No cardiac phase bias for threat-related distance perception under naturalistic conditions in immersive virtual reality

. 2024 Oct ; 11 (10) : 241072. [epub] 20241030

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39479236

Previous studies have found that threatening stimuli are more readily perceived and more intensely experienced when presented during cardiac systole compared with diastole. Also, threatening stimuli are judged as physically closer than neutral ones. In a pre-registered study, we tested these effects and their interaction using a naturalistic (interactive and three-dimensional) experimental design in immersive virtual reality: we briefly displayed threatening and non-threatening animals (four each) at varying distances (1.5-5.5 m) to a group of young, healthy participants (n = 41) while recording their electrocardiograms (ECGs). Participants then pointed to the location where they had seen the animal (approx. 29 000 trials in total). Our pre-registered analyses indicated that perceived distances to both threatening and non-threatening animals did not differ significantly between cardiac phases-with Bayesian analysis supporting the null hypothesis. There was also no evidence for an association between subjective fear and perceived proximity to threatening animals. These results contrast with previous findings that used verbal or declarative distance measures in less naturalistic experimental conditions. Furthermore, our findings suggest that the cardiac phase-related variation in threat processing may not generalize across different paradigms and may be less relevant in naturalistic scenarios than under more abstract experimental conditions.

Zobrazit více v PubMed

Cannon W. 1915. Bodily changes in pain, hunger, fear, and rage. New York, NY: D. Appleton & Company.

Hare RD. 1973. Orienting and defensive responses to visual stimuli. Psychophysiology 10, 453–464. (10.1111/j.1469-8986.1973.tb00532.x) PubMed DOI

Mocaiber I, Perakakis P, Pereira MG, Pinheiro WM, Volchan E, de Oliveira L, Vila J. 2011. Stimulus appraisal modulates cardiac reactivity to briefly presented mutilation pictures. Int. J. Psychophysiol. 81, 299–304. (10.1016/j.ijpsycho.2011.07.014) PubMed DOI

Palomba D, Sarlo M, Angrilli A, Mini A, Stegagno L. 2000. Cardiac responses associated with affective processing of unpleasant film stimuli. Int. J. Psychophysiol. 36, 45–57. (10.1016/s0167-8760(99)00099-9) PubMed DOI

Ruiz-Padial E, Vila J, Thayer JF. 2011. The effect of conscious and non-conscious presentation of biologically relevant emotion pictures on emotion modulated startle and phasic heart rate. Int. J. Psychophysiol. 79, 341–346. (10.1016/j.ijpsycho.2010.12.001) PubMed DOI

Garfinkel SN, Gould van Praag CD, Engels M, Watson D, Silva M, Evans SL, Duka T, Critchley HD. 2021. Interoceptive cardiac signals selectively enhance fear memories. J. Exp. Psychol. Gen. 150, 1165–1176. (10.1037/xge0000967) PubMed DOI

Garfinkel SN, Critchley HD. 2016. Threat and the body: how the heart supports fear processing. Trends Cogn. Sci. 20, 34–46. (10.1016/j.tics.2015.10.005) PubMed DOI

Garfinkel SN, Minati L, Gray MA, Seth AK, Dolan RJ, Critchley HD. 2014. Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. J. Neurosci. 34, 6573–6582. (10.1523/JNEUROSCI.3507-13.2014) PubMed DOI PMC

Leganes-Fonteneau M, Buckman JF, Suzuki K, Pawlak A, Bates ME. 2021. More than meets the heart: systolic amplification of different emotional faces is task dependent. Cog. Emot. 35, 400–408. (10.1080/02699931.2020.1832050) PubMed DOI PMC

Azevedo RT, Garfinkel SN, Critchley HD, Tsakiris M. 2017. Cardiac afferent activity modulates the expression of racial stereotypes. Nat. Commun. 8, 13854. (10.1038/ncomms13854) PubMed DOI PMC

