• This record comes from PubMed

Sacubitril/Valsartan Alleviates Cardiac Remodeling and Dysfunction in L-NAME-Induced Hypertension and Hypertensive Heart Disease

. 2024 Mar 25 ; 12 (4) : . [epub] 20240325

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
1/0048/23. vega
20-0421 APVV

Links

PubMed 38672089
PubMed Central PMC11047969
DOI 10.3390/biomedicines12040733
PII: biomedicines12040733
Knihovny.cz E-resources

There is ample evidence on the benefit of angiotensin receptor-neprilysin inhibitors (ARNIs) in heart failure, yet data regarding the potential protective action of ARNIs in hypertensive heart disease are sparse. The aim of this study was to show whether an ARNI exerts a protective effect in a model of Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension with a hypertensive heart and to compare this potential benefit with an angiotensin-converting enzyme inhibitor, captopril. Five groups of adult male Wistar rats were studied (14 per group) for four weeks: untreated controls; ARNI (68 mg/kg/day); L-NAME (40 mg/kg/day); L-NAME treated with ARNI; and L-NAME treated with captopril (100 mg/kg/day). L-NAME administration induced hypertension, accompanied by increased left ventricular (LV) weight and fibrotic rebuilding of the LV in terms of increased concentration and content of hydroxyproline in insoluble collagen and in total collagen and with a histological finding of fibrosis. These alterations were associated with a compromised systolic and diastolic LV function. Treatment with either an ARNI or captopril reduced systolic blood pressure (SBP), alleviated LV hypertrophy and fibrosis, and prevented the development of both systolic and diastolic LV dysfunction. Moreover, the serum levels of prolactin and prolactin receptor were reduced significantly by ARNI and slightly by captopril. In conclusion, in L-NAME-induced hypertension, the dual inhibition of neprilysin and AT1 receptors by ARNI reduced SBP and prevented the development of LV hypertrophy, fibrosis, and systolic and diastolic dysfunction. These data suggest that ARNI could provide protection against LV structural remodeling and functional disorders in hypertensive heart disease.

See more in PubMed

Al Ghorani H., Götzinger F., Böhm M., Mahfoud F. Arterial Hypertension—Clinical Trials Update 2021. Nutr. Metab. Cardiovasc. Dis. 2022;32:21–31. doi: 10.1016/j.numecd.2021.09.007. PubMed DOI PMC

Masenga S.K., Kirabo A. Hypertensive Heart Disease: Risk Factors, Complications and Mechanisms. Front. Cardiovasc. Med. 2023;10:1205475. doi: 10.3389/fcvm.2023.1205475. PubMed DOI PMC

Zile M.R., Brutsaert D.L. New Concepts in Diastolic Dysfunction and Diastolic Heart Failure: Part II: Causal Mechanisms and Treatment. Circulation. 2002;105:1503–1508. doi: 10.1161/hc1202.105290. PubMed DOI

Kuwahara K. The Natriuretic Peptide System in Heart Failure: Diagnostic and Therapeutic Implications. Pharmacol. Ther. 2021;227:107863. doi: 10.1016/j.pharmthera.2021.107863. PubMed DOI

Huo J.-Y., Jiang W.-Y., Chen C., Chen R., Ge T.-T., Chang Q., Zhu L., Geng J., Jiang Z.-X., Shan Q.-J. Effects of Angiotensin Receptor Neprilysin Inhibitors on Inducibility of Ventricular Arrhythmias in Rats with Ischemic Cardiomyopathy. Int. Heart J. 2019;60:1168–1175. doi: 10.1536/ihj.19-065. PubMed DOI

McMurray J.J.V. Neprilysin Inhibition to Treat Heart Failure: A Tale of Science, Serendipity, and Second Chances. Eur. J. Heart Fail. 2015;17:242–247. doi: 10.1002/ejhf.250. PubMed DOI

Packer M., McMurray J.J.V., Desai A.S., Gong J., Lefkowitz M.P., Rizkala A.R., Rouleau J.L., Shi V.C., Solomon S.D., Swedberg K., et al. Angiotensin Receptor Neprilysin Inhibition Compared with Enalapril on the Risk of Clinical Progression in Surviving Patients with Heart Failure. Circulation. 2015;131:54–61. doi: 10.1161/CIRCULATIONAHA.114.013748. PubMed DOI

