Sacubitril/Valsartan Alleviates Cardiac Remodeling and Dysfunction in L-NAME-Induced Hypertension and Hypertensive Heart Disease
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
1/0048/23.
vega
20-0421
APVV
PubMed
38672089
PubMed Central
PMC11047969
DOI
10.3390/biomedicines12040733
PII: biomedicines12040733
Knihovny.cz E-resources
- Keywords
- L-NAME, fibrosis, hypertensive heart disease, hypertrophy, prolactin, sacubitril/valsartan,
- Publication type
- Journal Article MeSH
There is ample evidence on the benefit of angiotensin receptor-neprilysin inhibitors (ARNIs) in heart failure, yet data regarding the potential protective action of ARNIs in hypertensive heart disease are sparse. The aim of this study was to show whether an ARNI exerts a protective effect in a model of Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension with a hypertensive heart and to compare this potential benefit with an angiotensin-converting enzyme inhibitor, captopril. Five groups of adult male Wistar rats were studied (14 per group) for four weeks: untreated controls; ARNI (68 mg/kg/day); L-NAME (40 mg/kg/day); L-NAME treated with ARNI; and L-NAME treated with captopril (100 mg/kg/day). L-NAME administration induced hypertension, accompanied by increased left ventricular (LV) weight and fibrotic rebuilding of the LV in terms of increased concentration and content of hydroxyproline in insoluble collagen and in total collagen and with a histological finding of fibrosis. These alterations were associated with a compromised systolic and diastolic LV function. Treatment with either an ARNI or captopril reduced systolic blood pressure (SBP), alleviated LV hypertrophy and fibrosis, and prevented the development of both systolic and diastolic LV dysfunction. Moreover, the serum levels of prolactin and prolactin receptor were reduced significantly by ARNI and slightly by captopril. In conclusion, in L-NAME-induced hypertension, the dual inhibition of neprilysin and AT1 receptors by ARNI reduced SBP and prevented the development of LV hypertrophy, fibrosis, and systolic and diastolic dysfunction. These data suggest that ARNI could provide protection against LV structural remodeling and functional disorders in hypertensive heart disease.
See more in PubMed
Al Ghorani H., Götzinger F., Böhm M., Mahfoud F. Arterial Hypertension—Clinical Trials Update 2021. Nutr. Metab. Cardiovasc. Dis. 2022;32:21–31. doi: 10.1016/j.numecd.2021.09.007. PubMed DOI PMC
Masenga S.K., Kirabo A. Hypertensive Heart Disease: Risk Factors, Complications and Mechanisms. Front. Cardiovasc. Med. 2023;10:1205475. doi: 10.3389/fcvm.2023.1205475. PubMed DOI PMC
Zile M.R., Brutsaert D.L. New Concepts in Diastolic Dysfunction and Diastolic Heart Failure: Part II: Causal Mechanisms and Treatment. Circulation. 2002;105:1503–1508. doi: 10.1161/hc1202.105290. PubMed DOI
Kuwahara K. The Natriuretic Peptide System in Heart Failure: Diagnostic and Therapeutic Implications. Pharmacol. Ther. 2021;227:107863. doi: 10.1016/j.pharmthera.2021.107863. PubMed DOI
