., Huemer K. H., Schmetterer L., Dorner G. T., “Response of retinal vessel diameters to flicker stimulation in patients with early open angle glaucoma,” J. Glaucoma 13(4), 340–344 (2004).10.1097/00061198-200408000-00013 PubMed DOI

Garhofer G., Bek T., Boehm A. G., Gherghel D., Grunwald J., Jeppesen P., Kergoat H., Kotliar K., Lanzl I., Lovasik J. V., Nagel E., Vilser W., Orgul S., Schmetterer L., “Use of the retinal vessel analyzer in ocular blood flow research,” Acta Ophthalmol. 88(7), 717–722 (2010).10.1111/j.1755-3768.2009.01587.x PubMed DOI

Morgan W. H., Hazelton M. L., Betz-Stablein B. D., Yu D. Y., Lind C. R., Ravichandran V., House P. H., “Photoplethysmographic measurement of various retinal vascular pulsation parameters and measurement of the venous phase delay,” Invest. Ophthalmol. Vis. Sci. 55(9), 5998–6006 (2014).10.1167/iovs.14-15104 PubMed DOI

Morgan W. H., Abdul-Rahman A., Yu D.-Y., Hazelton M. L., Betz-Stablein B., Lind C. R. P., “Objective Detection of Retinal Vessel Pulsation,” PLoS One 10(2), e0116475 (2015).10.1371/journal.pone.0116475 PubMed DOI PMC

Morgan W. H., Hazelton M. L., Yu D.-Y., “Retinal venous pulsation: Expanding our understanding and use of this enigmatic phenomenon,” Prog. Retin. Eye Res. 55, 82–107 (2016).10.1016/j.preteyeres.2016.06.003 PubMed DOI

Betz-Stablein B., Hazelton M. L., Morgan W. H., “Modelling retinal pulsatile blood flow from video data,” Stat. Methods Med. Res. 27(5), 1575–1584 (2018).10.1177/0962280216665504 PubMed DOI

Crittin M., Riva C. E., “Functional imaging of the human papilla and peripapillary region based on flicker-induced reflectance changes,” Neurosci. Lett. 360(3), 141–144 (2004).10.1016/j.neulet.2004.02.063 PubMed DOI

Williams A. L., Gatla S., Leiby B. E., Fahmy I., Biswas A., de Barros D. M., Ramakrishnan R., Bhardwaj S., Wright C., Dubey S., Lynch J. F., Bayer A., Khandelwal R., Ichhpujani P., Gheith M., Siam G., Feldman R. M., Henderer J. D., Spaeth G. L., “The value of intraocular pressure asymmetry in diagnosing glaucoma,” J. Glaucoma 22(3), 215–218 (2013).10.1097/IJG.0b013e318237bfb8 PubMed DOI

Sullivan-Mee M., Ruegg C. C., Pensyl D., Halverson K., Qualls C., “Diagnostic precision of retinal nerve fiber layer and macular thickness asymmetry parameters for identifying early primary open-angle glaucoma,” Am. J. Ophthalmol. 156(3), 567–577.e1 (2013).10.1016/j.ajo.2013.04.037 PubMed DOI

De Leon J. M. S., Cheung C. Y., Wong T.-Y., Li X., Hamzah H., Aung T., Su D. H., “Retinal vascular caliber between eyes with asymmetric glaucoma,” Graefes Arch. Clin. Exp. Ophthalmol. 253(4), 583–589 (2015).10.1007/s00417-014-2895-9 PubMed DOI

Fansi A. A. K., Boisjoly H., Chagnon M., Harasymowycz P. J., “Comparison of different methods of inter-eye asymmetry of rim area and disc area analysis,” Eye (Lond.) 25(12), 1590–1597 (2011).10.1038/eye.2011.217 PubMed DOI PMC

Trokel S., “Photometric Study of Ocular Blood Flow in Man,” Arch. Ophthalmol. 71(4), 528–530 (1964).10.1001/archopht.1964.00970010544018 PubMed DOI