Solomon S.D., McMurray J.J.V., Anand I.S., Ge J., Lam C.S.P., Maggioni A.P., Martinez F., Packer M., Pfeffer M.A., Pieske B., et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019;381:1609–1620. doi: 10.1056/NEJMoa1908655. PubMed DOI

Heidenreich P.A., Bozkurt B., Aguilar D., Allen L.A., Byun J.J., Colvin M.M., Deswal A., Drazner M.H., Dunlay S.M., Evers L.R., et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022;79:e263–e421. doi: 10.1016/j.jacc.2021.12.012. PubMed DOI

Ali A., Ortega-Legaspi J.M. Is It Time to Adopt Angiotensin Receptor-Neprilysin Inhibitors (ARNI) Therapy as Standard of Care for the Management of Hypertension? Ann. Palliat. Med. 2022;11:3040–3042. doi: 10.21037/apm-22-1073. PubMed DOI

Lee V., Zheng Q., Toh D.-F., Pua C.J., Bryant J.A., Lee C.-H., Cook S.A., Butler J., Díez J., Richards A.M., et al. Sacubitril/Valsartan versus Valsartan in Regressing Myocardial Fibrosis in Hypertension: A Prospective, Randomized, Open-Label, Blinded Endpoint Clinical Trial Protocol. Front. Cardiovasc. Med. 2023;10:1248468. doi: 10.3389/fcvm.2023.1248468. PubMed DOI PMC

Liu J., Rigel D.F. Echocardiographic Examination in Rats and Mice. Methods Mol. Biol. 2009;573:139–155. doi: 10.1007/978-1-60761-247-6_8. PubMed DOI

Reddy G.K., Enwemeka C.S. A Simplified Method for the Analysis of Hydroxyproline in Biological Tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI

Stanko P., Baka T., Repova K., Aziriova S., Krajcirovicova K., Barta A., Janega P., Adamcova M., Paulis L., Simko F. Ivabradine Ameliorates Kidney Fibrosis in L-NAME-Induced Hypertension. Front. Med. 2020;7:325. doi: 10.3389/fmed.2020.00325. PubMed DOI PMC

Simko F., Simko J. The Potential Role of Nitric Oxide in the Hypertrophic Growth of the Left Ventricle. Physiol. Res. 2000;49:37–46. PubMed

Takemoto M., Egashira K., Usui M., Numaguchi K., Tomita H., Tsutsui H., Shimokawa H., Sueishi K., Takeshita A. Important Role of Tissue Angiotensin-Converting Enzyme Activity in the Pathogenesis of Coronary Vascular and Myocardial Structural Changes Induced by Long-Term Blockade of Nitric Oxide Synthesis in Rats. J. Clin. Investig. 1997;99:278–287. doi: 10.1172/JCI119156. PubMed DOI PMC

Corremans R., D’Haese P.C., Vervaet B.A., Verhulst A. L-NAME Administration Enhances Diabetic Kidney Disease Development in an STZ/NAD Rat Model. Int. J. Mol. Sci. 2021;22:12767. doi: 10.3390/ijms222312767. PubMed DOI PMC

Simko F., Baka T., Poglitsch M., Repova K., Aziriova S., Krajcirovicova K., Zorad S., Adamcova M., Paulis L. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int. J. Mol. Sci. 2018;19:3017. doi: 10.3390/ijms19103017. PubMed DOI PMC

Simko F., Baka T., Stanko P., Repova K., Krajcirovicova K., Aziriova S., Domenig O., Zorad S., Adamcova M., Paulis L. Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin-Angiotensin-Aldosterone System. Biomedicines. 2022;10:1844. doi: 10.3390/biomedicines10081844. PubMed DOI PMC

Simko F., Baka T., Krajcirovicova K., Repova K., Aziriova S., Zorad S., Poglitsch M., Adamcova M., Reiter R.J., Paulis L. Effect of Melatonin on the Renin-Angiotensin-Aldosterone System in l-NAME-Induced Hypertension. Molecules. 2018;23:265. doi: 10.3390/molecules23020265. PubMed DOI PMC