Huo J.-Y., Jiang W.-Y., Chen C., Chen R., Ge T.-T., Chang Q., Zhu L., Geng J., Jiang Z.-X., Shan Q.-J. Effects of Angiotensin Receptor Neprilysin Inhibitors on Inducibility of Ventricular Arrhythmias in Rats with Ischemic Cardiomyopathy. Int. Heart J. 2019;60:1168–1175. doi: 10.1536/ihj.19-065. PubMed DOI
McMurray J.J.V. Neprilysin Inhibition to Treat Heart Failure: A Tale of Science, Serendipity, and Second Chances. Eur. J. Heart Fail. 2015;17:242–247. doi: 10.1002/ejhf.250. PubMed DOI
Packer M., McMurray J.J.V., Desai A.S., Gong J., Lefkowitz M.P., Rizkala A.R., Rouleau J.L., Shi V.C., Solomon S.D., Swedberg K., et al. Angiotensin Receptor Neprilysin Inhibition Compared with Enalapril on the Risk of Clinical Progression in Surviving Patients with Heart Failure. Circulation. 2015;131:54–61. doi: 10.1161/CIRCULATIONAHA.114.013748. PubMed DOI
Solomon S.D., McMurray J.J.V., Anand I.S., Ge J., Lam C.S.P., Maggioni A.P., Martinez F., Packer M., Pfeffer M.A., Pieske B., et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019;381:1609–1620. doi: 10.1056/NEJMoa1908655. PubMed DOI
Heidenreich P.A., Bozkurt B., Aguilar D., Allen L.A., Byun J.J., Colvin M.M., Deswal A., Drazner M.H., Dunlay S.M., Evers L.R., et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022;79:e263–e421. doi: 10.1016/j.jacc.2021.12.012. PubMed DOI
Ali A., Ortega-Legaspi J.M. Is It Time to Adopt Angiotensin Receptor-Neprilysin Inhibitors (ARNI) Therapy as Standard of Care for the Management of Hypertension? Ann. Palliat. Med. 2022;11:3040–3042. doi: 10.21037/apm-22-1073. PubMed DOI
Lee V., Zheng Q., Toh D.-F., Pua C.J., Bryant J.A., Lee C.-H., Cook S.A., Butler J., Díez J., Richards A.M., et al. Sacubitril/Valsartan versus Valsartan in Regressing Myocardial Fibrosis in Hypertension: A Prospective, Randomized, Open-Label, Blinded Endpoint Clinical Trial Protocol. Front. Cardiovasc. Med. 2023;10:1248468. doi: 10.3389/fcvm.2023.1248468. PubMed DOI PMC
Liu J., Rigel D.F. Echocardiographic Examination in Rats and Mice. Methods Mol. Biol. 2009;573:139–155. doi: 10.1007/978-1-60761-247-6_8. PubMed DOI
Reddy G.K., Enwemeka C.S. A Simplified Method for the Analysis of Hydroxyproline in Biological Tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI
Stanko P., Baka T., Repova K., Aziriova S., Krajcirovicova K., Barta A., Janega P., Adamcova M., Paulis L., Simko F. Ivabradine Ameliorates Kidney Fibrosis in L-NAME-Induced Hypertension. Front. Med. 2020;7:325. doi: 10.3389/fmed.2020.00325. PubMed DOI PMC
Simko F., Simko J. The Potential Role of Nitric Oxide in the Hypertrophic Growth of the Left Ventricle. Physiol. Res. 2000;49:37–46. PubMed
Takemoto M., Egashira K., Usui M., Numaguchi K., Tomita H., Tsutsui H., Shimokawa H., Sueishi K., Takeshita A. Important Role of Tissue Angiotensin-Converting Enzyme Activity in the Pathogenesis of Coronary Vascular and Myocardial Structural Changes Induced by Long-Term Blockade of Nitric Oxide Synthesis in Rats. J. Clin. Investig. 1997;99:278–287. doi: 10.1172/JCI119156. PubMed DOI PMC
Corremans R., D’Haese P.C., Vervaet B.A., Verhulst A. L-NAME Administration Enhances Diabetic Kidney Disease Development in an STZ/NAD Rat Model. Int. J. Mol. Sci. 2021;22:12767. doi: 10.3390/ijms222312767. PubMed DOI PMC
