Effect of Melatonin on the Renin-Angiotensin-Aldosterone System in l-NAME-Induced Hypertension

. 2018 Jan 29 ; 23 (2) : . [epub] 20180129

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29382124

The renin-angiotensin-aldosterone system (RAAS) is a dominant player in several cardiovascular pathologies. This study investigated whether alterations induced by l-NAME, (NLG)-nitro-l-arginine methyl ester, a nitric oxide synthase inhibitor, and the protective effect of melatonin are associated with changes in the RAAS. Four groups of 3-month-old male Wistar rats (n = 10) were treated as follows for four weeks: untreated controls, rats treated with melatonin (10 mg/kg/day), rats treated with l-NAME (40 mg/kg/day), and rats treated with l-NAME + melatonin. l-NAME administration led to hypertension and left ventricular (LV) fibrosis in terms of enhancement of soluble, insoluble and total collagen concentration and content. Melatonin reduced systolic blood pressure enhancement and lowered the concentration and content of insoluble and total collagen in the LV. The serum concentration of angiotensin (Ang) 1-8 (Ang II) and its downstream metabolites were reduced in the l-NAME group and remained unaltered by melatonin. The serum aldosterone level and its ratio to Ang II (AA2-ratio) were increased in the l-NAME group without being modified by melatonin. We conclude that l-NAME-hypertension is associated with reduced level of Ang II and its downstream metabolites and increased aldosterone concentration and AA2-ratio. Melatonin exerts its protective effect in l-NAME-induced hypertension without affecting RAAS.

Zobrazit více v PubMed

Simko F., Simko J. The potential role of nitric oxide in the hypertrophic growth of the left ventricle. Physiol. Res. 2000;49:37–46. PubMed

Simko F. Is NO the king? Pathophysiological benefit with uncertain clinical impact. Physiol. Res. 2007;56:S1–S6. PubMed

Pechanova O., Bernatova I., Pelouch V., Simko F. Protein remodelling of the heart in NO-deficient hypertension: The effect of captopril. J. Mol. Cell. Cardiol. 1997;29:3365–3374. doi: 10.1006/jmcc.1997.0566. PubMed DOI

Bernatova I., Pechanova O., Pelouch V., Simko F. Regression of chronic l-NAME-treatment-induced left ventricular hypertrophy: Effect of captopril. J. Mol. Cell. Cardiol. 2000;32:177–185. doi: 10.1006/jmcc.1999.1071. PubMed DOI

Bernatova I., Pechanova O., Simko F. Captopril prevents NO-deficient hypertension and left ventricular hypertrophy without affecting nitric oxide synthase activity in rats. Physiol. Res. 1996;45:311–316. PubMed

Holecyova A., Torok J., Bernatova I., Pechanova O. Restriction of nitric oxide rather than elevated blood pressure is responsible for alterations of vascular responses in nitric oxide-deficient hypertension. Physiol. Res. 1996;45:317–321. PubMed

Takemoto M., Egashira K., Usui M., Numaguchi K., Tomita H., Tsutsui H., Shimokawa H., Sueishi K., Takeshita A. Important role of tissue angiotensin-converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in rats. J. Clin. Investig. 1997;15:278–287. doi: 10.1172/JCI119156. PubMed DOI PMC

Matsumura R., Node K., Akashi M. Estimation methods for human circadian phase by use of peripheral tissues. Hypertens. Res. 2016;39:623–627. doi: 10.1038/hr.2016.68. PubMed DOI

Simko F. Chronobiology of blood pressure: Emerging implications of melatonin. Eur. J. Clin. Investig. 2012;42:1252–1254. doi: 10.1111/j.1365-2362.2012.02705.x. PubMed DOI

Simko F., Paulis L. Melatonin as a potential antihypertensive treatment. J. Pineal Res. 2007;42:319–322. doi: 10.1111/j.1600-079X.2007.00436.x. PubMed DOI

Paulis L., Simko F. Blood pressure modulation and cardiovascular protection by melatonin: Potential mechanisms behind. Physiol. Res. 2007;56:671–684. PubMed

