• This record comes from PubMed

Compact Monocular Video-Ophthalmoscope to Measure Retinal Reflectance Changes to Flicker Light Stimuli

. 2025 Jun ; 18 (6) : e202400494. [epub] 20250311

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
21-18578S Grantová Agentura České Republiky

This paper describes a compact video-ophthalmoscope (VO) designed for capturing retinal video sequences of the optic nerve head (ONH) under flicker light stimulation. The device uses an OLED display and a fiber optic-coupled LED light source, enabling high-frame-rate video at low illumination intensity (12 μW/cm2). Retinal responses were recorded in 10 healthy subjects during flicker light exposure with a pupil irradiance of 2 μW/cm2. Following 20 s of stimulation, all subjects displayed changes in retinal reflectance and pulsation attenuation, linked to blood flow and volume variations. These findings suggest that increased blood volume leads to decreased retinal reflectance. Temporal analysis confirmed the ability to capture flicker-induced retinal reflectance changes, indicating its potential for spatial and temporal analysis. Overall, this device offers a portable approach for investigating dynamic retinal responses to light stimuli, which can aid the diagnosis of retinal diseases like diabetic retinopathy, glaucoma, or neurodegenerative diseases affecting retinal blood circulation.

See more in PubMed

Riva C. E., Logean E., and Falsini B., “Temporal Dynamics and Magnitude of the Blood Flow Response at the Optic Disk in Normal Subjects During Functional Retinal Flicker‐Stimulation,” Neuroscience Letters 356, no. 2 (2004): 75–78, 10.1016/j.neulet.2003.08.069. PubMed DOI

Crittin M. and Riva C. E., “Optic Nerve and Retinal Reflectance Changes in Response to Physiological Stimuli,” Optics and Lasers in Engineering 43, no. 3 (2005): 583–589, 10.1016/j.optlaseng.2004.04.010. DOI

Aung M. H., Aleman T. S., Garcia A. S., McGeehan B., Ying G.‐S., and Avery R. A., “Stimulus Type and Duration Affect Magnitude and Evolution of Flicker‐Induced Hyperemia Measured by Laser Speckle Flowgraphy at the Optic Disc and Peripapillary Vessels,” Scientific Reports 14, no. 1 (2024): 6659, 10.1038/s41598-024-57263-z. PubMed DOI PMC

Wareham L. K. and Calkins D. J., “The Neurovascular Unit in Glaucomatous Neurodegeneration,” Frontiers in Cell and Development Biology 8 (2020): 452, 10.3389/fcell.2020.00452. PubMed DOI PMC

Fu C. T. and Sretavan D. W., “Ectopic Vesicular Glutamate Release at the Optic Nerve Head and Axon Loss in Mouse Experimental Glaucoma,” Journal of Neuroscience 32, no. 45 (2012): 15859–15876, 10.1523/JNEUROSCI.0038-12.2012. PubMed DOI PMC

Hassan H., Jaidka S., Dwyer V. M., and Hu S., “Assessing Blood Vessel Perfusion and Vital Signs Through Retinal Imaging Photoplethysmography,” Biomedical Optics Express 9, no. 5 (2018): 2351–2364, 10.1364/BOE.9.002351. PubMed DOI PMC

Puyo L., Paques M., Fink M., Sahel J.‐A., and Atlan M., “Waveform Analysis of Human Retinal and Choroidal Blood Flow With Laser Doppler Holography,” Biomedical Optics Express 10, no. 10 (2019): 4942–4963, 10.1364/BOE.10.004942. PubMed DOI PMC

Tornow R.‐P., Odstrcilik J., and Kolar R., “Time‐Resolved Quantitative Inter‐Eye Comparison of Cardiac Cycle‐Induced Blood Volume Changes in the Human Retina,” Biomedical Optics Express 9, no. 12 (2018): 6237–6254, 10.1364/BOE.9.006237. PubMed DOI PMC

Kolar R., Vicar T., Odstrcilik J., et al., “Multispectral Retinal Video‐Ophthalmoscope With Fiber Optic Illumination,” Journal of Biophotonics 15, no. 9 (2022): e202200094, 10.1002/jbio.202200094. PubMed DOI

Kolář R., Odstrčilík J., and Tornow R.‐P., “Photoplethysmographic Analysis of Retinal Videodata Based on the Fourier Domain Approach,” Biomedical Optics Express 12, no. 12 (2021): 7405–7421, 10.1364/BOE.441451. PubMed DOI PMC