Azevedo RT, Badoud D, Tsakiris M. 2018. Afferent cardiac signals modulate attentional engagement to low spatial frequency fearful faces. Cortex 104, 232–240. (10.1016/j.cortex.2017.06.016) PubMed DOI

Réquin J, Brouchon M. 1964. Mise en évidence chez l’ homme d’une fluctuation des seuils perceptifs visuels dans la période cardiaque. Compt. Rend. Des Séanc. de La Soc. de Biol. et de Ses Fil. 158, 1891–1894. PubMed

Sandman CA, McCanne TR, Kaiser DN, Diamond B. 1977. Heart rate and cardiac phase influences on visual perception. J. Comp. Physiol. Psychol. 91, 189–202. (10.1037/h0077302) PubMed DOI

Elliott R, Graf V. 1972. Visual sensitivity as a function of phase of cardiac cycle. Psychophysiology 9, 357–361. (10.1111/j.1469-8986.1972.tb03219.x) PubMed DOI

Al E, Iliopoulos F, Forschack N, Nierhaus T, Grund M, Motyka P, Gaebler M, Nikulin VV, Villringer A. 2020. Heart-brain interactions shape somatosensory perception and evoked potentials. Proc. Natl Acad. Sci. USA 117, 10 575–10 584. (10.1073/pnas.1915629117) PubMed DOI PMC

Motyka P, Grund M, Forschack N, Al E, Villringer A, Gaebler M. 2019. Interactions between cardiac activity and conscious somatosensory perception. Psychophysiology 56, e13424. (10.1111/psyp.13424) PubMed DOI

Wilkinson M, McIntyre D, Edwards L. 2013. Electrocutaneous pain thresholds are higher during systole than diastole. Biol. Psychol. 94, 71–73. (10.1016/j.biopsycho.2013.05.002) PubMed DOI

Schulz A, Reichert CF, Richter S, Lass-Hennemann J, Blumenthal TD, Schächinger H. 2009. Cardiac modulation of startle: effects on eye blink and higher cognitive processing. Brain Cogn. 71, 265–271. (10.1016/j.bandc.2009.08.002) PubMed DOI

Galvez-Pol A, McConnell R, Kilner JM. 2020. Active sampling in visual search is coupled to the cardiac cycle. Cognition 196, 104149. (10.1016/j.cognition.2019.104149) PubMed DOI

Ohl S, Wohltat C, Kliegl R, Pollatos O, Engbert R. 2016. Microsaccades are coupled to heartbeat. J. Neurosci. 36, 1237–1241. (10.1523/JNEUROSCI.2211-15.2016) PubMed DOI PMC

Kunzendorf S, Klotzsche F, Akbal M, Villringer A, Ohl S, Gaebler M. 2019. Active information sampling varies across the cardiac cycle. Psychophysiology 56, e13322. (10.1111/psyp.13322) PubMed DOI

Galvez-Pol A, Virdee P, Villacampa J, Kilner J. 2022. Active tactile discrimination is coupled with and modulated by the cardiac cycle. eLife 11, e78126. (10.7554/eLife.78126) PubMed DOI PMC

Joseph A, Guevara-Torres A, Schallek J. 2019. Imaging single-cell blood flow in the smallest to largest vessels in the living retina. eLife 8, e45077. (10.7554/eLife.45077) PubMed DOI PMC

Tornow RP, Odstrcilik J, Kolar R. 2018. Time-resolved quantitative inter-eye comparison of cardiac cycle-induced blood volume changes in the human retina. Biomed. Opt. Express 9, 6237–6254. (10.1364/BOE.9.006237) PubMed DOI PMC

Birznieks I, Boonstra TW, Macefield VG. 2012. Modulation of human muscle spindle discharge by arterial pulsations - functional effects and consequences. PLoS One 7, e35091. (10.1371/journal.pone.0035091) PubMed DOI PMC

Fairfax ST, Padilla J, Vianna LC, Davis MJ, Fadel PJ. 2013. Spontaneous bursts of muscle sympathetic nerve activity decrease leg vascular conductance in resting humans. Am. J. Physiol. Heart Circ. Physiol. 304, H759–H766. (10.1152/ajpheart.00842.2012) PubMed DOI PMC

Elbert T, Rau H. 1995. What goes up (from heart to brain) must calm down (from brain to heart)! Studies on the interaction between baroreceptor activity and cortical excitability. In From the heart to the brain: the psychophysiology of circulation – brain interaction, pp. 133–149. Frankfurt am Main, Germany: Peter Lang Publishing.