Tornow R. P., Kolář R., Odstrčilík J., “Non-mydriatic video ophthalmoscope to measure fast temporal changes of the human retina,” in Progress in Biomedical Optics and Imaging - Proc. SPIE 9540, 954006 (2015).10.1117/12.2181183 DOI

Bosschaart N., Edelman G. J., Aalders M. C. G., van Leeuwen T. G., Faber D. J., “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).10.1007/s10103-013-1446-7 PubMed DOI PMC

Delori F. C., Pflibsen K. P., “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28(6), 1061–1077 (1989).10.1364/AO.28.001061 PubMed DOI

Jiang J., Liu D., Gu J., Susstrunk S., “What is the space of spectral sensitivity functions for digital color cameras?” in 2013 IEEE Workshop on Applications of Computer Vision (WACV) (IEEE, 2013), pp. 168–179.10.1109/WACV.2013.6475015 DOI

Sliney D., Aron-Rosa D., DeLori F., Fankhauser F., Landry R., Mainster M., Marshall J., Rassow B., Stuck B., Trokel S., West T. M., Wolffe M., “Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: statement from a task group of the International Commission on Non-Ionizing Radiation Protection (ICNIRP),” Appl. Opt. 44(11), 2162–2176 (2005).10.1364/AO.44.002162 PubMed DOI

Tornow R. P., Milczarek A., Odstrcilik J., Kolar R., “Binocular video ophthalmoscope for simultaneous recording of sequences of the human retina to compare dynamic parameters,” in Progress in Biomedical Optics and Imaging - Proceedings of SPIE (2017), Vol. 10413.

Kolar R., Tornow R. P., Odstrcilik J., Liberdova I., “Registration of retinal sequences from new video-ophthalmoscopic camera,” Biomed. Eng. Online 15(1), 57 (2016).10.1186/s12938-016-0191-0 PubMed DOI PMC

Lucas B. D., Kanade T., “An Iterative Image Registration Technique with an Application to Stereo Vision.,” in Proceedings of the 7th International Joint Conference on Artificial Intelligence (1981), pp. 674–679.

R. Kolar, R. P. Tornow, and J. Odstrcilik, “Retinal image registration for eye movement estimation,” in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2015), Vol. 2015–Novem, pp. 5247–5250. PubMed

Lauterwald F., Neumann C. P., Lenz R., Jünemann A. G., Mardin C. Y., Meyer-Wegener K., Horn F. K., “The Erlangen Glaucoma Registry: a Scientific Database for Longitudinal Analysis of Glaucoma,” Tech. reports / Dep. Inform. (ISSN ) CS-2011, 2, 1–9 (2012).

Horn F. K., Mardin C. Y., Laemmer R., Baleanu D., Juenemann A. M., Kruse F. E., Tornow R. P., “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009).10.1167/iovs.08-2405 PubMed DOI

Bendschneider D., Tornow R. P., Horn F. K., Laemmer R., Roessler C. W., Juenemann A. G., Kruse F. E., Mardin C. Y., Bendschneider D., Tornow R. P., Horn F. K., Laemmer R., Roessler C. W., Juenemann A. G., Kruse F. E., Mardin C. Y., “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2010).10.1097/IJG.0b013e3181c4b0c7 PubMed DOI

Kamshilin A. A., Nippolainen E., Sidorov I. S., Vasilev P. V., Erofeev N. P., Podolian N. P., Romashko R. V., “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(1), 10494 (2015).10.1038/srep10494 PubMed DOI PMC

Mase T., Ishibazawa A., Nagaoka T., Yokota H., Yoshida A., “Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT504 (2016).10.1167/iovs.15-18877 PubMed DOI

Lommatzsch C., Rothaus K., Koch J. M., Heinz C., Grisanti S., “Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads,” Int. J. Ophthalmol. 11(5), 835–843 (2018). PubMed PMC

Yokoyama Y., Aizawa N., Chiba N., Omodaka K., Nakamura M., Otomo T., Yokokura S., Fuse N., Nakazawa T., “Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk,” Clin. Ophthalmol. 5, 1721–1727 (2011). PubMed PMC

