Photoplethysmographic analysis of retinal videodata based on the Fourier domain approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35003842
PubMed Central
PMC8713668
DOI
10.1364/boe.441451
PII: 441451
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Assessment of retinal blood flow inside the optic nerve head (ONH) and the peripapillary area is an important task in retinal imaging. For this purpose, an experimental binocular video ophthalmoscope that acquires precisely synchronized video sequences of the optic nerve head and peripapillary area from both eyes has been previously developed. It enables to compare specific characteristics of both eyes and efficiently detect the eye asymmetry. In this paper, we describe a novel methodology for the analysis of acquired video data using a photoplethysmographic approach. We describe and calculate the pulsatile attenuation amplitude (PAA) spatial map, which quantifies the maximum relative change of blood volume during a cardiac cycle using a frequency domain approach. We also describe in detail the origin of PAA maps from the fundamental (the first) and the second harmonic component of the pulsatile signal, and we compare the results obtained by time-based and frequency-based approaches. In several cases, we show the advantages and possibilities of this device and the appropriate image analysis approach - fast measurement and comparison of blood flow characteristics of both eyes at a glance, the robustness of this approach, and the possibility of easy detection of asymmetry.
Zobrazit více v PubMed
Wagner S. K., Fu D. J., Faes L., Liu X., Huemer J., Khalid H., Ferraz D., Korot E., Kelly C., Balaskas K., Denniston A. K., Keane P. A., “Insights into systemic disease through retinal imaging-based oculomics,” Transl. Vis. Sci. Technol. 9(2), 6 (2020).10.1167/tvst.9.2.6 PubMed DOI PMC
Gruber A., Wang R. K., Hurst S., Hanson S. R., Jacques S. L., Ma Z., “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).10.1364/OE.15.004083 PubMed DOI
Hagag A. M., Gao S. S., Jia Y., Huang D., “Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology,” Taiwan J. Ophthalmol. 7(3), 115–129 (2017).10.4103/tjo.tjo_31_17 PubMed DOI PMC
Konishi N., Tokimoto Y., Kohra K., Fujii H., “New laser speckle flowgraphy system using CCD camera,” Opt. Rev. 9(4), 163–169 (2002).10.1007/s10043-002-0163-4 DOI
Mursch-Edlmayr A. S., Luft N., Podkowinski D., Ring M., Schmetterer L., Bolz M., “Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study,” Sci. Rep. 8(1), 5343 (2018).10.1038/s41598-018-23149-0 PubMed DOI PMC
Leitgeb R. A., Werkmeister R. M., Blatter C., Schmetterer L., “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).10.1016/j.preteyeres.2014.03.004 PubMed DOI PMC
Wartak A., Baumann B., Hitzenberger C. K., Pircher M., Haindl R., Trasischker W., “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7(12), 5233 (2016).10.1364/BOE.7.005233 PubMed DOI PMC
Sahel J.-A., Puyo L., Atlan M., Fink M., Paques M., “In vivo laser Doppler holography of the human retina,” Biomed. Opt. Express 9(9), 4113–4129 (2018).10.1364/BOE.9.004113 PubMed DOI PMC
Puyo L., Atlan M., Paques M., Paques M., Atlan M., “Spatio-temporal filtering in laser Doppler holography for retinal blood flow imaging,” Biomed. Opt. Express 11(6), 3274–3287 (2020).10.1364/BOE.392699 PubMed DOI PMC
Tornow R.-P., Odstrcilik J., Kolar R., “Time-resolved quantitative inter-eye comparison of cardiac cycle-induced blood volume changes in the human retina,” Biomed. Opt. Express 9(12), 6237 (2018).10.1364/BOE.9.006237 PubMed DOI PMC
Tornow R.-P., Kolar R., Odstrcilik J., Labounkova I., Horn F., “Imaging video plethysmography shows reduced signal amplitude in glaucoma patients in the area of the microvascular tissue of the optic nerve head,” Graefe’s Arch. Clin. Exp. Ophthalmol. 259(2), 483–494 (2021).10.1007/s00417-020-04934-y PubMed DOI PMC
Allen J., “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).10.1088/0967-3334/28/3/R01 PubMed DOI
Djeldjli D., Bousefsaf F., Maaoui C., Bereksi-Reguig F., “Imaging photoplethysmography: signal waveform analysis,” in Proceedings of 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IEEE, 2019), pp. 830–834.