Garhöfer G., Zawinka C., Resch H., Huemer K. H., Dorner G. T., and Schmetterer L., “Diffuse Luminance Flicker Increases Blood Flow in Major Retinal Arteries and Veins,” Vision Research 44, no. 8 (2004): 833–838, 10.1016/j.visres.2003.11.013. PubMed DOI

Wang Y., Fawzi A. A., Tan O., Zhang X., and Huang D., “Flicker‐Induced Changes in Retinal Blood Flow Assessed by Doppler Optical Coherence Tomography,” Biomedical Optics Express 2, no. 7 (2011): 1852–1860, 10.1364/BOE.001852. PubMed DOI PMC

Fondi K., Bata A. M., Luft N., et al., “Evaluation of Flicker Induced Hyperemia in the Retina and Optic Nerve Head Measured by Laser Speckle Flowgraphy,” PLoS One 13, no. 11 (2018): e0207525, 10.1371/journal.pone.0207525. PubMed DOI PMC

Kallab M., Hommer N., Tan B., et al., “Plexus‐Specific Effect of Flicker‐Light Stimulation on the Retinal Microvasculature Assessed With Optical Coherence Tomography Angiography,” American Journal of Physiology. Heart and Circulatory Physiology 320, no. 1 (2021): H23–H28, 10.1152/ajpheart.00495.2020. PubMed DOI

Tornow R. P., Kolář R., and Odstrčilík J., “Non‐Mydriatic Video Ophthalmoscope to Measure Fast Temporal Changes of the Human Retina,” in Novel Biophotonics Techniques and Applications III (SPIE, 2015), 10–15, 10.1117/12.2181183. DOI

Kolar R., Vicar T., Chmelik J., et al., “Assessment of Retinal Vein Pulsation Through Video‐Ophthalmoscopy and Simultaneous Biosignals Acquisition,” Biomedical Optics Express 14, no. 6 (2023): 2645–2657, 10.1364/BOE.486052. PubMed DOI PMC

Tornow R.‐P., Kolar R., Odstrcilik J., Labounkova I., and Horn F., “Imaging Video Plethysmography Shows Reduced Signal Amplitude in Glaucoma Patients in the Area of the Microvascular Tissue of the Optic Nerve Head,” Graefe's Archive for Clinical and Experimental Ophthalmology 259, no. 2 (2021): 483–494, 10.1007/s00417-020-04934-y. PubMed DOI PMC

Labounkova I., Labounek R., Nestrasil I., Odstrcilik J., Tornow R. P., and Kolar R., “Blind Source Separation of Retinal Pulsatile Patterns in Optic Nerve Head Video‐Recordings,” IEEE Transactions on Medical Imaging 40, no. 3 (2021): 852–864, 10.1109/TMI.2020.3039917. PubMed DOI

Labounková I., Labounek R., Kolář R., et al., “Heart Rate and Age Modulate Retinal Pulsatile Patterns,” Communications Biology 5, no. 1 (2022): 1–10, 10.1038/s42003-022-03441-6. PubMed DOI PMC

Tornow R.‐P., Odstrcilik J., and Kolar R., “A Multi‐Color Video‐Ophthalmoscopes Allows to Measure the Spectral Distribution of Light Absorption of Blood in the Human Retina,” Frontiers in Medicine 10 (2023), 10.3389/fmed.2023.1125154. PubMed DOI PMC

Riva C. E., Logean E., and Falsini B., “Visually Evoked Hemodynamical Response and Assessment of Neurovascular Coupling in the Optic Nerve and Retina,” Progress in Retinal and Eye Research 24, no. 2 (2005): 183–215, 10.1016/j.preteyeres.2004.07.002. PubMed DOI

Polak K., Schmetterer L., and Riva C. E., “Influence of Flicker Frequency on Flicker‐Induced Changes of Retinal Vessel Diameter,” Investigative Ophthalmology & Visual Science 43, no. 8 (2002): 2721–2726. PubMed

Hammer M., Vilser W., Riemer T., et al., “Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation,” Investigative Ophthalmology & Visual Science 52, no. 1 (2011): 274–277, 10.1167/iovs.10-5537. PubMed DOI

Michelson G., Patzelt A., and Harazny J., “Flickering Light Increases Retinal Blood Flow,” Retina 22, no. 3 (2002): 336–343, 10.1097/00006982-200206000-00013. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...