Lactacystin-induced kidney fibrosis: Protection by melatonin and captopril
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36176443
PubMed Central
PMC9513205
DOI
10.3389/fphar.2022.978337
PII: 978337
Knihovny.cz E-zdroje
- Klíčová slova
- captopril, cardiorenal damage, fibrotic remodeling, kidney injury, lactacystin, melatonin,
- Publikační typ
- časopisecké články MeSH
Lactacystin is a specific proteasome inhibitor that blocks the hydrolysis of intracellular proteins by ubiquitin/proteasome system inhibition. The administration of lactacystin to rats induced hypertension and remodeling of the left ventricle and aorta. This study tested whether lactacystin induces structural and fibrotic rebuilding of the kidneys and whether melatonin and captopril can prevent these potential changes. Six weeks of lactacystin administration to rats increased their average systolic blood pressure (SBP). In the kidneys, lactacystin reduced glomerular density, increased the glomerular tuft area, and enhanced hydroxyproline concentrations. It also elevated the intraglomerular proportion including the amounts of collagen (Col) I and Col III. Lactacystin also raised the tubulointerstitial amounts of Col I and the sum of Col I and Col III with no effect on vascular/perivascular collagen. Six weeks of captopril treatment reduced SBP, while melatonin had no effect. Both melatonin and captopril increased glomerular density, reduced the glomerular tuft area, and lowered the hydroxyproline concentration in the kidneys. Both drugs reduced the proportion and total amounts of intraglomerular and tubulointerstitial Col I and Col III. We conclude that chronic lactacystin treatment stimulated structural and fibrotic remodeling of the kidneys, and melatonin and captopril partly prevented these alterations. Considering the effect of lactacystin on both the heart and kidneys, chronic treatment with this drug may be a prospective model of cardiorenal damage suitable for testing pharmacological drugs as protective agents.
3rd Department of Internal Medicine Faculty of Medicine Comenius University Bratislava Slovakia
Institute of Pathophysiology Faculty of Medicine Comenius University Bratislava Slovakia
Zobrazit více v PubMed
Alexakis C., Maxwell P., Bou-Gharios G. (2006). Organ-specific collagen expression: Implications for renal disease. Nephron. Exp. Nephrol. 102, e71–75. 10.1159/000089684 PubMed DOI
Bellas R. E., Lee J. S., Sonenshein G. E. (1995). Expression of a constitutive NF-kappa B-like activity is essential for proliferation of cultured bovine vascular smooth muscle cells. J. Clin. Invest. 96, 2521–2527. 10.1172/JCI118313 PubMed DOI PMC
Bülow R. D., Boor P. (2019). Extracellular matrix in kidney fibrosis: More than just a scaffold. J. Histochem. Cytochem. 67, 643–661. 10.1369/0022155419849388 PubMed DOI PMC
Chatterjee A., Mir S. A., Dutta D., Mitra A., Pathak K., Sarkar S. (2011). Analysis of p53 and NF-κB signaling in modulating the cardiomyocyte fate during hypertrophy. J. Cell. Physiol. 226, 2543–2554. 10.1002/jcp.22599 PubMed DOI
Congo Carbajosa N. A., Carbajosa N. A. L., Corradi G., Verrilli M. A. L., Guil M. J., Vatta M. S., et al. (2015). Tyrosine hydroxylase is short-term regulated by the ubiquitin-proteasome system in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats: Possible implications in hypertension. PLoS One 10, e0116597. 10.1371/journal.pone.0116597 PubMed DOI PMC