Reiter R.J., Manchester L.C., Fuentes-Broto L., Tan D.X. Cardiac hypertrophy and remodelling: Pathophysiological consequences and protective effects of melatonin. J. Hypertens. 2010;28:S7–S12. doi: 10.1097/01.hjh.0000388488.51083.2b. PubMed DOI

Simko F., Pechanova O. Remodelling of the heart and vessels in experimental hypertension: Advances in protection. J. Hypertens. 2010;28:S1–S6. doi: 10.1097/01.hjh.0000388487.43460.db. PubMed DOI

Simko F., Reiter R.J., Pechanova O., Paulis L. Experimental models of melatonin-deficient hypertension. Front. Biosci. 2013;18:616–625. doi: 10.2741/4125. PubMed DOI

He B., Zhao Y., Xu L., Gao L., Su Y., Lin N., Pu J. The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury. J. Pineal Res. 2016;60:313–326. doi: 10.1111/jpi.12312. PubMed DOI

Nduhiraband I.F., Lamont K., Albertyn Z., Opie L.H., Lecour S. Role of toll-like receptor 4 in melatonin-induced cardioprotection. J. Pineal Res. 2016;60:39–47. doi: 10.1111/jpi.12286. PubMed DOI

Simko F., Pechanova O. Recent trends in hypertension treatment: Perspectives from animal studies. J. Hypertens. 2009;27:S1–S4. doi: 10.1097/01.hjh.0000358829.87815.d4. PubMed DOI

Reiter R.J., Mayo J.C., Tan D.X., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016;61:253–278. doi: 10.1111/jpi.12360. PubMed DOI

Opie L.H., Lecour S. Melatonin has multiorgan effects. Eur. Heart J. Cardiovasc. Pharmacother. 2016;2:258–265. doi: 10.1093/ehjcvp/pvv037. PubMed DOI

Simko F., Baka T., Paulis L., Reiter R.J. Elevated heart rate and nondipping heart rate as potential targets for melatonin: A review. J. Pineal Res. 2016;61:127–137. doi: 10.1111/jpi.12348. PubMed DOI

Reiter R.J., Tan D.X., Galano A. Melatonin: Exceeding expectations. Physiology. 2014;29:325–333. doi: 10.1152/physiol.00011.2014. PubMed DOI

Bernatova I., Pechanova O., Simko F. Effect of captopril in l-NAME-induced hypertension on the rat myocardium, aorta, brain and kidney. Exp. Physiol. 1999;84:1095–1105. PubMed

Simko F., Matuskova J., Luptak I., Krajcirovicova K., Kucharska J., Gvozdjakova A., Babal P., Pechanova O. Effect of simvastatin on remodeling of the left ventricle and aorta in l-NAME-induced hypertension. Life Sci. 2004;23:1211–1224. doi: 10.1016/j.lfs.2003.07.032. PubMed DOI

Simko F., Luptak I., Matuskova J., Krajcirovicova K., Sumbalova Z., Kucharska J., Gvozdjakova A., Simko J., Babal P., Pechanova O., et al. l-arginine fails to protect against myocardial remodelling in l-NAME-induced hypertension. Eur. J. Clin. Investig. 2005;35:362–368. doi: 10.1111/j.1365-2362.2005.01507.x. PubMed DOI

Paulis L., Pechanova O., Zicha J., Liskova S., Celec P., Mullerova M., Kollar J., Behuliak M., Kunes J., Adamcova M., et al. Melatonin improves the restoration of endothelium-derived constricting factor signalling and inner diameter in the rat femoral artery after cessation of l-NAME treatment. J. Hypertens. 2010;28(Suppl. 1):S19–S24. doi: 10.1097/01.hjh.0000388490.28213.de. PubMed DOI

Paulis L., Pechanova O., Zicha J., Krajcirovicova K., Barta A., Pelouch V., Adamcova M., Simko F. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-l-arginine-methyl ester hypertensive rats. J. Hypertens. 2009;27:S11–S16. doi: 10.1097/01.hjh.0000358831.33558.97. PubMed DOI

Simko F., Simko J. Heart failure and angiotensin converting enzyme inhibition: Problems and perspectives. Physiol. Res. 1999;48:1–8. PubMed

