Ivabradine Ameliorates Kidney Fibrosis in L-NAME-Induced Hypertension
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32754607
PubMed Central
PMC7365878
DOI
10.3389/fmed.2020.00325
Knihovny.cz E-zdroje
- Klíčová slova
- L-NAME, fibrosis, hypertension, ivabradine, nephroprotection,
- Publikační typ
- časopisecké články MeSH
Hypertension-induced renal injury is characterized by structural kidney alterations and function deterioration. Therapeutics for kidney protection are limited, thus novel renoprotectives in hypertension are being continuously sought out. Ivabradine, an inhibitor of the If current in the sinoatrial node reducing heart rate (HR), was shown to be of benefit in various cardiovascular pathologies. Yet, data regarding potential renoprotection by ivabradine in hypertension are sparse. Thirty-six adult male Wistar rats were divided into non-diseased controls and rats with NG-nitro-L-arginine methyl ester (L-NAME)-induced hypertension to assess ivabradine's site-specific effect on kidney fibrosis. After 4 weeks of treatment, L-NAME increased the average systolic blood pressure (SBP) (by 27%), decreased glomerular density (by 28%) and increased glomerular tuft area (by 44%). Moreover, L-NAME induced glomerular, tubulointerstitial, and vascular/perivascular fibrosis by enhancing type I collagen volume (16-, 19- and 25-fold, respectively). L-NAME also increased the glomerular type IV collagen volume and the tubular injury score (3- and 8-fold, respectively). Ivabradine decreased average SBP and HR (by 8 and 12%, respectively), increased glomerular density (by 57%) and reduced glomerular tuft area (by 30%). Importantly, ivabradine decreased type I collagen volume at all three of the investigated sites (by 33, 38, and 72%, respectively) and enhanced vascular/perivascular type III collagen volume (by 67%). Furthermore, ivabradine decreased the glomerular type IV collagen volume and the tubular injury score (by 63 and 34%, respectively). We conclude that ivabradine attenuated the alterations of glomerular density and tuft area and modified renal fibrosis in a site-specific manner in L-NAME-hypertension. It is suggested that ivabradine may be renoprotective in hypertensive kidney disease.
3rd Department of Internal Medicine Faculty of Medicine Comenius University Bratislava Slovakia
Department of Physiology School of Medicine Charles University Prague Czechia
Institute of Pathological Anatomy Faculty of Medicine Comenius University Bratislava Slovakia
Institute of Pathophysiology Faculty of Medicine Comenius University Bratislava Slovakia
Zobrazit více v PubMed
Mills KT, Xu Y, Zhang W, Bundy JD, Chen CS, Kelly TN, et al. . A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. (2015) 88:950–7. 10.1038/ki.2015.230 PubMed DOI PMC
Hrenak J, Paulis L, Repova K, Aziriova S, Nagtegaal EJ, Reiter RJ, et al. . Melatonin and renal protection: novel perspectives from animal experiments and human studies (review). Curr Pharm Des. (2015) 21:936–49. 10.2174/1381612820666140929092929 PubMed DOI
Schlondorff DO. Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int. (2008) 74:860–6. 10.1038/ki.2008.351 PubMed DOI
Bidani AK, Griffin KA. Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension. (2004) 44:595–601. 10.1161/01.HYP.0000145180.38707.84 PubMed DOI
Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A, et al. . Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. (2010) 376:875–85. 10.1016/S0140-6736(10)61198-1 PubMed DOI
Mangiacapra F, Colaiori I, Ricottini E, Balducci F, Creta A, Demartini C, et al. . Heart rate reduction by IVabradine for improvement of ENDothELial function in patients with coronary artery disease: the RIVENDEL study. Clin Res Cardiol. (2017) 106:69–75. 10.1007/s00392-016-1024-7 PubMed DOI