Simko F., Baka T., Poglitsch M., Repova K., Aziriova S., Krajcirovicova K., Zorad S., Adamcova M., Paulis L. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int. J. Mol. Sci. 2018;19:3017. doi: 10.3390/ijms19103017. PubMed DOI PMC
Simko F., Baka T., Stanko P., Repova K., Krajcirovicova K., Aziriova S., Domenig O., Zorad S., Adamcova M., Paulis L. Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin-Angiotensin-Aldosterone System. Biomedicines. 2022;10:1844. doi: 10.3390/biomedicines10081844. PubMed DOI PMC
Simko F., Baka T., Krajcirovicova K., Repova K., Aziriova S., Zorad S., Poglitsch M., Adamcova M., Reiter R.J., Paulis L. Effect of Melatonin on the Renin-Angiotensin-Aldosterone System in l-NAME-Induced Hypertension. Molecules. 2018;23:265. doi: 10.3390/molecules23020265. PubMed DOI PMC
Muldowney J.A.S., Davis S.N., Vaughan D.E., Brown N.J. NO Synthase Inhibition Increases Aldosterone in Humans. Hypertension. 2004;44:739–745. doi: 10.1161/01.HYP.0000143852.48258.f1. PubMed DOI
Suehiro T., Tsuruya K., Ikeda H., Toyonaga J., Yamada S., Noguchi H., Tokumoto M., Kitazono T. Systemic Aldosterone, But Not Angiotensin II, Plays a Pivotal Role in the Pathogenesis of Renal Injury in Chronic Nitric Oxide-Deficient Male Rats. Endocrinology. 2015;156:2657–2666. doi: 10.1210/en.2014-1369. PubMed DOI
Klug D., Robert V., Swynghedauw B. Role of Mechanical and Hormonal Factors in Cardiac Remodeling and the Biologic Limits of Myocardial Adaptation. Am. J. Cardiol. 1993;71:A46–A54. doi: 10.1016/0002-9149(93)90245-8. PubMed DOI
Tu W., Pratt J.H. Autonomous Aldosterone Production and Left Ventricular Hypertrophy. Hypertension. 2020;75:1409–1411. doi: 10.1161/HYPERTENSIONAHA.120.14811. PubMed DOI
Clerico A., Vittorini S., Passino C. Measurement of the Pro-Hormone of Brain Type Natriuretic Peptide (proBNP): Methodological Considerations and Pathophysiological Relevance. Clin. Chem. Lab. Med. 2011;49:1949–1954. doi: 10.1515/CCLM.2011.686. PubMed DOI
Docherty K.F., Vaduganathan M., Solomon S.D., McMurray J.J.V. Sacubitril/Valsartan. JACC Heart Fail. 2020;8:800–810. doi: 10.1016/j.jchf.2020.06.020. PubMed DOI PMC
Jiang W.-Y., Huo J.-Y., Chen C., Chen R., Ge T.-T., Chang Q., Hu J.-W., Geng J., Jiang Z.-X., Shan Q.-J. Renal Denervation Ameliorates Post-Infarction Cardiac Remodeling in Rats through Dual Regulation of Oxidative Stress in the Heart and Brain. Biomed. Pharmacother. 2019;118:109243. doi: 10.1016/j.biopha.2019.109243. PubMed DOI
Uijl E., ’t Hart D.C., Roksnoer L.C.W., Groningen M.C.C., van Veghel R., Garrelds I.M., de Vries R., van der Vlag J., Zietse R., Nijenhuis T., et al. Angiotensin-Neprilysin Inhibition Confers Renoprotection in Rats with Diabetes and Hypertension by Limiting Podocyte Injury. J. Hypertens. 2020;38:755–764. doi: 10.1097/HJH.0000000000002326. PubMed DOI
Abdin A., Schulz M., Riemer U., Hadëri B., Wachter R., Laufs U., Bauersachs J., Kindermann I., Vukadinović D., Böhm M. Sacubitril/Valsartan in Heart Failure: Efficacy and Safety in and Outside Clinical Trials. ESC Heart Fail. 2022;9:3737–3750. doi: 10.1002/ehf2.14097. PubMed DOI PMC
Pechánová O., Bernátová I., Pelouch V., Simko F. Protein Remodelling of the Heart in NO-Deficient Hypertension: The Effect of Captopril. J. Mol. Cell Cardiol. 1997;29:3365–3374. doi: 10.1006/jmcc.1997.0566. PubMed DOI