Simko F., Simko J., Fabryova M. ACE-inhibition and angiotensin II receptor blockers in chronic heart failure: Pathophysiological consideration of the unresolved battle. Cardiovasc. Drugs Ther. 2003;17:287–290. doi: 10.1023/A:1026215712983. PubMed DOI

Paulis L., Unger T. Novel therapeutic targets for hypertension. Nat. Rev. Cardiol. 2010;7:431–441. doi: 10.1038/nrcardio.2010.85. PubMed DOI

Nehme A., Zibara K. Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: How to achieve better end-organ protection? Hypertens. Res. 2017 doi: 10.1038/hr.2017.65. PubMed DOI

Hrenak J., Paulis L., Simko F. Angiotensin A/Alamandine/MrgD Axis: Another Clue to Understanding Cardiovascular Pathophysiology. Int. J. Mol. Sci. 2016;17:1098. doi: 10.3390/ijms17071098. PubMed DOI PMC

Basu R., Poglitsch M., Yogasundaram H., Thomas J., Rowe B.H., Oudit G.Y. Roles of Angiotensin Peptides and Recombinant Human ACE2 in Heart Failure. J. Am. Coll. Cardiol. 2017;69:805–819. doi: 10.1016/j.jacc.2016.11.064. PubMed DOI

Jiang F., Yang J., Zhang Y., Dong M., Wang S., Zhang Q., Liu F.F., Zhang K., Zhang C. Angiotensin-converting enzyme 2 and angiotensin 1–7: Novel therapeutic targets. Nat. Rev. Cardiol. 2014;11:413–426. doi: 10.1038/nrcardio.2014.59. PubMed DOI PMC

Papinska A.M., Mordwinkin N.M., Meeks C.J., Jadhav S.S., Rodgers K.E. Angiotensin-(1–7) administration benefits cardiac, renal and progenitor cell function in db/db mice. Br. J. Pharmacol. 2015 doi: 10.1111/bph.13225. PubMed DOI PMC

Joviano-Santos J.V., Santos-Miranda A., Joca H.C., Cruz J.S., Ferreira A.J. New insights into the elucidation of angiotensin-(1–7) in vivo antiarrhythmic effects and its related cellular mechanisms. Exp. Physiol. 2016;101:1506–1516. doi: 10.1113/EP085884. PubMed DOI

Zhang X., Cheng H.J., Zhou P., Kitzman D.W., Ferrario C.M., Li W.M., Cheng C.P. Cellular basis of angiotensin-(1–7)-induced augmentation of left ventricular functional performance in heart failure. Int. J. Cardiol. 2017;236:405–412. doi: 10.1016/j.ijcard.2017.01.071. PubMed DOI PMC

Yu L., Yuan K., Phuong H.T., Park B.M., Kim S.H. Angiotensin-(1-5), an active mediator of renin-angiotensin system, stimulates ANP secretion via Mas receptor. Peptides. 2017;86:33–41. doi: 10.1016/j.peptides.2016.09.009. PubMed DOI

Benter I.F., Yousif M.H., Anim J.T., Cojocel C., Diz D.I. Angiotensin-(1–7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with l-NAME. Am. J. Physiol. Heart Circ. Physiol. 2006;290:H684–H691. doi: 10.1152/ajpheart.00632.2005. PubMed DOI

Brilla C.G., Weber K.T. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J. Lab. Clin. Med. 1992;120:893–901. PubMed

Young M.J., Rickard A.J. Mineralocorticoid receptors in the heart: Lessons from cell-selective transgenic animals. J. Endocrinol. 2015;224:R1–R13. doi: 10.1530/JOE-14-0471. PubMed DOI

Pitt B., Zannad F., Remme W.J., Cody R., Castaigne A., Perez A., Palensky J., Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999;341:709–717. doi: 10.1056/NEJM199909023411001. PubMed DOI

Pitt B., Remme W., Zannad F., Neaton J., Martinez F., Roniker B., Bittman R., Hurley S., Kleiman J., Gatlin M., Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 2003;348:1309–1321. doi: 10.1056/NEJMoa030207. PubMed DOI

Fuller P.J., Young M.J. Mechanisms of mineralocorticoid action. Hypertension. 2005;46:1227–1235. doi: 10.1161/01.HYP.0000193502.77417.17. PubMed DOI