Simko F, Baka T, Poglitsch M, Repova K, Aziriova S, Krajcirovicova K, et al. . Effect of ivabradine on a hypertensive heart and the renin-angiotensin-aldosterone system in L-NAME-induced hypertension. Int J Mol Sci. (2018) 19:E3017. 10.3390/ijms19103017 PubMed DOI PMC
Baka T, Simko F. Ivabradine reversed nondipping heart rate in rats with l-NAME-induced hypertension. Clin Exp Pharmacol Physiol. (2019) 46:607–10. 10.1111/1440-1681.13075 PubMed DOI
Simko F, Baka T. Chronotherapy as a potential approach to hypertensive patients with elevated heart rate? Br J Clin Pharmacol. (2019) 85:1861–2. 10.1111/bcp.14020 PubMed DOI PMC
Hrenak J, Arendasova K, Rajkovicova R, Aziriova S, Repova K, Krajcirovicova K, et al. . Protective effect of captopril, olmesartan, melatonin and compound 21 on doxorubicin-induced nephrotoxicity in rats. Physiol Res. (2013) 62 (Suppl. 1):S181–9. PubMed
Pechanova O, Matuskova J, Capikova D, Jendekova L, Paulis L, Simko F. Effect of spironolactone and captopril on nitric oxide and S-nitrosothiol formation in kidney of L-NAME-treated rats. Kidney Int. (2006) 70:170–6. 10.1038/sj.ki.5001513 PubMed DOI
Seccia TM, Maniero C, Belloni AS, Guidolin D, Pothen P, Pessina AC, et al. . Role of angiotensin II, endothelin-1 and L-type calcium channel in the development of glomerular, tubulointerstitial and perivascular fibrosis. J Hypertens. (2008) 26:2022–9. 10.1097/HJH.0b013e328309f00a PubMed DOI
Hartig SM. Basic image analysis and manipulation in ImageJ. Curr Protoc Mol Biol. (2013) Chapter 14:Unit14.15. 10.1002/0471142727.mb1415s102 PubMed DOI
Pichler RH, Franceschini N, Young BA, Hugo C, Andoh TF, Burdmann EA, et al. . Pathogenesis of cyclosporine nephropathy: roles of angiotensin II and osteopontin. J Am Soc Nephrol. (1995) 6:1186–96. PubMed
Simko F, Baka T, Krajcirovicova K, Repova K, Aziriova S, Zorad S, et al. . Effect of melatonin on the renin-angiotensin-aldosterone system in l-NAME-induced hypertension. Molecules. (2018) 23:E265. 10.3390/molecules23020265 PubMed DOI PMC
Bernatova I, Pechanova O, Simko F. Captopril prevents NO-deficient hypertension and left ventricular hypertrophy without affecting nitric oxide synthase activity in rats. Physiol Res. (1996) 45:311–6. PubMed
Pechanova O, Bernatova I, Pelouch V, Simko F. Protein remodelling of the heart in NO-deficient hypertension: the effect of captopril. J Mol Cell Cardiol. (1997) 29:3365–74. 10.1006/jmcc.1997.0566 PubMed DOI
Bernatova I, Pechanova O, Simko F. Effect of captopril in L-NAME-induced hypertension on the rat myocardium, aorta, brain and kidney. Exp Physiol. (1999) 84:1095–105. 10.1111/j.1469-445X.1999.01890.x PubMed DOI
Simko F, Matuskova J, Luptak I, Krajcirovicova K, Kucharska J, Gvozdjakova A, et al. . Effect of simvastatin on remodeling of the left ventricle and aorta in L-NAME-induced hypertension. Life Sci. (2004) 74:1211–24. 10.1016/j.lfs.2003.07.032 PubMed DOI
Simko F, Simko J. The potential role of nitric oxide in the hypertrophic growth of the left ventricle. Physiol Res. (2000) 49:37–46. PubMed
Hropot M, Grötsch H, Klaus E, Langer KH, Linz W, Wiemer G, et al. . Ramipril prevents the detrimental sequels of chronic NO synthase inhibition in rats: hypertension, cardiac hypertrophy and renal insufficiency. Naunyn Schmiedebergs Arch Pharmacol. (1994) 350:646–52. 10.1007/BF00169370 PubMed DOI
Ndisang JF, Chibbar R. Heme oxygenase improves renal function by potentiating podocyte-associated proteins in Nω-nitro-l-arginine-methyl ester (l-NAME)-induced hypertension. Am J Hypertens. (2015) 28:930–42. 10.1093/ajh/hpu240 PubMed DOI