Mursch-Edlmayr A. S., Luft N., Podkowinski D., Ring M., Schmetterer L., Bolz M., “Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study,” Sci. Rep. 8(1), 5343 (2018).10.1038/s41598-018-23149-0 PubMed DOI PMC

Knighton R. W., Baverez C., Bhattacharya A., “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33(9), 2603–2611 (1992). PubMed

Huang X.-R., Knighton R. W., Feuer W. J., Qiao J., “Retinal nerve fiber layer reflectometry must consider directional reflectance,” Biomed. Opt. Express 7(1), 22–33 (2016).10.1364/BOE.7.000022 PubMed DOI PMC

Wartak A., Augustin M., Haindl R., Beer F., Salas M., Laslandes M., Baumann B., Pircher M., Hitzenberger C. K., “Multi-directional optical coherence tomography for retinal imaging,” Biomed. Opt. Express 8(12), 5560–5578 (2017).10.1364/BOE.8.005560 PubMed DOI PMC

An L., Chao J., Johnstone M., Wang R. K., “Noninvasive imaging of pulsatile movements of the optic nerve head in normal human subjects using phase-sensitive spectral domain optical coherence tomography,” Opt. Lett. 38(9), 1512–1514 (2013).10.1364/OL.38.001512 PubMed DOI

Spahr H., Hillmann D., Hain C., Pfäffle C., Sudkamp H., Franke G., Hüttmann G., “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).10.1364/OL.40.004771 PubMed DOI

Schmetterer L., Dallinger S., Findl O., Eichler H. G., Wolzt M., “A comparison between laser interferometric measurement of fundus pulsation and pneumotonometric measurement of pulsatile ocular blood flow. 1. Baseline considerations,” Eye (Lond.) 14(1), 39–45 (2000).10.1038/eye.2000.9 PubMed DOI

Arthur A., Alexander A., Bal S., Sivadasan A., Aaron S., “Ophthalmic masquerades of the atherosclerotic carotids,” Indian J. Ophthalmol. 62(4), 472–476 (2014).10.4103/0301-4738.121183 PubMed DOI PMC

Choromokos E. A., Raymond L. A., Sacks J. G., “Recognition of Carotid Stenosis with Bilateral Simultaneous Retinal Fluorescein Angiography,” Ophthalmology 89(10), 1146–1148 (1982).10.1016/S0161-6420(82)34662-X PubMed DOI

Moret F., Reiff C. M., Lagrèze W. A., Bach M., “Quantitative Analysis of Fundus-Image Sequences Reveals Phase of Spontaneous Venous Pulsations,” Transl. Vis. Sci. Technol. 4(5), 3 (2015).10.1167/tvst.4.5.3 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

No cardiac phase bias for threat-related distance perception under naturalistic conditions in immersive virtual reality

. 2024 Oct ; 11 (10) : 241072. [epub] 20241030

Assessment of retinal vein pulsation through video-ophthalmoscopy and simultaneous biosignals acquisition

. 2023 Jun 01 ; 14 (6) : 2645-2657. [epub] 20230512

Comparative analysis of retinal photoplethysmographic spatial maps and thickness of retinal nerve fiber layer

. 2023 ; 18 (5) : e0284743. [epub] 20230505

A multi-color video-ophthalmoscopes allows to measure the spectral distribution of light absorption of blood in the human retina

. 2023 ; 10 () : 1125154. [epub] 20230316

Heart rate and age modulate retinal pulsatile patterns

. 2022 Jun 14 ; 5 (1) : 582. [epub] 20220614

Photoplethysmographic analysis of retinal videodata based on the Fourier domain approach

. 2021 Dec 01 ; 12 (12) : 7405-7421. [epub] 20211109

Imaging video plethysmography shows reduced signal amplitude in glaucoma patients in the area of the microvascular tissue of the optic nerve head

. 2021 Feb ; 259 (2) : 483-494. [epub] 20200922

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...