Young M.J. Mechanisms of mineralocorticoid receptor-mediated cardiac fibrosis and vascular inflammation. Curr. Opin. Nephrol. Hypertens. 2008;17:174–180. doi: 10.1097/MNH.0b013e3282f56854. PubMed DOI

Arnal J.F., Warin L., Michel J.B. Determinants of aortic cyclic guanosine monophosphate in hypertension induced by chronic inhibition of nitric oxide synthase. J. Clin. Investig. 1992;90:647–652. doi: 10.1172/JCI115906. PubMed DOI PMC

Usui M., Ichiki T., Katoh M., Egashira K., Takeshita A. Regulation of angiotensin II receptor expression by nitric oxide in rat adrenal gland. Hypertension. 1998;32:527–533. doi: 10.1161/01.HYP.32.3.527. PubMed DOI

Simko F., Matuskova J., Luptak I., Pincikova T., Krajcirovicova K., Stvrtina S., Pomsar J., Pelouch V., Paulis L., Pechanova O. Spironolactone differently influences remodeling of the left ventricle and aorta in l-NAME-induced hypertension. Physiol. Res. 2007;56:S25–S32. PubMed

Mulrow P.J. Angiotensin II and aldosterone regulation. Regul. Pept. 1999;17:27–32. doi: 10.1016/S0167-0115(99)00004-X. PubMed DOI

Faulkner J.L., Bruder-Nascimento T., Belin de Chantemèle E.J. The regulation of aldosterone secretion by leptin: Implications in obesity-related cardiovascular disease. Curr. Opin. Nephrol. Hypertens. 2017;10 doi: 10.1097/MNH.0000000000000384. PubMed DOI PMC

Rebuffat P., Malendowicz L.K., Nussdorfer G.G., Mazzocchi G. Stimulation of endogenous nitric oxide production is involved in the inhibitory effect of adrenomedullin on aldosterone secretion in the rat. Peptides. 2001;22:923–936. doi: 10.1016/S0196-9781(01)00418-1. PubMed DOI

Sainz J.M., Reche C., Rabano M.A., Mondillo C., Patrignani Z.J., Macarulla J.M., Pignataro O.P., Trueba M. Effects of nitric oxide on aldosterone synthesis and nitric oxide synthase activity in glomerulosa cells from bovine adrenal gland. Endocrine. 2004;24:61–71. doi: 10.1385/ENDO:24:1:061. PubMed DOI

Nithipatikom K., Holmes B.B., McCoy M.J., Hillard C.J., Campbell W.B. Chronic administration of nitric oxide reduces angiotensin II receptor type 1 expression and aldosterone synthesis in Zona glomerulosa cells. Am. J. Physiol. Endocrinol. Metab. 2004;287:E820–E827. doi: 10.1152/ajpendo.00183.2004. PubMed DOI

Ikeda H., Tsuruya K., Toyonaga J., Masutani K., Hayashida H., Hirakata H., Iida M. Spironolactone suppresses inflammation and prevents l-NAME-induced renal injury in rats. Kidney Int. 2009;75:147–155. doi: 10.1038/ki.2008.507. PubMed DOI

Muldowney J.A., Davis S.N., Vaughan D.E., Brown N.J. NO synthase inhibition increases aldosterone in humans. Hypertension. 2004;44:739–745. doi: 10.1161/01.HYP.0000143852.48258.f1. PubMed DOI

Suehiro T., Tsuruya K., Ikeda H., Toyonaga J., Yamada S., Noguchi H., Tokumoto M., Kitazono T. Systemic aldosterone, but not angiotensin II, plays a pivotal role in the pathogenesis of renal injury in chronic nitric oxide-deficient male rats. Endocrinology. 2015;156:2657–2666. doi: 10.1210/en.2014-1369. PubMed DOI

Chaswal M., Das S., Prasad J., Katyal A., Fahim M. Cardiac autonomic function in acutely nitric oxide deficient hypertensive rats: Role of the sympathetic nervous system and oxidative stress. Can. J. Physiol. Pharmacol. 2011;89:865–874. doi: 10.1139/y11-084. PubMed DOI