Ikeda H, Tsuruya K, Toyonaga J, Masutani K, Hayashida H, Hirakata H, et al. . Spironolactone suppresses inflammation and prevents L-NAME-induced renal injury in rats. Kidney Int. (2009) 75:147–55. 10.1038/ki.2008.507 PubMed DOI
Suehiro T, Tsuruya K, Ikeda H, Toyonaga J, Yamada S, Noguchi H, et al. . Systemic aldosterone, but not angiotensin II, plays a pivotal role in the pathogenesis of renal injury in chronic nitric oxide-deficient male rats. Endocrinology. (2015) 156:2657–66. 10.1210/en.2014-1369 PubMed DOI
Dedkov EI, Zheng W, Christensen LP, Weiss RM, Mahlberg-Gaudin F, Tomanek RJ. Preservation of coronary reserve by ivabradine-induced reduction in heart rate in infarcted rats is associated with decrease in perivascular collagen. Am J Physiol Heart Circ Physiol. (2007) 293:H590–8. 10.1152/ajpheart.00047.2007 PubMed DOI
Busseuil D, Shi Y, Mecteau M, Brand G, Gillis MA, Thorin E, et al. . Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology. (2010) 117:234–42. 10.1159/000322905 PubMed DOI
Custodis F, Baumhäkel M, Schlimmer N, List F, Gensch C, Böhm M, et al. . Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation. (2008) 117:2377–87. 10.1161/CIRCULATIONAHA.107.746537 PubMed DOI
Kröller-Schön S, Schulz E, Wenzel P, Kleschyov AL, Hortmann M, Torzewski M, et al. . Differential effects of heart rate reduction with ivabradine in two models of endothelial dysfunction and oxidative stress. Basic Res Cardiol. (2011) 106:1147–58. 10.1007/s00395-011-0227-3 PubMed DOI
Simko F, Pechanova O, Pelouch V, Krajcirovicova K, Mullerova M, Bednarova K, et al. . Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats. J Hypertens Suppl. (2009) 27:S5–10. 10.1097/01.hjh.0000358830.95439.e8 PubMed DOI
Simko F, Pechanova O, Pelouch V, Krajcirovicova K, Celec P, Palffy R, et al. . Continuous light and L-NAME-induced left ventricular remodelling: different protection with melatonin and captopril. J Hypertens. (2010) 28 (Suppl. 1):S13–8. 10.1097/01.hjh.0000388489.28213.08 PubMed DOI
Simko F, Pechanova O, Repova K, Aziriova S, Krajcirovicova K, Celec P, et al. . Lactacystin-induced model of hypertension in rats: effects of melatonin and captopril. Int J Mol Sci. (2017) 18:E1612. 10.3390/ijms18081612 PubMed DOI PMC
Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. . 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. (2018) 39:3021–104. 10.1097/HJH.0000000000001940 PubMed DOI
Luong L, Duckles H, Schenkel T, Mahmoud M, Tremoleda JL, Wylezinska-Arridge M, et al. . Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries. Thromb Haemost. (2016) 116:181–90. 10.1160/TH16-03-0214 PubMed DOI
Aziriova S, Repova K, Krajcirovicova K, Baka T, Zorad S, Mojto V, et al. . Effect of ivabradine, captopril and melatonin on the behaviour of rats in L-nitro-arginine methyl ester-induced hypertension. J Physiol Pharmacol. (2016) 67:895–902. PubMed
Küng CF, Moreau P, Takase H, Lüscher TF. L-NAME hypertension alters endothelial and smooth muscle function in rat aorta. Prevention by trandolapril and verapamil. Hypertension. (1995) 26:744–51. 10.1161/01.HYP.26.5.744 PubMed DOI
Jones AM, Wilkerson DP, Campbell IT. Nitric oxide synthase inhibition with L-NAME reduces maximal oxygen uptake but not gas exchange threshold during incremental cycle exercise in man. J Physiol. (2004) 560:329–38. 10.1113/jphysiol.2004.065664 PubMed DOI PMC
Scrogin KE, Hatton DC, Chi Y, Luft FC. Chronic nitric oxide inhibition with L-NAME: effects on autonomic control of the cardiovascular system. Am J Physiol. (1998) 274:R367–74. 10.1152/ajpregu.1998.274.2.R367 PubMed DOI
