Registration of retinal sequences from new video-ophthalmoscopic camera
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
27206477
PubMed Central
PMC4875736
DOI
10.1186/s12938-016-0191-0
PII: 10.1186/s12938-016-0191-0
Knihovny.cz E-zdroje
- Klíčová slova
- Image registration, Retinal imaging, Tracking, Video-ophthalmoscopy,
- MeSH
- algoritmy MeSH
- lidé MeSH
- oftalmoskopy * MeSH
- počítačové zpracování obrazu metody MeSH
- pohyby očí MeSH
- poměr signál - šum MeSH
- retina * fyziologie MeSH
- retinální cévy cytologie MeSH
- videozáznam MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Analysis of fast temporal changes on retinas has become an important part of diagnostic video-ophthalmology. It enables investigation of the hemodynamic processes in retinal tissue, e.g. blood-vessel diameter changes as a result of blood-pressure variation, spontaneous venous pulsation influenced by intracranial-intraocular pressure difference, blood-volume changes as a result of changes in light reflection from retinal tissue, and blood flow using laser speckle contrast imaging. For such applications, image registration of the recorded sequence must be performed. METHODS: Here we use a new non-mydriatic video-ophthalmoscope for simple and fast acquisition of low SNR retinal sequences. We introduce a novel, two-step approach for fast image registration. The phase correlation in the first stage removes large eye movements. Lucas-Kanade tracking in the second stage removes small eye movements. We propose robust adaptive selection of the tracking points, which is the most important part of tracking-based approaches. We also describe a method for quantitative evaluation of the registration results, based on vascular tree intensity profiles. RESULTS: The achieved registration error evaluated on 23 sequences (5840 frames) is 0.78 ± 0.67 pixels inside the optic disc and 1.39 ± 0.63 pixels outside the optic disc. We compared the results with the commonly used approaches based on Lucas-Kanade tracking and scale-invariant feature transform, which achieved worse results. CONCLUSION: The proposed method can efficiently correct particular frames of retinal sequences for shift and rotation. The registration results for each frame (shift in X and Y direction and eye rotation) can also be used for eye-movement evaluation during single-spot fixation tasks.
Zobrazit více v PubMed
Tornow RP, Kolář R, Odstrčilík J, “Non-mydriatic video ophthalmoscope to measure fast temporal changes of the human retina,” in European Conferences on Biomedical Optics. 2015, p. 954006
Chen J, Tian J, Lee N, Zheng J, Smith RT, Laine AF. A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans Biomed Eng. 2010;57(7):1707–1718. doi: 10.1109/TBME.2010.2042169. PubMed DOI PMC
Rosin PL, Marshall D, Morgan JE. Multimodal retinal imaging: new strategies for the detection of glaucoma,” in International Conference on image processing, 2002, vol. 1, p. III–137–III–140.
Ritter N, Owens R, Cooper J, Eikelboom RH, Van Saarloos PP. Registration of stereo and temporal images of the retina. IEEE Trans Med Imaging. 1999;18(5):404–418. doi: 10.1109/42.774168. PubMed DOI
Chanwimaluang T, Fan G, Fransen SR. Hybrid retinal image registration. IEEE Trans Inf Technol Biomed. 2006;10(1):129–142. doi: 10.1109/TITB.2005.856859. PubMed DOI
Wang W, Chen H, Li J, Yu J. A registration method of fundus images based on edge detection and phase coorelation,” in First International Conference on innovative computing, information and control. 2006, p. 572–76.