Acuna-Castroviejo D., Escames G., Venegas C., Diaz-Casado M.E., LimaCabello E., Lopez L.C., Rosales-Corall S., Tan D.X., Reiter R.J. Extrapineal melatonin: Sources, regulation, and potential functions. Cell. Mol. Life Sci. 2014;71:2997–3025. doi: 10.1007/s00018-014-1579-2. PubMed DOI PMC

Tan D.X., Manchester L.C., Reiter R.J. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal. Med. Hypotheses. 2016;86:3–9. doi: 10.1016/j.mehy.2015.11.018. PubMed DOI

Tan D.X., Manchester L.C., Esteban-Zubero E., Zhou Z., Reiter R.J. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules. 2015;20:18886–18906. doi: 10.3390/molecules201018886. PubMed DOI PMC

Mukherjee D., Ghosh A.K., Dutta M., Mitra E., Mallick S., Saha B., Reiter R.J., Bandyopadhyay D. Mechanisms of isoproterenol-induced cardiac mitochondrial damage: Protective actions of melatonin. J. Pineal Res. 2015;58:275–290. doi: 10.1111/jpi.12213. PubMed DOI

Agabiti-Rosei C., Favero G., De Ciuceis C., Rossini C., Porteri E., Rodella L.F., Franceschetti L., Maria Sarkar A., Agabiti-Rosei E., Rizzoni D., et al. Effect of long-term treatment with melatonin on vascular markers of oxidative stress/inflammation and on the anticontractile activity of perivascular fat in aging mice. Hypertens. Res. 2017;40:41–50. doi: 10.1038/hr.2016.103. PubMed DOI

Simko F., Pechanova O. Potential roles of melatonin and chronotherapy among the new trends in hypertension treatment. J. Pineal Res. 2009;47:127–133. doi: 10.1111/j.1600-079X.2009.00697.x. PubMed DOI

Simko F., Paulis L. Antifibrotic effect of melatonin—Perspective protection in hypertensive heart disease. Int. J. Cardiol. 2013;168:2876–2877. doi: 10.1016/j.ijcard.2013.03.139. PubMed DOI

Dominguez-Rodriguez A., Abreu-Gonzalez P., Piccolo R., Galasso G., Reiter R.J. Melatonin is associated with reverse remodeling after cardiac resynchronization therapy in patients with heart failure and ventricular dyssynchrony. Int. J. Cardiol. 2016;221:359–363. doi: 10.1016/j.ijcard.2016.07.056. PubMed DOI

Dominguez-Rodriguez A., Abreu-Gonzalez P., de la Torre-Hernandez J.M., Gonzalez-Gonzalez J., Garcia-Camarero T., Consuegra-Sanchez L., Garcia-Saiz M.D., Aldea-Perona A., Virgos-Aller T., Azpeitia A., et al. MARIA Investigators. Effect of intravenous and intracoronary melatonin as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: Results of the Melatonin Adjunct in the acute myocaRdial Infarction treated with Angioplasty trial. J. Pineal Res. 2017;62 doi: 10.1111/jpi.12374. PubMed DOI

Hu W., Ma Z., Jiang S., Fan C., Deng C., Yan X., Di S., Lv J., Reiter R.J., Yang Y. Melatonin: The dawning of a treatment for fibrosis? J. Pineal Res. 2016;60:121–131. doi: 10.1111/jpi.12302. PubMed DOI

Hu J., Zhang L., Yang Y., Guo Y., Fan Y., Zhang M., Man W., Gao E., Hu W., Reiter R.J., et al. Melatonin alleviates postinfarction cardiac remodeling and dysfunction by inhibiting Mst1. J. Pineal Res. 2017;62 doi: 10.1111/jpi.12368. PubMed DOI

Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Mullerova M., Bednarova K., Adamcova M., Paulis L. Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats. J. Hypertens. 2009;27:S5–S10. doi: 10.1097/01.hjh.0000358830.95439.e8. PubMed DOI

Paulis L., Pechanova O., Zicha J., Barta A., Gardlik R., Celec P., Kunes J., Simko F. Melatonin interactions with blood pressure and vascular function during l-NAME-induced hypertension. J. Pineal Res. 2010;48:102–108. doi: 10.1111/j.1600-079X.2009.00732.x. PubMed DOI