Rau H, Pauli P, Brody S, Elbert T, Birbaumer N. 1993. Baroreceptor stimulation alters cortical activity. Psychophysiology 30, 322–325. (10.1111/j.1469-8986.1993.tb03359.x) PubMed DOI

Rau H, Elbert T. 2001. Psychophysiology of arterial baroreceptors and the etiology of hypertension. Biol. Psychol. 57, 179–201. (10.1016/s0301-0511(01)00094-1) PubMed DOI

Hsueh B, et al. . 2023. Cardiogenic control of affective behavioural state. Nature 615, 292–299. (10.1038/s41586-023-05748-8) PubMed DOI PMC

Klein AS, Dolensek N, Weiand C, Gogolla N. 2021. Fear balance is maintained by bodily feedback to the insular cortex in mice. Science 374, 1010–1015. (10.1126/science.abj8817) PubMed DOI

Allen M, Levy A, Parr T, Friston KJ. 2022. In the body’s eye: the computational anatomy of interoceptive inference. PLoS Comput. Biol. 18, e1010490. (10.1371/journal.pcbi.1010490) PubMed DOI PMC

Pramme L, Larra MF, Schächinger H, Frings C. 2016. Cardiac cycle time effects on selection efficiency in vision. Psychophysiology 53, 1702–1711. (10.1111/psyp.12728) PubMed DOI

Schulz A, Vögele C, Bertsch K, Bernard S, Münch EE, Hansen G, Naumann E, Schächinger H. 2020. Cardiac cycle phases affect auditory-evoked potentials, startle eye blink and pre-motor reaction times in response to acoustic startle stimuli. Int. J. Psychophysiol. 157, 70–81. (10.1016/j.ijpsycho.2020.08.005) PubMed DOI

Diemer J, Alpers GW, Peperkorn HM, Shiban Y, Mühlberger A. 2015. The impact of perception and presence on emotional reactions: a review of research in virtual reality. Front. Psychol. 6, 26. (10.3389/fpsyg.2015.00026) PubMed DOI PMC

Gibson JJ. 1978. The ecological approach to the visual perception of pictures. Leonardo 11, 227–235. (10.2307/1574154) DOI

Hasson U, Nastase SA, Goldstein A. 2020. Direct fit to nature: an evolutionary perspective on biological and artificial neural networks. Neuron 105, 416–434. (10.1016/j.neuron.2019.12.002) PubMed DOI PMC

Matusz PJ, Dikker S, Huth AG, Perrodin C. 2019. Are we ready for real-world neuroscience? J. Cogn. Neurosci. 31, 327–338. (10.1162/jocn_e_01276) PubMed DOI PMC

Shamay-Tsoory SG, Mendelsohn A. 2019. Real-life neuroscience: an ecological approach to brain and behavior research. Perspect. Psychol. Sci. 14, 841–859. (10.1177/1745691619856350) PubMed DOI

Cole S, Balcetis E, Dunning D. 2013. Affective signals of threat increase perceived proximity. Psychol. Sci. 24, 34–40. (10.1177/0956797612446953) PubMed DOI

Fini C, Verbeke P, Sieber S, Moors A, Brass M, Genschow O. 2020. The influence of threat on perceived spatial distance to out-group members. Psychol. Res. 84, 757–764. (10.1007/s00426-018-1091-7) PubMed DOI

Tabor A, Catley MJ, Gandevia SC, Thacker MA, Spence C, Moseley GL. 2015. The close proximity of threat: altered distance perception in the anticipation of pain. Front. Psychol. 6, 626. (10.3389/fpsyg.2015.00626) PubMed DOI PMC

