No cardiac phase bias for threat-related distance perception under naturalistic conditions in immersive virtual reality
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39479236
PubMed Central
PMC11521594
DOI
10.1098/rsos.241072
PII: rsos241072
Knihovny.cz E-zdroje
- Klíčová slova
- electrocardiogram, emotion, heart, interoception, naturalistic neuroscience, virtual reality,
- Publikační typ
- časopisecké články MeSH
Previous studies have found that threatening stimuli are more readily perceived and more intensely experienced when presented during cardiac systole compared with diastole. Also, threatening stimuli are judged as physically closer than neutral ones. In a pre-registered study, we tested these effects and their interaction using a naturalistic (interactive and three-dimensional) experimental design in immersive virtual reality: we briefly displayed threatening and non-threatening animals (four each) at varying distances (1.5-5.5 m) to a group of young, healthy participants (n = 41) while recording their electrocardiograms (ECGs). Participants then pointed to the location where they had seen the animal (approx. 29 000 trials in total). Our pre-registered analyses indicated that perceived distances to both threatening and non-threatening animals did not differ significantly between cardiac phases-with Bayesian analysis supporting the null hypothesis. There was also no evidence for an association between subjective fear and perceived proximity to threatening animals. These results contrast with previous findings that used verbal or declarative distance measures in less naturalistic experimental conditions. Furthermore, our findings suggest that the cardiac phase-related variation in threat processing may not generalize across different paradigms and may be less relevant in naturalistic scenarios than under more abstract experimental conditions.
1st Faculty of Medicine Charles University Prague Czechia
3rd Faculty of Medicine Charles University Prague Czechia
Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
Faculty of Philosophy Humboldt Universität zu Berlin Berlin School of Mind and Brain Berlin Germany
Faculty of Psychology University of Warsaw Warsaw Poland
Polish Academy of Sciences Institute of Psychology Warsaw Poland
Zobrazit více v PubMed
Cannon W. 1915. Bodily changes in pain, hunger, fear, and rage. New York, NY: D. Appleton & Company.
Hare RD. 1973. Orienting and defensive responses to visual stimuli. Psychophysiology 10, 453–464. (10.1111/j.1469-8986.1973.tb00532.x) PubMed DOI
Mocaiber I, Perakakis P, Pereira MG, Pinheiro WM, Volchan E, de Oliveira L, Vila J. 2011. Stimulus appraisal modulates cardiac reactivity to briefly presented mutilation pictures. Int. J. Psychophysiol. 81, 299–304. (10.1016/j.ijpsycho.2011.07.014) PubMed DOI
Palomba D, Sarlo M, Angrilli A, Mini A, Stegagno L. 2000. Cardiac responses associated with affective processing of unpleasant film stimuli. Int. J. Psychophysiol. 36, 45–57. (10.1016/s0167-8760(99)00099-9) PubMed DOI
Ruiz-Padial E, Vila J, Thayer JF. 2011. The effect of conscious and non-conscious presentation of biologically relevant emotion pictures on emotion modulated startle and phasic heart rate. Int. J. Psychophysiol. 79, 341–346. (10.1016/j.ijpsycho.2010.12.001) PubMed DOI
Garfinkel SN, Gould van Praag CD, Engels M, Watson D, Silva M, Evans SL, Duka T, Critchley HD. 2021. Interoceptive cardiac signals selectively enhance fear memories. J. Exp. Psychol. Gen. 150, 1165–1176. (10.1037/xge0000967) PubMed DOI
Garfinkel SN, Critchley HD. 2016. Threat and the body: how the heart supports fear processing. Trends Cogn. Sci. 20, 34–46. (10.1016/j.tics.2015.10.005) PubMed DOI
Garfinkel SN, Minati L, Gray MA, Seth AK, Dolan RJ, Critchley HD. 2014. Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. J. Neurosci. 34, 6573–6582. (10.1523/JNEUROSCI.3507-13.2014) PubMed DOI PMC