Simko F., Pechanova O., Repova-Bednarova K., Krajcirovicova K., Celec P., Kamodyova N., Zorad S., Kucharska J., Gvozdjakova A., Adamcova M., et al. Hypertension and cardiovascular remodelling in rats exposed to continuous light: Protection by ACE-inhibition and melatonin. Mediat. Inflamm. 2014;2014:703175. doi: 10.1155/2014/703175. PubMed DOI PMC

Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Celec P., Palffy R., Bednarova K., Vrankova S., Adamcova M., Paulis L. Continuous light and l-NAME-induced left ventricular remodelling: Different protection with melatonin and captopril. J. Hypertens. 2010;28:S13–S18. doi: 10.1097/01.hjh.0000388489.28213.08. PubMed DOI

Simko F., Bednarova-Repova K., Krajcirovicova K., Hrenak J., Celec P., Kamodyova N., Gajdosechova L., Zorad S., Adamcova M. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J. Pineal Res. 2014;57:177–184. doi: 10.1111/jpi.12154. PubMed DOI

Simko F., Pechanova O., Repova K., Aziriova S., Krajcirovicova K., Celec P., Tothova L., Vrankova S., Balazova L., Zorad S., et al. Lactacystin-Induced Model of Hypertension in Rats: Effects of Melatonin and Captopril. Int. J. Mol. Sci. 2017;25:1612. doi: 10.3390/ijms18081612. PubMed DOI PMC

Moore R.Y. Neural control of the pineal gland. Behav. Brain Res. 1996;73:125–130. doi: 10.1016/0166-4328(96)00083-6. PubMed DOI

Reiter R.J. Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 1991;12:151–180. doi: 10.1210/edrv-12-2-151. PubMed DOI

Pechanova O., Paulis L., Simko F. Peripheral and central effects of melatonin on blood pressure regulation. Int. J. Mol. Sci. 2014;15:17920–17937. doi: 10.3390/ijms151017920. PubMed DOI PMC

Girouard H., Denault C., Chulak C., de Champlain J. Treatment by N-acetylcysteine and melatonin increases cardiac baroreflex and improves antioxidant reserve. Am. J. Hypertens. 2004;17:947–954. doi: 10.1016/j.amjhyper.2004.06.009. PubMed DOI

Arangino S., Cagnacci A., Angiolucci M., Vacca A.M., Longu G., Volpe A., Melis G.B. Effects of melatonin on vascular reactivity, catecholamine levels, and blood pressure in healthy men. Am. J. Cardiol. 1999;83:1417–1419. doi: 10.1016/S0002-9149(99)00112-5. PubMed DOI

Pelouch V., Milerova M., Ostadal B., Samanek M., Hucan B. Protein profiling of human atrial and ventricular musculature: The effect of normoxaemia and hypoxaemia in congenital heart diseases. Physiol. Res. 1993;42:235–242. PubMed

Reddy K., Enwemeka C.S. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI

Sharp S., Poglitsch M., Zilla P., Davies N.H., Sturrock E.D. Pharmacodynamic effects of C-domain-specific ACE inhibitors on the renin-angiotensin system in myocardial infarcted rats. J. Renin Angiotensin Aldosterone Syst. 2015;16:1149–1158. doi: 10.1177/1470320314568438. PubMed DOI

Pavo N., Goliasch G., Wurm R., Novak J., Strunk G., Gyöngyösi M., Poglitsch M., Säemann M.D., Hülsmann M. Low- and High-renin Heart Failure Phenotypes with Clinical Implications. Clin Chem. 2017 doi: 10.1373/clinchem.2017.278705. PubMed DOI

Pechanova O., Zicha J., Paulis L., Zenebe W., Dobesova Z., Kojsova S., Jendekova L., Sladkova M., Dovinova I., Simko F., et al. The effect of N-acetylcysteine and melatonin in adult spontaneously hypertensive rats with established hypertension. Eur. J. Pharmacol. 2007;30:129–136. doi: 10.1016/j.ejphar.2007.01.035. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...