Bernátová I., Pechánová O., Simko F. Effect of Captopril in L-NAME-Induced Hypertension on the Rat Myocardium, Aorta, Brain and Kidney. Exp. Physiol. 1999;84:1095–1105. PubMed
Bernátová I., Pechánová O., Pelouch V., Simko F. Regression of Chronic L -NAME-Treatment-Induced Left Ventricular Hypertrophy: Effect of Captopril. J. Mol. Cell Cardiol. 2000;32:177–185. doi: 10.1006/jmcc.1999.1071. PubMed DOI
von Lueder T.G., Wang B.H., Kompa A.R., Huang L., Webb R., Jordaan P., Atar D., Krum H. Angiotensin Receptor Neprilysin Inhibitor LCZ696 Attenuates Cardiac Remodeling and Dysfunction after Myocardial Infarction by Reducing Cardiac Fibrosis and Hypertrophy. Circ. Heart Fail. 2015;8:71–78. doi: 10.1161/CIRCHEARTFAILURE.114.001785. PubMed DOI
Liu J., Zheng X., Zhang C., Zhang C., Bu P. Lcz696 Alleviates Myocardial Fibrosis After Myocardial Infarction Through the sFRP-1/Wnt/β-Catenin Signaling Pathway. Front. Pharmacol. 2021;12:724147. doi: 10.3389/fphar.2021.724147. PubMed DOI PMC
Zhang W., Liu J., Fu Y., Ji H., Fang Z., Zhou W., Fan H., Zhang Y., Liao Y., Yang T., et al. Sacubitril/Valsartan Reduces Fibrosis and Alleviates High-Salt Diet-Induced HFpEF in Rats. Front. Pharmacol. 2020;11:600953. doi: 10.3389/fphar.2020.600953. PubMed DOI PMC
Tashiro K., Kuwano T., Ideishi A., Morita H., Idemoto Y., Goto M., Suematsu Y., Miura S.-I. Sacubitril/Valsartan Inhibits Cardiomyocyte Hypertrophy in Angiotensin II-Induced Hypertensive Mice Independent of a Blood Pressure-Lowering Effect. Cardiol. Res. 2020;11:376–385. doi: 10.14740/cr1137. PubMed DOI PMC
Sobiborowicz-Sadowska A.M., Kamińska K., Cudnoch-Jędrzejewska A. Neprilysin Inhibition in the Prevention of Anthracycline-Induced Cardiotoxicity. Cancers. 2023;15:312. doi: 10.3390/cancers15010312. PubMed DOI PMC
Li Q., Fang Y., Peng D.-W., Li L.-A., Deng C.-Y., Yang H., Kuang S.-J., Li Q.-Q., Zhang M.-Z., Zeng P., et al. Sacubitril/Valsartan Reduces Susceptibility to Atrial Fibrillation by Improving Atrial Remodeling in Spontaneously Hypertensive Rats. Eur. J. Pharmacol. 2023;952:175754. doi: 10.1016/j.ejphar.2023.175754. PubMed DOI
Xiao Y., Zhou Z.-Y., Sun J.-C., Xing W., Yan J., Xu W.-J., Lu Y.-S., Liu T., Jin Y. Protective Effect of Novel Angiotensin Receptor Neprilysin Inhibitor S086 on Target Organ Injury in Spontaneously Hypertensive Rats. Biomed. Pharmacother. 2024;170:115968. doi: 10.1016/j.biopha.2023.115968. PubMed DOI
Wang Y., Zhou R., Lu C., Chen Q., Xu T., Li D. Effects of the Angiotensin-Receptor Neprilysin Inhibitor on Cardiac Reverse Remodeling: Meta-Analysis. J. Am. Heart Assoc. 2019;8:e012272. doi: 10.1161/JAHA.119.012272. PubMed DOI PMC
Bole-Feysot C., Goffin V., Edery M., Binart N., Kelly P.A. Prolactin (PRL) and Its Receptor: Actions, Signal Transduction Pathways and Phenotypes Observed in PRL Receptor Knockout Mice. Endocr. Rev. 1998;19:225–268. doi: 10.1210/edrv.19.3.0334. PubMed DOI
Chang A.S., Grant R., Tomita H., Kim H.-S., Smithies O., Kakoki M. Prolactin Alters Blood Pressure by Modulating the Activity of Endothelial Nitric Oxide Synthase. Proc. Natl. Acad. Sci. USA. 2016;113:12538–12543. doi: 10.1073/pnas.1615051113. PubMed DOI PMC