Leganes-Fonteneau M, Buckman JF, Suzuki K, Pawlak A, Bates ME. 2021. More than meets the heart: systolic amplification of different emotional faces is task dependent. Cog. Emot. 35, 400–408. (10.1080/02699931.2020.1832050) PubMed DOI PMC
Azevedo RT, Garfinkel SN, Critchley HD, Tsakiris M. 2017. Cardiac afferent activity modulates the expression of racial stereotypes. Nat. Commun. 8, 13854. (10.1038/ncomms13854) PubMed DOI PMC
Azevedo RT, Badoud D, Tsakiris M. 2018. Afferent cardiac signals modulate attentional engagement to low spatial frequency fearful faces. Cortex 104, 232–240. (10.1016/j.cortex.2017.06.016) PubMed DOI
Réquin J, Brouchon M. 1964. Mise en évidence chez l’ homme d’une fluctuation des seuils perceptifs visuels dans la période cardiaque. Compt. Rend. Des Séanc. de La Soc. de Biol. et de Ses Fil. 158, 1891–1894. PubMed
Sandman CA, McCanne TR, Kaiser DN, Diamond B. 1977. Heart rate and cardiac phase influences on visual perception. J. Comp. Physiol. Psychol. 91, 189–202. (10.1037/h0077302) PubMed DOI
Elliott R, Graf V. 1972. Visual sensitivity as a function of phase of cardiac cycle. Psychophysiology 9, 357–361. (10.1111/j.1469-8986.1972.tb03219.x) PubMed DOI
Al E, Iliopoulos F, Forschack N, Nierhaus T, Grund M, Motyka P, Gaebler M, Nikulin VV, Villringer A. 2020. Heart-brain interactions shape somatosensory perception and evoked potentials. Proc. Natl Acad. Sci. USA 117, 10 575–10 584. (10.1073/pnas.1915629117) PubMed DOI PMC
Motyka P, Grund M, Forschack N, Al E, Villringer A, Gaebler M. 2019. Interactions between cardiac activity and conscious somatosensory perception. Psychophysiology 56, e13424. (10.1111/psyp.13424) PubMed DOI
Wilkinson M, McIntyre D, Edwards L. 2013. Electrocutaneous pain thresholds are higher during systole than diastole. Biol. Psychol. 94, 71–73. (10.1016/j.biopsycho.2013.05.002) PubMed DOI
Schulz A, Reichert CF, Richter S, Lass-Hennemann J, Blumenthal TD, Schächinger H. 2009. Cardiac modulation of startle: effects on eye blink and higher cognitive processing. Brain Cogn. 71, 265–271. (10.1016/j.bandc.2009.08.002) PubMed DOI
Galvez-Pol A, McConnell R, Kilner JM. 2020. Active sampling in visual search is coupled to the cardiac cycle. Cognition 196, 104149. (10.1016/j.cognition.2019.104149) PubMed DOI
Ohl S, Wohltat C, Kliegl R, Pollatos O, Engbert R. 2016. Microsaccades are coupled to heartbeat. J. Neurosci. 36, 1237–1241. (10.1523/JNEUROSCI.2211-15.2016) PubMed DOI PMC
Kunzendorf S, Klotzsche F, Akbal M, Villringer A, Ohl S, Gaebler M. 2019. Active information sampling varies across the cardiac cycle. Psychophysiology 56, e13322. (10.1111/psyp.13322) PubMed DOI
Galvez-Pol A, Virdee P, Villacampa J, Kilner J. 2022. Active tactile discrimination is coupled with and modulated by the cardiac cycle. eLife 11, e78126. (10.7554/eLife.78126) PubMed DOI PMC
Joseph A, Guevara-Torres A, Schallek J. 2019. Imaging single-cell blood flow in the smallest to largest vessels in the living retina. eLife 8, e45077. (10.7554/eLife.45077) PubMed DOI PMC
Tornow RP, Odstrcilik J, Kolar R. 2018. Time-resolved quantitative inter-eye comparison of cardiac cycle-induced blood volume changes in the human retina. Biomed. Opt. Express 9, 6237–6254. (10.1364/BOE.9.006237) PubMed DOI PMC
Birznieks I, Boonstra TW, Macefield VG. 2012. Modulation of human muscle spindle discharge by arterial pulsations - functional effects and consequences. PLoS One 7, e35091. (10.1371/journal.pone.0035091) PubMed DOI PMC
Fairfax ST, Padilla J, Vianna LC, Davis MJ, Fadel PJ. 2013. Spontaneous bursts of muscle sympathetic nerve activity decrease leg vascular conductance in resting humans. Am. J. Physiol. Heart Circ. Physiol. 304, H759–H766. (10.1152/ajpheart.00842.2012) PubMed DOI PMC
Elbert T, Rau H. 1995. What goes up (from heart to brain) must calm down (from brain to heart)! Studies on the interaction between baroreceptor activity and cortical excitability. In From the heart to the brain: the psychophysiology of circulation – brain interaction, pp. 133–149. Frankfurt am Main, Germany: Peter Lang Publishing.