Kolar R, Harabis V, Odstrcilik J. Hybrid retinal image registration using phase correlation. Imaging Sci J. 2013;61(4):369–384. doi: 10.1179/1743131X11Y.0000000065. DOI
Perez-Rovira A, Cabido R, Trucco E, McKenna SJ, Hubschman JP. RERBEE: robust efficient registration via bifurcations and elongated elements applied to retinal fluorescein angiogram sequences. IEEE Trans Med Imaging. 2012;31(1):140–150. doi: 10.1109/TMI.2011.2167517. PubMed DOI
Scharcanski J, Schardosim LR, Santos D, Stuchi A. Motion detection and compensation in infrared retinal image sequences. Comput Med Imaging Graph. 2013;37(5–6):377–385. doi: 10.1016/j.compmedimag.2013.06.004. PubMed DOI
Ramaswamy G, Lombardo M, Devaney N. Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images. Biomed Opt Expr. 2014;5(6):1941–1951. doi: 10.1364/BOE.5.001941. PubMed DOI PMC
Ramaswamy G, Devaney N. Pre-processing, registration and selection of adaptive optics corrected retinal images. Ophthalm Physiol Opt. 2013;33(4):527–539. doi: 10.1111/opo.12068. PubMed DOI
Kulcsar C, Fezzani R, Le Besnerais G, Plyer A, Levecq X. “Fast and robust image registration with local motion estimation for image enhancement and activity detection in retinal imaging”, in. Int Workshop Comput Intell Multim Underst (IWCIM) 2014;2014:1–5.
Li H, Lu J, Shi G, Zhang Y. Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm. Biomed Opt Expr. 2010;1(1):31. doi: 10.1364/BOE.1.000031. PubMed DOI PMC
Kolar R, Hoeher B, Odstrcilik J, Schmauss B, Jan J. “Registration of image sequences from experimental low-cost fundus camera,” in Workshop on Biomedical Image Registration. 2014, p. 174–83.
Zuiderveld K. “Contrast limited adaptive histogram equalization,” in Graphics Gems IV. 1994, p. 474–85.
Kolar R, Tornow RP, Odstrcilik J. “Retinal image registration for eye movement estimation,” in IEEE Engineering in Medicine and Biology Society Conference. 2015, p. 5247–50. PubMed
Odstrcilik J, Kolar R, Kubena T, Cernosek P, Budai A, Hornegger J, Gazarek J, Svoboda O, Jan J, Angelopoulou E, Odstrcilik J. Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process. 2013;7(4):373–383. doi: 10.1049/iet-ipr.2012.0455. DOI
Azzopardi G, Strisciuglio N, Vento M, Petkov N. Trainable COSFIRE filters for vessel delineation with application to retinal images. Med Image Anal. 2015;19(1):46–57. doi: 10.1016/j.media.2014.08.002. PubMed DOI
Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA. Blood vessel segmentation methodologies in retinal images–a survey. Comput Methods Progr Biomed. 2012;108(1):407–433. doi: 10.1016/j.cmpb.2012.03.009. PubMed DOI
Budai A, Bock R, Maier A, Hornegger J, Michelson G. Robust vessel segmentation in fundus images. Int J Biomed Imaging. 2013;2013:154860. doi: 10.1155/2013/154860. PubMed DOI PMC
Lucas BD, Kanade T. “An Iterative Image Registration Technique with an Application to Stereo Vision,” in Imaging Understanding Workshop. 1981, p. 121–30.
Kittler J, Illingworth J. Minimum error thresholding. Pattern Recognit. 1986;19(1):41–47. doi: 10.1016/0031-3203(86)90030-0. DOI
Abegão Pinto L, Vandewalle E, De Clerck E, Marques-Neves C, Stalmans I. “Lack of spontaneous venous pulsation: possible risk indicator in normal tension glaucoma?,” Acta Ophthalmol. vol. 91, no. 6, p. 514–20. PubMed
Vedaldi A, Fulkerson B. “Vlfeat: an open and portable library of computer vision algorithms,” in International conference on multimedia. 2010, p. 1469–72.
Mahmoudi SA, Kierzynka M, Manneback P, Kurowski K. Real-time motion tracking using optical flow on multiple GPUs. Bull Polish Acad Sci Tech Sci. 2014;62(1):139–150.
Shiga Y, Omodaka K, Kunikata H, Ryu M, Yokoyama Y, Tsuda S, Asano T, Maekawa S, Maruyama K, Nakazawa T. Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma. Investig Opthalmol Vis Sci. 2013;54(12):7699. doi: 10.1167/iovs.13-12930. PubMed DOI
Köhler T, Brost A, Mogalle K, Zhang Q, Köhler C, Michelson G, Hornegger J, Tornow RP. “Multi-frame super-resolution with quality self-assessment for retinal fundus videos,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI, 2014. 2014, p. 650–57. PubMed
Heart rate and age modulate retinal pulsatile patterns
Photoplethysmographic analysis of retinal videodata based on the Fourier domain approach