Basanovic J, Dean L, Riskind JH, MacLeod C. 2019. High spider-fearful and low spider-fearful individuals differentially perceive the speed of approaching, but not receding, spider stimuli. Cognit. Ther. Res. 43, 514–521. (10.1007/s10608-018-9970-1) DOI

Vagnoni E, Lourenco SF, Longo MR. 2012. Threat modulates perception of looming visual stimuli. Curr. Biol. 22, R826–7. (10.1016/j.cub.2012.07.053) PubMed DOI

Witt JK, Sugovic M. 2013. Spiders appear to move faster than non-threatening objects regardless of one’s ability to block them. Acta Psychol. 143, 284–291. (10.1016/j.actpsy.2013.04.011) PubMed DOI

Balcetis E, Cole S. 2014. Motivated distance perception serves action regulation. In Motivation and its regulation: the control within, pp. 263–278. New York, NY: Psychology Press.

de Carvalho FN. 2022. Fearful object seeing. Rev. Philos. Psychol. 13, 627–644. (10.1007/s13164-021-00549-2) DOI

Andre J, Rogers S. 2006. Using verbal and blind-walking distance estimates to investigate the two visual systems hypothesis. Percept. Psychophys. 68, 353–361. (10.3758/BF03193682) PubMed DOI

Etchemendy PE, Spiousas I, Calcagno ER, Abregú E, Eguia MC, Vergara RO. 2018. Direct-location versus verbal report methods for measuring auditory distance perception in the far field. Behav. Res. Methods 50, 1234–1247. (10.3758/s13428-017-0939-x) PubMed DOI

Kunz BR, Wouters L, Smith D, Thompson WB, Creem-Regehr SH. 2009. Revisiting the effect of quality of graphics on distance judgments in virtual environments: a comparison of verbal reports and blind walking. Atten. Percept. Psychophys. 71, 1284–1293. (10.3758/APP.71.6.1284) PubMed DOI

Firestone C, Scholl BJ. 2016. Cognition does not affect perception: evaluating the evidence for ‘top-down’ effects. Behav. Brain Sci. 39, e229. (10.1017/S0140525X15000965) PubMed DOI

Kim JJJ, Harris LR. 2022. Can people infer distance in a 2D scene using the visual size and position of an object? Vision 6, 25. (10.3390/vision6020025) PubMed DOI PMC

Renner RS, Velichkovsky BM, Helmert JR. 2013. The perception of egocentric distances in virtual environments - a review. ACM Comput. Surv. 46, 1–40. (10.1145/2543581.2543590) DOI

Spielberger CD, Gorsuch RL, Lushene RE. 1970. Manual for the state-trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press.

Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG. 1993. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220. (10.1207/s15327108ijap0303_3) DOI

Bimberg P, Weissker T, Kulik A. 2020. On the usage of the simulator sickness questionnaire for virtual reality research. In IEEE Conf. on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Atlanta, GA, USA, pp. 464–467. (10.1109/VRW50115.2020.00098) DOI

Brown P, Spronck P, Powell W. 2022. The simulator sickness questionnaire, and the erroneous zero baseline assumption. Front. Virtual Real. 3, 945800. (10.3389/frvir.2022.945800) DOI

Coltheart M. 1980. Iconic memory and visible persistence. Percept. Psychophys. 27, 183–228. (10.3758/BF03204258) PubMed DOI

Raab DH. 1963. Backward masking. Psychol. Bull. 60, 118–129. (10.1037/h0040543) PubMed DOI

Slater M. 1999. Measuring presence: a response to the Witmer and Singer presence questionnaire. Presence Teleoperators Virtual. Environ. 8, 560–565. (10.1162/105474699566477) DOI

Delorme A, Makeig S. 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. (10.1016/j.jneumeth.2003.10.009) PubMed DOI