Rau H, Pauli P, Brody S, Elbert T, Birbaumer N. 1993. Baroreceptor stimulation alters cortical activity. Psychophysiology 30, 322–325. (10.1111/j.1469-8986.1993.tb03359.x) PubMed DOI
Rau H, Elbert T. 2001. Psychophysiology of arterial baroreceptors and the etiology of hypertension. Biol. Psychol. 57, 179–201. (10.1016/s0301-0511(01)00094-1) PubMed DOI
Hsueh B, et al. . 2023. Cardiogenic control of affective behavioural state. Nature 615, 292–299. (10.1038/s41586-023-05748-8) PubMed DOI PMC
Klein AS, Dolensek N, Weiand C, Gogolla N. 2021. Fear balance is maintained by bodily feedback to the insular cortex in mice. Science 374, 1010–1015. (10.1126/science.abj8817) PubMed DOI
Allen M, Levy A, Parr T, Friston KJ. 2022. In the body’s eye: the computational anatomy of interoceptive inference. PLoS Comput. Biol. 18, e1010490. (10.1371/journal.pcbi.1010490) PubMed DOI PMC
Pramme L, Larra MF, Schächinger H, Frings C. 2016. Cardiac cycle time effects on selection efficiency in vision. Psychophysiology 53, 1702–1711. (10.1111/psyp.12728) PubMed DOI
Schulz A, Vögele C, Bertsch K, Bernard S, Münch EE, Hansen G, Naumann E, Schächinger H. 2020. Cardiac cycle phases affect auditory-evoked potentials, startle eye blink and pre-motor reaction times in response to acoustic startle stimuli. Int. J. Psychophysiol. 157, 70–81. (10.1016/j.ijpsycho.2020.08.005) PubMed DOI
Diemer J, Alpers GW, Peperkorn HM, Shiban Y, Mühlberger A. 2015. The impact of perception and presence on emotional reactions: a review of research in virtual reality. Front. Psychol. 6, 26. (10.3389/fpsyg.2015.00026) PubMed DOI PMC
Gibson JJ. 1978. The ecological approach to the visual perception of pictures. Leonardo 11, 227–235. (10.2307/1574154) DOI
Hasson U, Nastase SA, Goldstein A. 2020. Direct fit to nature: an evolutionary perspective on biological and artificial neural networks. Neuron 105, 416–434. (10.1016/j.neuron.2019.12.002) PubMed DOI PMC
Matusz PJ, Dikker S, Huth AG, Perrodin C. 2019. Are we ready for real-world neuroscience? J. Cogn. Neurosci. 31, 327–338. (10.1162/jocn_e_01276) PubMed DOI PMC
Shamay-Tsoory SG, Mendelsohn A. 2019. Real-life neuroscience: an ecological approach to brain and behavior research. Perspect. Psychol. Sci. 14, 841–859. (10.1177/1745691619856350) PubMed DOI
Cole S, Balcetis E, Dunning D. 2013. Affective signals of threat increase perceived proximity. Psychol. Sci. 24, 34–40. (10.1177/0956797612446953) PubMed DOI
Fini C, Verbeke P, Sieber S, Moors A, Brass M, Genschow O. 2020. The influence of threat on perceived spatial distance to out-group members. Psychol. Res. 84, 757–764. (10.1007/s00426-018-1091-7) PubMed DOI
Tabor A, Catley MJ, Gandevia SC, Thacker MA, Spence C, Moseley GL. 2015. The close proximity of threat: altered distance perception in the anticipation of pain. Front. Psychol. 6, 626. (10.3389/fpsyg.2015.00626) PubMed DOI PMC
Basanovic J, Dean L, Riskind JH, MacLeod C. 2019. High spider-fearful and low spider-fearful individuals differentially perceive the speed of approaching, but not receding, spider stimuli. Cognit. Ther. Res. 43, 514–521. (10.1007/s10608-018-9970-1) DOI
Vagnoni E, Lourenco SF, Longo MR. 2012. Threat modulates perception of looming visual stimuli. Curr. Biol. 22, R826–7. (10.1016/j.cub.2012.07.053) PubMed DOI
Witt JK, Sugovic M. 2013. Spiders appear to move faster than non-threatening objects regardless of one’s ability to block them. Acta Psychol. 143, 284–291. (10.1016/j.actpsy.2013.04.011) PubMed DOI