Muldowney J.A.S., Davis S.N., Vaughan D.E., Brown N.J. NO Synthase Inhibition Increases Aldosterone in Humans. Hypertension. 2004;44:739–745. doi: 10.1161/01.HYP.0000143852.48258.f1. PubMed DOI

Suehiro T., Tsuruya K., Ikeda H., Toyonaga J., Yamada S., Noguchi H., Tokumoto M., Kitazono T. Systemic Aldosterone, But Not Angiotensin II, Plays a Pivotal Role in the Pathogenesis of Renal Injury in Chronic Nitric Oxide-Deficient Male Rats. Endocrinology. 2015;156:2657–2666. doi: 10.1210/en.2014-1369. PubMed DOI

Klug D., Robert V., Swynghedauw B. Role of Mechanical and Hormonal Factors in Cardiac Remodeling and the Biologic Limits of Myocardial Adaptation. Am. J. Cardiol. 1993;71:A46–A54. doi: 10.1016/0002-9149(93)90245-8. PubMed DOI

Tu W., Pratt J.H. Autonomous Aldosterone Production and Left Ventricular Hypertrophy. Hypertension. 2020;75:1409–1411. doi: 10.1161/HYPERTENSIONAHA.120.14811. PubMed DOI

Clerico A., Vittorini S., Passino C. Measurement of the Pro-Hormone of Brain Type Natriuretic Peptide (proBNP): Methodological Considerations and Pathophysiological Relevance. Clin. Chem. Lab. Med. 2011;49:1949–1954. doi: 10.1515/CCLM.2011.686. PubMed DOI

Docherty K.F., Vaduganathan M., Solomon S.D., McMurray J.J.V. Sacubitril/Valsartan. JACC Heart Fail. 2020;8:800–810. doi: 10.1016/j.jchf.2020.06.020. PubMed DOI PMC

Jiang W.-Y., Huo J.-Y., Chen C., Chen R., Ge T.-T., Chang Q., Hu J.-W., Geng J., Jiang Z.-X., Shan Q.-J. Renal Denervation Ameliorates Post-Infarction Cardiac Remodeling in Rats through Dual Regulation of Oxidative Stress in the Heart and Brain. Biomed. Pharmacother. 2019;118:109243. doi: 10.1016/j.biopha.2019.109243. PubMed DOI

Uijl E., ’t Hart D.C., Roksnoer L.C.W., Groningen M.C.C., van Veghel R., Garrelds I.M., de Vries R., van der Vlag J., Zietse R., Nijenhuis T., et al. Angiotensin-Neprilysin Inhibition Confers Renoprotection in Rats with Diabetes and Hypertension by Limiting Podocyte Injury. J. Hypertens. 2020;38:755–764. doi: 10.1097/HJH.0000000000002326. PubMed DOI

Abdin A., Schulz M., Riemer U., Hadëri B., Wachter R., Laufs U., Bauersachs J., Kindermann I., Vukadinović D., Böhm M. Sacubitril/Valsartan in Heart Failure: Efficacy and Safety in and Outside Clinical Trials. ESC Heart Fail. 2022;9:3737–3750. doi: 10.1002/ehf2.14097. PubMed DOI PMC

Pechánová O., Bernátová I., Pelouch V., Simko F. Protein Remodelling of the Heart in NO-Deficient Hypertension: The Effect of Captopril. J. Mol. Cell Cardiol. 1997;29:3365–3374. doi: 10.1006/jmcc.1997.0566. PubMed DOI

Bernátová I., Pechánová O., Simko F. Effect of Captopril in L-NAME-Induced Hypertension on the Rat Myocardium, Aorta, Brain and Kidney. Exp. Physiol. 1999;84:1095–1105. PubMed