Perakakis P. 2019. HEPLAB: a Matlab graphical interface for the preprocessing of the heartbeat-evoked potential. Zenodo. (10.5281/zenodo.2649943) DOI

de Carvalho JLA, da Rocha AF, de Oliveira Nascimento FA, Neto JS, Junqueira LF. 2002. Development of a Matlab software for analysis of heart rate variability. In Int. Conf. on Signal Processing (ICSP), Beijing, China, vol. 2, pp. 1488–1491, (10.1109/ICOSP.2002.1180076). 10.1109/ICOSP.2002.1180076. DOI

Pewsey A, Neuhäuser M, Ruxton GD. 2013. Circular statistics in R. Oxford, UK: Oxford University Press.

Vázquez-Seisdedos CR, Neto JE, Marañón Reyes EJ, Klautau A, Limão de Oliveira RC. 2011. New approach for T-wave end detection on electrocardiogram: performance in noisy conditions. Biomed. Eng. Online 10, 77. (10.1186/1475-925X-10-77) PubMed DOI PMC

Dienes Z. 2014. Using Bayes to get the most out of non-significant results. Front. Psychol. 5, 781. (10.3389/fpsyg.2014.00781) PubMed DOI PMC

Rouder JN, Morey RD, Speckman PL, Province JM. 2012. Default Bayes factors for ANOVA designs. J. Math. Psychol. 56, 356–374. (10.1016/j.jmp.2012.08.001) DOI

van Doorn J, et al. . 2021. The JASP guidelines for conducting and reporting a Bayesian analysis. Psychon. Bull. Rev. 28, 813–826. (10.3758/s13423-020-01798-5) PubMed DOI PMC

Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. (10.18637/jss.v067.i01) DOI

R Core Team . 2021. R: a language and environment for statistical computing (4.1.0) [computer software]. Vienna, Austria: R foundation for statistical computing. See https://www.R-project.org/.

RStudio Team . 2021. RStudio: integrated development environment for R [computer software]. RStudio, PBC.

Klotzsche F, Motyka P. 2024. VRCC – no cardiac effects on threat perception in VR [dataset]. Edmond (10.17617/3.KJGEZQ) DOI

Servén D, Brummitt C. 2018. PyGAM: generalized additive models in python [computer software]. Zenodo. (10.5281/ZENODO.1208723) DOI

Pfeifer G, Garfinkel SN, Gould van Praag CD, Sahota K, Betka S, Critchley HD. 2017. Feedback from the heart: emotional learning and memory is controlled by cardiac cycle, interoceptive accuracy and personality. Biol. Psychol. 126, 19–29. (10.1016/j.biopsycho.2017.04.001) PubMed DOI

Firestone C, Scholl BJ. 2017. Seeing and thinking in studies of embodied ‘perception': how (not) to integrate vision science and social psychology. Perspect. Psychol. Sci. 12, 341–343. (10.1177/1745691616679944) PubMed DOI

Schnall S. 2017. No magic bullet in sight: a reply to Firestone and Scholl. Perspect. Psychol. Sci. 12, 347–349. (10.1177/1745691617691948) PubMed DOI

Witt JK. 2017. Action potential influences spatial perception: evidence for genuine top-down effects on perception. Psychon. Bull. Rev. 24, 999–1021. (10.3758/s13423-016-1184-5) PubMed DOI

Kraus N, Niedeggen M, Hesselmann G. 2021. Trait anxiety is linked to increased usage of priors in a perceptual decision making task. Cognition 206, 104474. (10.1016/j.cognition.2020.104474) PubMed DOI

MacLeod C, Mathews A. 1988. Anxiety and the allocation of attention to threat. Q. J. Exp. Psychol. Sect. A 40, 653–670. (10.1080/14640748808402292) PubMed DOI

Okon-Singer H. 2018. The role of attention bias to threat in anxiety: mechanisms, modulators and open questions. Curr. Opin. Behav. Sci. 19, 26–30. (10.1016/j.cobeha.2017.09.008) DOI