Balcetis E, Cole S. 2014. Motivated distance perception serves action regulation. In Motivation and its regulation: the control within, pp. 263–278. New York, NY: Psychology Press.
de Carvalho FN. 2022. Fearful object seeing. Rev. Philos. Psychol. 13, 627–644. (10.1007/s13164-021-00549-2) DOI
Andre J, Rogers S. 2006. Using verbal and blind-walking distance estimates to investigate the two visual systems hypothesis. Percept. Psychophys. 68, 353–361. (10.3758/BF03193682) PubMed DOI
Etchemendy PE, Spiousas I, Calcagno ER, Abregú E, Eguia MC, Vergara RO. 2018. Direct-location versus verbal report methods for measuring auditory distance perception in the far field. Behav. Res. Methods 50, 1234–1247. (10.3758/s13428-017-0939-x) PubMed DOI
Kunz BR, Wouters L, Smith D, Thompson WB, Creem-Regehr SH. 2009. Revisiting the effect of quality of graphics on distance judgments in virtual environments: a comparison of verbal reports and blind walking. Atten. Percept. Psychophys. 71, 1284–1293. (10.3758/APP.71.6.1284) PubMed DOI
Firestone C, Scholl BJ. 2016. Cognition does not affect perception: evaluating the evidence for ‘top-down’ effects. Behav. Brain Sci. 39, e229. (10.1017/S0140525X15000965) PubMed DOI
Kim JJJ, Harris LR. 2022. Can people infer distance in a 2D scene using the visual size and position of an object? Vision 6, 25. (10.3390/vision6020025) PubMed DOI PMC
Renner RS, Velichkovsky BM, Helmert JR. 2013. The perception of egocentric distances in virtual environments - a review. ACM Comput. Surv. 46, 1–40. (10.1145/2543581.2543590) DOI
Spielberger CD, Gorsuch RL, Lushene RE. 1970. Manual for the state-trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press.
Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG. 1993. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220. (10.1207/s15327108ijap0303_3) DOI
Bimberg P, Weissker T, Kulik A. 2020. On the usage of the simulator sickness questionnaire for virtual reality research. In IEEE Conf. on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Atlanta, GA, USA, pp. 464–467. (10.1109/VRW50115.2020.00098) DOI
Brown P, Spronck P, Powell W. 2022. The simulator sickness questionnaire, and the erroneous zero baseline assumption. Front. Virtual Real. 3, 945800. (10.3389/frvir.2022.945800) DOI
Coltheart M. 1980. Iconic memory and visible persistence. Percept. Psychophys. 27, 183–228. (10.3758/BF03204258) PubMed DOI
Raab DH. 1963. Backward masking. Psychol. Bull. 60, 118–129. (10.1037/h0040543) PubMed DOI
Slater M. 1999. Measuring presence: a response to the Witmer and Singer presence questionnaire. Presence Teleoperators Virtual. Environ. 8, 560–565. (10.1162/105474699566477) DOI
Delorme A, Makeig S. 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. (10.1016/j.jneumeth.2003.10.009) PubMed DOI
Perakakis P. 2019. HEPLAB: a Matlab graphical interface for the preprocessing of the heartbeat-evoked potential. Zenodo. (10.5281/zenodo.2649943) DOI
de Carvalho JLA, da Rocha AF, de Oliveira Nascimento FA, Neto JS, Junqueira LF. 2002. Development of a Matlab software for analysis of heart rate variability. In Int. Conf. on Signal Processing (ICSP), Beijing, China, vol. 2, pp. 1488–1491, (10.1109/ICOSP.2002.1180076). 10.1109/ICOSP.2002.1180076. DOI
Pewsey A, Neuhäuser M, Ruxton GD. 2013. Circular statistics in R. Oxford, UK: Oxford University Press.