Bernátová I., Pechánová O., Pelouch V., Simko F. Regression of Chronic L -NAME-Treatment-Induced Left Ventricular Hypertrophy: Effect of Captopril. J. Mol. Cell Cardiol. 2000;32:177–185. doi: 10.1006/jmcc.1999.1071. PubMed DOI

von Lueder T.G., Wang B.H., Kompa A.R., Huang L., Webb R., Jordaan P., Atar D., Krum H. Angiotensin Receptor Neprilysin Inhibitor LCZ696 Attenuates Cardiac Remodeling and Dysfunction after Myocardial Infarction by Reducing Cardiac Fibrosis and Hypertrophy. Circ. Heart Fail. 2015;8:71–78. doi: 10.1161/CIRCHEARTFAILURE.114.001785. PubMed DOI

Liu J., Zheng X., Zhang C., Zhang C., Bu P. Lcz696 Alleviates Myocardial Fibrosis After Myocardial Infarction Through the sFRP-1/Wnt/β-Catenin Signaling Pathway. Front. Pharmacol. 2021;12:724147. doi: 10.3389/fphar.2021.724147. PubMed DOI PMC

Zhang W., Liu J., Fu Y., Ji H., Fang Z., Zhou W., Fan H., Zhang Y., Liao Y., Yang T., et al. Sacubitril/Valsartan Reduces Fibrosis and Alleviates High-Salt Diet-Induced HFpEF in Rats. Front. Pharmacol. 2020;11:600953. doi: 10.3389/fphar.2020.600953. PubMed DOI PMC

Tashiro K., Kuwano T., Ideishi A., Morita H., Idemoto Y., Goto M., Suematsu Y., Miura S.-I. Sacubitril/Valsartan Inhibits Cardiomyocyte Hypertrophy in Angiotensin II-Induced Hypertensive Mice Independent of a Blood Pressure-Lowering Effect. Cardiol. Res. 2020;11:376–385. doi: 10.14740/cr1137. PubMed DOI PMC

Sobiborowicz-Sadowska A.M., Kamińska K., Cudnoch-Jędrzejewska A. Neprilysin Inhibition in the Prevention of Anthracycline-Induced Cardiotoxicity. Cancers. 2023;15:312. doi: 10.3390/cancers15010312. PubMed DOI PMC

Li Q., Fang Y., Peng D.-W., Li L.-A., Deng C.-Y., Yang H., Kuang S.-J., Li Q.-Q., Zhang M.-Z., Zeng P., et al. Sacubitril/Valsartan Reduces Susceptibility to Atrial Fibrillation by Improving Atrial Remodeling in Spontaneously Hypertensive Rats. Eur. J. Pharmacol. 2023;952:175754. doi: 10.1016/j.ejphar.2023.175754. PubMed DOI

Xiao Y., Zhou Z.-Y., Sun J.-C., Xing W., Yan J., Xu W.-J., Lu Y.-S., Liu T., Jin Y. Protective Effect of Novel Angiotensin Receptor Neprilysin Inhibitor S086 on Target Organ Injury in Spontaneously Hypertensive Rats. Biomed. Pharmacother. 2024;170:115968. doi: 10.1016/j.biopha.2023.115968. PubMed DOI

Wang Y., Zhou R., Lu C., Chen Q., Xu T., Li D. Effects of the Angiotensin-Receptor Neprilysin Inhibitor on Cardiac Reverse Remodeling: Meta-Analysis. J. Am. Heart Assoc. 2019;8:e012272. doi: 10.1161/JAHA.119.012272. PubMed DOI PMC

Bole-Feysot C., Goffin V., Edery M., Binart N., Kelly P.A. Prolactin (PRL) and Its Receptor: Actions, Signal Transduction Pathways and Phenotypes Observed in PRL Receptor Knockout Mice. Endocr. Rev. 1998;19:225–268. doi: 10.1210/edrv.19.3.0334. PubMed DOI

Chang A.S., Grant R., Tomita H., Kim H.-S., Smithies O., Kakoki M. Prolactin Alters Blood Pressure by Modulating the Activity of Endothelial Nitric Oxide Synthase. Proc. Natl. Acad. Sci. USA. 2016;113:12538–12543. doi: 10.1073/pnas.1615051113. PubMed DOI PMC

Yavuz D., Deyneli O., Akpinar I., Yildiz E., Gözü H., Sezgin O., Haklar G., Akalin S. Endothelial Function, Insulin Sensitivity and Inflammatory Markers in Hyperprolactinemic Pre-Menopausal Women. Eur. J. Endocrinol. 2003;149:187–193. doi: 10.1530/eje.0.1490187. PubMed DOI