Yilmaz Balban M, Cafaro E, Saue-Fletcher L, Washington MJ, Bijanzadeh M, Lee AM, Chang EF, Huberman AD. 2021. Human responses to visually evoked threat. Curr. Biol. 31, 601–612.(10.1016/j.cub.2020.11.035) PubMed DOI PMC

Sambo CF, Iannetti GD. 2013. Better safe than sorry? The safety margin surrounding the body is increased by anxiety. J. Neurosci. 33, 14225–14230. (10.1523/JNEUROSCI.0706-13.2013) PubMed DOI PMC

Fang Z, Li H, Chen G, Yang J. 2016. Unconscious processing of negative animals and objects: role of the amygdala revealed by fMRI. Front. Hum. Neurosci. 10, 146. (10.3389/fnhum.2016.00146) PubMed DOI PMC

Ohman A. 2009. Of snakes and faces: an evolutionary perspective on the psychology of fear. Scand. J. Psychol. 50, 543–552. (10.1111/j.1467-9450.2009.00784.x) PubMed DOI

Ruiz-Padial E, Mata JL, Rodríguez S, Fernández MC, Vila J. 2005. Non-conscious modulation of cardiac defense by masked phobic pictures. Int. J. Psychophysiol. 56, 271–281. (10.1016/j.ijpsycho.2004.12.010) PubMed DOI

Shibasaki M, Kawai N. 2009. Rapid detection of snakes by Japanese monkeys (Macaca fuscata): an evolutionarily predisposed visual system. J. Comp. Psychol. 123, 131–135. (10.1037/a0015095) PubMed DOI

Anderson AK, Christoff K, Panitz D, De Rosa E, Gabrieli JDE. 2003. Neural correlates of the automatic processing of threat facial signals. J. Neurosci. 23, 5627–5633. (10.1523/JNEUROSCI.23-13-05627.2003) PubMed DOI PMC

Kiss M, Eimer M. 2008. ERPs reveal subliminal processing of fearful faces. Psychophysiology 45, 318–326. (10.1111/j.1469-8986.2007.00634.x) PubMed DOI PMC

Pegna AJ, Landis T, Khateb A. 2008. Electrophysiological evidence for early non-conscious processing of fearful facial expressions. Int. J. Psychophysiol. 70, 127–136. (10.1016/j.ijpsycho.2008.08.007) PubMed DOI

Pessoa L, Japee S, Ungerleider LG. 2005. Visual awareness and the detection of fearful faces. Emotion 5, 243–247. (10.1037/1528-3542.5.2.243) PubMed DOI

Feldstein IT, Kölsch FM, Konrad R. 2020. Egocentric distance perception: a comparative study investigating differences between real and virtual environments. Perception 49, 940–967. (10.1177/0301006620951997) PubMed DOI

Kelly JW. 2022. Distance perception in virtual reality: a meta-analysis of the effect of head-mounted display characteristics. IEEE Trans. Vis. Comput. Graph. 29, 4978–4989. (10.1109/TVCG.2022.3196606) PubMed DOI

Ahn S, Kim S, Lee S. 2021. Effects of visual cues on distance perception in virtual environments based on object identification and visually guided action. Int. J. Hum.-Comput. Interact. 37, 36–46. (10.1080/10447318.2020.1805875) DOI

Sporrer JK, Brookes J, Hall S, Zabbah S, Serratos Hernandez UD, Bach DR. 2023. Functional sophistication in human escape. i. Sci. 26, 108240. (10.1016/j.isci.2023.108240) PubMed DOI PMC

Klotzsche F, Motyka P, Molak A. 2024. VRCC – No cardiac phase bias for threat-related threat perception in immersive virtual reality. In Royal Society Open Science (v1.0). Zenodo. 10.5281/zenodo.13797560 DOI

Klotzsche F, Motyka P, Molak A, Sahula V, Darmová B, Byrnes Cet al. . 2024. Data from: No cardiac phase bias for threat-related distance perception in immersive virtual reality. Figshare. (10.6084/m9.figshare.c.7510445) DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.7510445

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...