Vázquez-Seisdedos CR, Neto JE, Marañón Reyes EJ, Klautau A, Limão de Oliveira RC. 2011. New approach for T-wave end detection on electrocardiogram: performance in noisy conditions. Biomed. Eng. Online 10, 77. (10.1186/1475-925X-10-77) PubMed DOI PMC
Dienes Z. 2014. Using Bayes to get the most out of non-significant results. Front. Psychol. 5, 781. (10.3389/fpsyg.2014.00781) PubMed DOI PMC
Rouder JN, Morey RD, Speckman PL, Province JM. 2012. Default Bayes factors for ANOVA designs. J. Math. Psychol. 56, 356–374. (10.1016/j.jmp.2012.08.001) DOI
van Doorn J, et al. . 2021. The JASP guidelines for conducting and reporting a Bayesian analysis. Psychon. Bull. Rev. 28, 813–826. (10.3758/s13423-020-01798-5) PubMed DOI PMC
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. (10.18637/jss.v067.i01) DOI
R Core Team . 2021. R: a language and environment for statistical computing (4.1.0) [computer software]. Vienna, Austria: R foundation for statistical computing. See https://www.R-project.org/.
RStudio Team . 2021. RStudio: integrated development environment for R [computer software]. RStudio, PBC.
Klotzsche F, Motyka P. 2024. VRCC – no cardiac effects on threat perception in VR [dataset]. Edmond (10.17617/3.KJGEZQ) DOI
Servén D, Brummitt C. 2018. PyGAM: generalized additive models in python [computer software]. Zenodo. (10.5281/ZENODO.1208723) DOI
Pfeifer G, Garfinkel SN, Gould van Praag CD, Sahota K, Betka S, Critchley HD. 2017. Feedback from the heart: emotional learning and memory is controlled by cardiac cycle, interoceptive accuracy and personality. Biol. Psychol. 126, 19–29. (10.1016/j.biopsycho.2017.04.001) PubMed DOI
Firestone C, Scholl BJ. 2017. Seeing and thinking in studies of embodied ‘perception': how (not) to integrate vision science and social psychology. Perspect. Psychol. Sci. 12, 341–343. (10.1177/1745691616679944) PubMed DOI
Schnall S. 2017. No magic bullet in sight: a reply to Firestone and Scholl. Perspect. Psychol. Sci. 12, 347–349. (10.1177/1745691617691948) PubMed DOI
Witt JK. 2017. Action potential influences spatial perception: evidence for genuine top-down effects on perception. Psychon. Bull. Rev. 24, 999–1021. (10.3758/s13423-016-1184-5) PubMed DOI
Kraus N, Niedeggen M, Hesselmann G. 2021. Trait anxiety is linked to increased usage of priors in a perceptual decision making task. Cognition 206, 104474. (10.1016/j.cognition.2020.104474) PubMed DOI
MacLeod C, Mathews A. 1988. Anxiety and the allocation of attention to threat. Q. J. Exp. Psychol. Sect. A 40, 653–670. (10.1080/14640748808402292) PubMed DOI
Okon-Singer H. 2018. The role of attention bias to threat in anxiety: mechanisms, modulators and open questions. Curr. Opin. Behav. Sci. 19, 26–30. (10.1016/j.cobeha.2017.09.008) DOI
Yilmaz Balban M, Cafaro E, Saue-Fletcher L, Washington MJ, Bijanzadeh M, Lee AM, Chang EF, Huberman AD. 2021. Human responses to visually evoked threat. Curr. Biol. 31, 601–612.(10.1016/j.cub.2020.11.035) PubMed DOI PMC