Carrero J.J., Kyriazis J., Sonmez A., Tzanakis I., Qureshi A.R., Stenvinkel P., Saglam M., Stylianou K., Yaman H., Taslipinar A., et al. Prolactin Levels, Endothelial Dysfunction, and the Risk of Cardiovascular Events and Mortality in Patients with CKD. Clin. J. Am. Soc. Nephrol. 2012;7:207–215. doi: 10.2215/CJN.06840711. PubMed DOI PMC

Georgiopoulos G.A., Stamatelopoulos K.S., Lambrinoudaki I., Lykka M., Kyrkou K., Rizos D., Creatsa M., Christodoulakos G., Alevizaki M., Sfikakis P.P., et al. Prolactin and Preclinical Atherosclerosis in Menopausal Women with Cardiovascular Risk Factors. Hypertension. 2009;54:98–105. doi: 10.1161/HYPERTENSIONAHA.109.132100. PubMed DOI

Aguayo-Cerón K.A., Calzada-Mendoza C.C., Méndez-Bolaina E., Romero-Nava R., Ocharan-Hernández M.E. The Regulatory Effect of Bromocriptine on Cardiac Hypertrophy by Prolactin and D2 Receptor Modulation. Clin. Exp. Hypertens. 2020;42:675–679. doi: 10.1080/10641963.2020.1772814. PubMed DOI

Therkelsen K.E., Abraham T.M., Pedley A., Massaro J.M., Sutherland P., Hoffmann U., Fox C.S. Association Between Prolactin and Incidence of Cardiovascular Risk Factors in the Framingham Heart Study. J. Am. Heart Assoc. 2016;5:e002640. doi: 10.1161/JAHA.115.002640. PubMed DOI PMC

Shen Y., Yang Q., Hu T., Wang Y., Chen L., Gao F., Zhu W., Hu G., Zhou J., Wang C., et al. Association of Prolactin with All-Cause and Cardiovascular Mortality among Patients with Type 2 Diabetes: A Real-World Study. Eur. J. Prev. Cardiol. 2023;30:1439–1447. doi: 10.1093/eurjpc/zwad112. PubMed DOI

Papazoglou A.S., Leite A.R., Moysidis D.V., Anastasiou V., Daios S., Borges-Canha M., Giannopoulos G., Neves J.S., Ziakas A., Giannakoulas G. Serum Prolactin Levels and Mortality in Adults without Prolactinoma: A Meta-Analysis. J. Clin. Endocrinol. Metab. 2024:dgae087. doi: 10.1210/clinem/dgae087. ahead of print . PubMed DOI

Simko F., Matuskova J., Luptak I., Krajcirovicova K., Kucharska J., Gvozdjakova A., Babal P., Pechanova O. Effect of Simvastatin on Remodeling of the Left Ventricle and Aorta in L-NAME-Induced Hypertension. Life Sci. 2004;74:1211–1224. doi: 10.1016/j.lfs.2003.07.032. PubMed DOI

Simko F., Luptak I., Matuskova J., Krajcirovicova K., Sumbalova Z., Kucharska J., Gvozdjakova A., Simko J., Babal P., Pechanova O., et al. L-Arginine Fails to Protect against Myocardial Remodelling in L-NAME-Induced Hypertension. Eur. J. Clin. Investig. 2005;35:362–368. doi: 10.1111/j.1365-2362.2005.01507.x. PubMed DOI

Bartosz M., Kedziora J., Bartosz G. Antioxidant and Prooxidant Properties of Captopril and Enalapril. Free Radic. Biol. Med. 1997;23:729–735. doi: 10.1016/S0891-5849(97)00014-2. PubMed DOI

Bettencourt P., Fonseca C., Franco F., Andrade A., Brito D. Interpretation of B-Type Natriuretic Peptides in the Era of Angiotensin Receptor-Neprilysin Inhibitors. Rev. Port. Cardiol. 2017;36:881–884. doi: 10.1016/j.repc.2017.09.014. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...