Vasquez EC, Cunha RS, Cabral AM. Baroreceptor reflex function in rats submitted to chronic inhibition of nitric oxide synthesis. Braz J Med Biol Res. (1994) 27:767–74. PubMed
Sherman AJ, Davis CA, III, Klocke FJ, Harris KR, Srinivasan G, Yaacoub AS, et al. . Blockade of nitric oxide synthesis reduces myocardial oxygen consumption in vivo. Circulation. (1997) 95:1328–34. 10.1161/01.CIR.95.5.1328 PubMed DOI
Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, et al. . Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA. (1996) 93:13176–81. 10.1073/pnas.93.23.13176 PubMed DOI PMC
DiFrancesco D. Cardiac pacemaker I(f) current and its inhibition by heart rate-reducing agents. Curr Med Res Opin. (2005) 21:1115–22. 10.1185/030079905X50543 PubMed DOI
Bucchi A, Baruscotti M, DiFrancesco D. Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J Gen Physiol. (2002) 120:1–13. 10.1085/jgp.20028593 PubMed DOI PMC
Rasmussen DGK, Boesby L, Nielsen SH, Tepel M, Birot S, Karsdal MA, et al. . Collagen turnover profiles in chronic kidney disease. Sci Rep. (2019) 9:16062. 10.1038/s41598-019-51905-3 PubMed DOI PMC
Asgari M, Latifi N, Heris HK, Vali H, Mongeau L. In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Sci Rep. (2017) 7:1392. 10.1038/s41598-017-01476-y PubMed DOI PMC
Bülow RD, Boor P. Extracellular matrix in kidney fibrosis: more than just a scaffold. J Histochem Cytochem. (2019) 67:643–61. 10.1369/0022155419849388 PubMed DOI PMC
Genovese F, Manresa AA, Leeming DJ, Karsdal MA, Boor P. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair. (2014) 7:4. 10.1186/1755-1536-7-4 PubMed DOI PMC
Weber KT. Targeting pathological remodeling: concepts of cardioprotection and reparation. Circulation. (2000) 102:1342–5. 10.1161/01.CIR.102.12.1342 PubMed DOI
Xu J, Cui G, Esmailian F, Plunkett M, Marelli D, Ardehali A, et al. . Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation. (2004) 109:363–8. 10.1161/01.CIR.0000109495.02213.52 PubMed DOI
Repova-Bednarova K, Aziriova S, Hrenak J, Krajcirovicova K, Adamcova M, Paulis L, et al. . Effect of captopril and melatonin on fibrotic rebuilding of the aorta in 24 hour light-induced hypertension. Physiol Res. (2013) 62 (Suppl. 1):S135–41. PubMed
Dobrin PB, Mrkvicka R. Failure of elastin or collagen as possible critical connective tissue alterations underlying aneurysmal dilatation. Cardiovasc Surg. (1994) 2:484–8. PubMed
Schiffrin EL. Vascular remodeling in hypertension: mechanisms and treatment. Hypertension. (2012) 59:367–74. 10.1161/HYPERTENSIONAHA.111.187021 PubMed DOI
Paulis L, Vazan R, Simko F, Pechanova O, Styk J, Babal P, et al. . Morphological alterations and NO-synthase expression in the heart after continuous light exposure of rats. Physiol Res. (2007) 56(Suppl. 2):S71–6. PubMed
Liu P, Yan S, Chen M, Chen A, Yao D, Xu X, et al. . Effects of baicalin on collagen I and collagen III expression in pulmonary arteries of rats with hypoxic pulmonary hypertension. Int J Mol Med. (2015) 35:901–8. 10.3892/ijmm.2015.2110 PubMed DOI PMC
Chatziantoniou C, Boffa JJ, Ardaillou R, Dussaule JC. Nitric oxide inhibition induces early activation of type I collagen gene in renal resistance vessels and glomeruli in transgenic mice. Role of endothelin. J Clin Invest. (1998) 101:2780–9. 10.1172/JCI2132 PubMed DOI PMC
Custodis F, Fries P, Müller A, Stamm C, Grube M, Kroemer HK, et al. . Heart rate reduction by ivabradine improves aortic compliance in apolipoprotein E-deficient mice. J Vasc Res. (2012) 49:432–40. 10.1159/000339547 PubMed DOI