Sambo CF, Iannetti GD. 2013. Better safe than sorry? The safety margin surrounding the body is increased by anxiety. J. Neurosci. 33, 14225–14230. (10.1523/JNEUROSCI.0706-13.2013) PubMed DOI PMC
Fang Z, Li H, Chen G, Yang J. 2016. Unconscious processing of negative animals and objects: role of the amygdala revealed by fMRI. Front. Hum. Neurosci. 10, 146. (10.3389/fnhum.2016.00146) PubMed DOI PMC
Ohman A. 2009. Of snakes and faces: an evolutionary perspective on the psychology of fear. Scand. J. Psychol. 50, 543–552. (10.1111/j.1467-9450.2009.00784.x) PubMed DOI
Ruiz-Padial E, Mata JL, Rodríguez S, Fernández MC, Vila J. 2005. Non-conscious modulation of cardiac defense by masked phobic pictures. Int. J. Psychophysiol. 56, 271–281. (10.1016/j.ijpsycho.2004.12.010) PubMed DOI
Shibasaki M, Kawai N. 2009. Rapid detection of snakes by Japanese monkeys (Macaca fuscata): an evolutionarily predisposed visual system. J. Comp. Psychol. 123, 131–135. (10.1037/a0015095) PubMed DOI
Anderson AK, Christoff K, Panitz D, De Rosa E, Gabrieli JDE. 2003. Neural correlates of the automatic processing of threat facial signals. J. Neurosci. 23, 5627–5633. (10.1523/JNEUROSCI.23-13-05627.2003) PubMed DOI PMC
Kiss M, Eimer M. 2008. ERPs reveal subliminal processing of fearful faces. Psychophysiology 45, 318–326. (10.1111/j.1469-8986.2007.00634.x) PubMed DOI PMC
Pegna AJ, Landis T, Khateb A. 2008. Electrophysiological evidence for early non-conscious processing of fearful facial expressions. Int. J. Psychophysiol. 70, 127–136. (10.1016/j.ijpsycho.2008.08.007) PubMed DOI
Pessoa L, Japee S, Ungerleider LG. 2005. Visual awareness and the detection of fearful faces. Emotion 5, 243–247. (10.1037/1528-3542.5.2.243) PubMed DOI
Feldstein IT, Kölsch FM, Konrad R. 2020. Egocentric distance perception: a comparative study investigating differences between real and virtual environments. Perception 49, 940–967. (10.1177/0301006620951997) PubMed DOI
Kelly JW. 2022. Distance perception in virtual reality: a meta-analysis of the effect of head-mounted display characteristics. IEEE Trans. Vis. Comput. Graph. 29, 4978–4989. (10.1109/TVCG.2022.3196606) PubMed DOI
Ahn S, Kim S, Lee S. 2021. Effects of visual cues on distance perception in virtual environments based on object identification and visually guided action. Int. J. Hum.-Comput. Interact. 37, 36–46. (10.1080/10447318.2020.1805875) DOI
Sporrer JK, Brookes J, Hall S, Zabbah S, Serratos Hernandez UD, Bach DR. 2023. Functional sophistication in human escape. i. Sci. 26, 108240. (10.1016/j.isci.2023.108240) PubMed DOI PMC
Klotzsche F, Motyka P, Molak A. 2024. VRCC – No cardiac phase bias for threat-related threat perception in immersive virtual reality. In Royal Society Open Science (v1.0). Zenodo. 10.5281/zenodo.13797560 DOI
Klotzsche F, Motyka P, Molak A, Sahula V, Darmová B, Byrnes Cet al. . 2024. Data from: No cardiac phase bias for threat-related distance perception in immersive virtual reality. Figshare. (10.6084/m9.figshare.c.7510445) DOI
figshare
10.6084/m9.figshare.c.7510445