Yavuz D., Deyneli O., Akpinar I., Yildiz E., Gözü H., Sezgin O., Haklar G., Akalin S. Endothelial Function, Insulin Sensitivity and Inflammatory Markers in Hyperprolactinemic Pre-Menopausal Women. Eur. J. Endocrinol. 2003;149:187–193. doi: 10.1530/eje.0.1490187. PubMed DOI
Carrero J.J., Kyriazis J., Sonmez A., Tzanakis I., Qureshi A.R., Stenvinkel P., Saglam M., Stylianou K., Yaman H., Taslipinar A., et al. Prolactin Levels, Endothelial Dysfunction, and the Risk of Cardiovascular Events and Mortality in Patients with CKD. Clin. J. Am. Soc. Nephrol. 2012;7:207–215. doi: 10.2215/CJN.06840711. PubMed DOI PMC
Georgiopoulos G.A., Stamatelopoulos K.S., Lambrinoudaki I., Lykka M., Kyrkou K., Rizos D., Creatsa M., Christodoulakos G., Alevizaki M., Sfikakis P.P., et al. Prolactin and Preclinical Atherosclerosis in Menopausal Women with Cardiovascular Risk Factors. Hypertension. 2009;54:98–105. doi: 10.1161/HYPERTENSIONAHA.109.132100. PubMed DOI
Aguayo-Cerón K.A., Calzada-Mendoza C.C., Méndez-Bolaina E., Romero-Nava R., Ocharan-Hernández M.E. The Regulatory Effect of Bromocriptine on Cardiac Hypertrophy by Prolactin and D2 Receptor Modulation. Clin. Exp. Hypertens. 2020;42:675–679. doi: 10.1080/10641963.2020.1772814. PubMed DOI
Therkelsen K.E., Abraham T.M., Pedley A., Massaro J.M., Sutherland P., Hoffmann U., Fox C.S. Association Between Prolactin and Incidence of Cardiovascular Risk Factors in the Framingham Heart Study. J. Am. Heart Assoc. 2016;5:e002640. doi: 10.1161/JAHA.115.002640. PubMed DOI PMC
Shen Y., Yang Q., Hu T., Wang Y., Chen L., Gao F., Zhu W., Hu G., Zhou J., Wang C., et al. Association of Prolactin with All-Cause and Cardiovascular Mortality among Patients with Type 2 Diabetes: A Real-World Study. Eur. J. Prev. Cardiol. 2023;30:1439–1447. doi: 10.1093/eurjpc/zwad112. PubMed DOI
Papazoglou A.S., Leite A.R., Moysidis D.V., Anastasiou V., Daios S., Borges-Canha M., Giannopoulos G., Neves J.S., Ziakas A., Giannakoulas G. Serum Prolactin Levels and Mortality in Adults without Prolactinoma: A Meta-Analysis. J. Clin. Endocrinol. Metab. 2024:dgae087. doi: 10.1210/clinem/dgae087. ahead of print . PubMed DOI
Simko F., Matuskova J., Luptak I., Krajcirovicova K., Kucharska J., Gvozdjakova A., Babal P., Pechanova O. Effect of Simvastatin on Remodeling of the Left Ventricle and Aorta in L-NAME-Induced Hypertension. Life Sci. 2004;74:1211–1224. doi: 10.1016/j.lfs.2003.07.032. PubMed DOI
Simko F., Luptak I., Matuskova J., Krajcirovicova K., Sumbalova Z., Kucharska J., Gvozdjakova A., Simko J., Babal P., Pechanova O., et al. L-Arginine Fails to Protect against Myocardial Remodelling in L-NAME-Induced Hypertension. Eur. J. Clin. Investig. 2005;35:362–368. doi: 10.1111/j.1365-2362.2005.01507.x. PubMed DOI
Bartosz M., Kedziora J., Bartosz G. Antioxidant and Prooxidant Properties of Captopril and Enalapril. Free Radic. Biol. Med. 1997;23:729–735. doi: 10.1016/S0891-5849(97)00014-2. PubMed DOI
Bettencourt P., Fonseca C., Franco F., Andrade A., Brito D. Interpretation of B-Type Natriuretic Peptides in the Era of Angiotensin Receptor-Neprilysin Inhibitors. Rev. Port. Cardiol. 2017;36:881–884. doi: 10.1016/j.repc.2017.09.014. PubMed DOI