Lyubashina O. A., Mamontov O. V., Volynsky M. A., Zaytsev V. V., Kamshilin A. A., “Contactless assessment of cerebral autoregulation by photoplethysmographic imaging at green illumination,” Front. Neurosci. 13, 1235 (2019).10.3389/fnins.2019.01235 PubMed DOI PMC
Hassan H., Jaidka S., Dwyer V. M., Hu S., “Assessing blood vessel perfusion and vital signs through retinal imaging photoplethysmography,” Biomed. Opt. Express 9(5), 2351 (2018).10.1364/BOE.9.002351 PubMed DOI PMC
Kolar R., Tornow R. P., Odstrcilik J., Liberdova I., “Registration of retinal sequences from new video-ophthalmoscopic camera,” Biomed. Eng. Online 15(1), 57 (2016).10.1186/s12938-016-0191-0 PubMed DOI PMC
Kolar R., Liberdova I., Odstrcilik J., Hracho M., Tornow R. P., “Detection of distorted frames in retinal video-sequences via machine learning,” Proc. SPIE 10413, 104130A (2017).10.1117/12.2284172 DOI
Tornow R. P., Milczarek A., Odstrcilik J., Kolar R., “Binocular video ophthalmoscope for simultaneous recording of sequences of the human retina to compare dynamic parameters,” Proc. SPIE 10413, 1041309 (2017).10.1117/12.2282898 DOI
Baumann B., Lu C. D., Huang D., Fujimoto J. G., Tokayer J., Morrison J. C., Lombardi L., Tan O., Choi W., Jia Y., “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express 3(12), 3127–3137 (2012).10.1364/BOE.3.003127 PubMed DOI PMC
Chen C.-L. L., Bojikian K. D., Gupta D., Wen J. C., Zhang Q., Xin C., Kono R., Mudumbai R. C., Johnstone M. A., Chen P. P., Wang R. K., “Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography,” Quant. Imaging Med. Surg. 6(2), 125–133 (2016).10.21037/qims.2016.03.05 PubMed DOI PMC
Bland J. M., Altman D. G., “Measuring agreement in method comparison studies:,” Stat. Methods Med. Res. 8(2), 135–160 (1999).10.1177/096228029900800204 PubMed DOI
Nam T.-H., Park Y.-B., Park Y.-J., Shin S.-H., “Age-related changes of the finger photoplethysmogram in frequency domain analysis,” J. Soc. Korean Med. Diagnostics 12, 42–62 (2008).
Hsiu H., Hsu C. L., Chen C. T., Hsu W. C., Hu H. F., Chen F. C., “Correlation of harmonic components between the blood pressure and photoplethysmography waveforms following local-heating stimulation,” Int. J. Biosci. Biochem. Bioinforma. 2(4), 248–253 (2012).10.7763/IJBBB.2012.V2.110 DOI
Fedotov A. A., “Techniques for the morphological analysis of the pulse wave,” Biomed. Eng. 53(4), 270–274 (2019).10.1007/s10527-019-09924-x DOI
Kuroda F., Iwase T., Yamamoto K., Ra E., Terasaki H., “Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma,” Sci. Rep. 10(1), 729 (2020).10.1038/s41598-020-57583-w PubMed DOI PMC
Sahel J.-A., Puyo L., Fink M., Atlan M., Paques M., Fink M., Fink M., Sahel J.-A., Sahel J.-A., Sahel J.-A., Atlan M., Atlan M., “Waveform analysis of human retinal and choroidal blood flow with laser Doppler holography,” Biomed. Opt. Express 10(10), 4942–4963 (2019).10.1364/BOE.10.004942 PubMed DOI PMC
Hou H., Moghimi S., Zangwill L. M., Shoji T., Ghahari E., Manalastas P. I. C., Penteado R. C., Weinreb R. N., “Inter-eye asymmetry of optical coherence tomography angiography vessel density in bilateral glaucoma, glaucoma suspect, and healthy eyes,” Am. J. Ophthalmol. 190, 69–77 (2018).10.1016/j.ajo.2018.03.026 PubMed DOI PMC
Kaluzny J. J., Burduk M., “Intereye asymmetry of optic nerve head parameters and retinal nerve fibre layer thickness in patients with open angle glaucoma detected by spectral domain optical coherence tomography,” Ophthalmol. J. 2(2), 35–41 (2017).10.5603/OJ.2017.0009 DOI
Williams A. L., Gatla S., Leiby B. E., Fahmy I., Biswas A., de Barros D. M., Ramakrishnan R., Bhardwaj S. S., Wright C., Dubey S., Lynch J. F., Bayer A., Khandelwal R., Ichhpujani P., Gheith M., Siam G., Feldman R. M., Henderer J. D., Spaeth G. L., “The value of intraocular pressure asymmetry in diagnosing glaucoma,” J. Glaucoma 22(3), 215–218 (2013).10.1097/IJG.0b013e318237bfb8 PubMed DOI
Moret F., Poloschek C. M., Lagrèze W. A., Bach M., “Visualization of fundus vessel pulsation using principal component analysis,” Invest. Ophthalmol. Vis. Sci. 52(8), 5457 (2011).10.1167/iovs.10-6806 PubMed DOI
Moret F., Reiff C. M., Lagrèze W. A., Bach M., “Quantitative analysis of fundus-image sequences reveals phase of spontaneous venous pulsations,” Transl. Vis. Sci. Technol. 4(5), 3 (2015).10.1167/tvst.4.5.3 PubMed DOI PMC
Wartak A., Beer F., Desissaire S., Baumann B., Pircher M., Hitzenberger C. K., “Investigating spontaneous retinal venous pulsation using Doppler optical coherence tomography,” Sci. Reports 9, 4237 (2019).10.1038/s41598-019-40961-4 PubMed DOI PMC
Gugleta K., Kochkorov A., Katamay R., Zawinka C., Flammer J., Orgul S., “On pulse-wave propagation in the ocular circulation,” Investig. Opthalmology Vis. Sci. 47(9), 4019 (2006).10.1167/iovs.06-0168 PubMed DOI
Kochkorov A., Gugleta K., Kavroulaki D., Katamay R., Weier K., Mehling M., Kappos L., Flammer J., Orgül S., “Rigidity of retinal vessels in patients with multiple sclerosis,” Klin. Monbl. Augenheilkd. 226(04), 276–279 (2009).10.1055/s-0028-1109291 PubMed DOI
Zuiderveld K., “Contrast limited adaptive histogram equalization,” in Proceedings of Graphics Gems IV (Academic Professional, Inc., 1994), pp. 474–485.