Albaladejo P, Carusi A, Apartian A, Lacolley P, Safar ME, Bénétos A. Effect of chronic heart rate reduction with ivabradine on carotid and aortic structure and function in normotensive and hypertensive rats. J Vasc Res. (2003) 40:320–8. 10.1159/000072696 PubMed DOI
Drouin A, Gendron ME, Thorin E, Gillis MA, Mahlberg-Gaudin F, Tardif JC. Chronic heart rate reduction by ivabradine prevents endothelial dysfunction in dyslipidaemic mice. Br J Pharmacol. (2008) 154:749–57. 10.1038/bjp.2008.116 PubMed DOI PMC
Miner JH. The glomerular basement membrane. Exp Cell Res. (2012) 318:973–8. 10.1016/j.yexcr.2012.02.031 PubMed DOI PMC
Riser BL, Cortes P, Zhao X, Bernstein J, Dumler F, Narins RG. Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J Clin Invest. (1992) 90:1932–43. 10.1172/JCI116071 PubMed DOI PMC
Guo Z, Sun H, Zhang H, Zhang Y. Anti-hypertensive and renoprotective effects of berberine in spontaneously hypertensive rats. Clin Exp Hypertens. (2015) 37:332–9. 10.3109/10641963.2014.972560 PubMed DOI
Castoldi G, Carletti R, Ippolito S, Colzani M, Barzaghi F, Stella A, et al. . Renal anti-fibrotic effect of sodium glucose cotransporter 2 inhibition in angiotensin II-dependent hypertension. Am J Nephrol. (2020) 51:119–29. 10.1159/000505144 PubMed DOI
Li L, Wang C, Gu Y. Collagen IV, a promising serum biomarker for evaluating the prognosis of revascularization in a 2-kidney, 1-clip hypertensive rat model. Interact Cardiovasc Thorac Surg. (2020) 30:483–90. 10.1093/icvts/ivz275 PubMed DOI
Foidart JM, Nochy D, Nusgens B, Foidart JB, Mahieu PR, Lapiere CM, et al. . Accumulation of several basement membrane proteins in glomeruli of patients with preeclampsia and other hypertensive syndromes of pregnancy. possible role of renal prostaglandins and fibronectin. Lab Invest. (1983) 49:250–9. PubMed
Boffa JJ, Lu Y, Placier S, Stefanski A, Dussaule JC, Chatziantoniou C. Regression of renal vascular and glomerular fibrosis: role of angiotensin II receptor antagonism and matrix metalloproteinases. J Am Soc Nephrol. (2003) 14:1132–44. 10.1097/01.ASN.0000060574.38107.3B PubMed DOI
Ofstad J, Iversen BM. Glomerular and tubular damage in normotensive and hypertensive rats. Am J Physiol Renal Physiol. (2005) 288:F665–72. 10.1152/ajprenal.00226.2004 PubMed DOI
Polichnowski AJ, Cowley AW, Jr. Pressure-induced renal injury in angiotensin II versus norepinephrine-induced hypertensive rats. Hypertension. (2009) 54:1269–77. 10.1161/HYPERTENSIONAHA.109.139287 PubMed DOI PMC
Wei SY, Wang YX, Zhang QF, Zhao SL, Diao TT, Li JS, et al. . Multiple mechanisms are involved in salt-sensitive hypertension-induced renal injury and interstitial fibrosis. Sci Rep. (2017) 7:45952. 10.1038/srep45952 PubMed DOI PMC
Chevalier RL, Forbes MS. Generation and evolution of atubular glomeruli in the progression of renal disorders. J Am Soc Nephrol. (2008) 19:197–206. 10.1681/ASN.2007080862 PubMed DOI
Polichnowski AJ, Lu L, Cowley AW, Jr. Renal injury in angiotensin II+L-NAME-induced hypertensive rats is independent of elevated blood pressure. Am J Physiol Renal Physiol. (2011) 300:F1008–16. 10.1152/ajprenal.00354.2010 PubMed DOI PMC
Genovese F, Boor P, Papasotiriou M, Leeming DJ, Karsdal MA, Floege J. Turnover of type III collagen reflects disease severity and is associated with progression and microinflammation in patients with IgA nephropathy. Nephrol Dial Transplant. (2016) 31:472–9. 10.1093/ndt/gfv301 PubMed DOI
Papasotiriou M, Genovese F, Klinkhammer BM, Kunter U, Nielsen SH, Karsdal MA, et al. . Serum and urine markers of collagen degradation reflect renal fibrosis in experimental kidney diseases. Nephrol Dial Transplant. (2015) 30:1112–21. 10.1093/ndt/gfv063 PubMed DOI
Lactacystin-induced kidney fibrosis: Protection by melatonin and captopril