Craiu A., Gaczynska M., Akopian T., Gramm C. F., Fenteany G., Goldberg A. L., et al. (1997). Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J. Biol. Chem. 272, 13437–13445. 10.1074/jbc.272.20.13437 PubMed DOI
Domínguez-Rodríguez A., Abreu-González P., Báez-Ferrer N., Reiter R. J., Avanzas P., Hernández-Vaquero D. (2021). Melatonin and cardioprotection in humans: A systematic review and meta-analysis of randomized controlled trials. Front. Cardiovasc. Med. 8, 635083. 10.3389/fcvm.2021.635083 PubMed DOI PMC
Fan Z., Qi X., Yang W., Xia L., Wu Y. (2020). Melatonin ameliorates renal fibrosis through the inhibition of NF-κB and TGF-β1/smad3 pathways in db/db diabetic mice. Arch. Med. Res. 51, 524–534. 10.1016/j.arcmed.2020.05.008 PubMed DOI
Hamrahian S. M., Falkner B. (2017). Hypertension in chronic kidney disease. Adv. Exp. Med. Biol. 956, 307–325. 10.1007/5584_2016_84 PubMed DOI
Han Y.-S., Yoon Y. M., Go G., Lee J. H., Lee S. H. (2020). Melatonin protects human renal proximal tubule epithelial cells against high glucose-mediated fibrosis via the cellular prion protein-TGF-β-smad signaling Axis. Int. J. Med. Sci. 17, 1235–1245. 10.7150/ijms.42603 PubMed DOI PMC
Hosseinian S., Shahraki S., Ebrahimzadeh Bideskan A., Shafei M. N., Sadeghnia H. R., Soukhtanloo M., et al. (2019). Thymoquinone alleviates renal interstitial fibrosis and kidney dysfunction in rats with unilateral ureteral obstruction. Phytother. Res. 33, 2023–2033. 10.1002/ptr.6376 PubMed DOI
Hrenák J., Arendášová K., Rajkovičová R., Aziriová S., Repová K., Krajčírovičová K., et al. (2013). Protective effect of captopril, olmesartan, melatonin and compound 21 on doxorubicin-induced nephrotoxicity in rats. Physiol. Res. 62, S181–S189. 10.33549/physiolres.932614 PubMed DOI
Hrenak J., Paulis L., Repova K., Aziriova S., Nagtegaal E. J., Reiter R. J., et al. (2015). Melatonin and renal protection: Novel perspectives from animal experiments and human studies (review). Curr. Pharm. Des. 21, 936–949. 10.2174/1381612820666140929092929 PubMed DOI
Huseby N.-E., Ravuri C., Moens U. (2016). The proteasome inhibitor lactacystin enhances GSH synthesis capacity by increased expression of antioxidant components in an Nrf2-independent, but p38 MAPK-dependent manner in rat colorectal carcinoma cells. Free Radic. Res. 50, 1–13. 10.3109/10715762.2015.1100730 PubMed DOI
Ishigami T., Kino T., Minegishi S., Araki N., Umemura M., Ushio H., et al. (2020). Regulators of epithelial sodium channels in aldosterone-sensitive distal nephrons (ASDN): Critical roles of Nedd4L/nedd4-2 and salt-sensitive hypertension. Int. J. Mol. Sci. 21, E3871. 10.3390/ijms21113871 PubMed DOI PMC
Kanzaki G., Tsuboi N., Shimizu A., Yokoo T. (2020). Human nephron number, hypertension, and renal pathology. Anat. Rec. 303, 2537–2543. 10.1002/ar.24302 PubMed DOI
Khoshvakhti H., Yurt K. K., Altunkaynak B. Z., Türkmen A. P., Elibol E., Aydın I., et al. (2015). Effects of melatonin on diclofenac sodium treated rat kidney: A stereological and histopathological study. Ren. Fail. 37, 1379–1383. 10.3109/0886022X.2015.1073556 PubMed DOI
Li H.-H., Kedar V., Zhang C., McDonough H., Arya R., Wang D.-Z., et al. (2004). Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J. Clin. Invest. 114, 1058–1071. 10.1172/JCI22220 PubMed DOI PMC
Li J., Li N., Yan S., Lu Y., Miao X., Gu Z., et al. (2019). Melatonin attenuates renal fibrosis in diabetic mice by activating the AMPK/PGC1α signaling pathway and rescuing mitochondrial function. Mol. Med. Rep. 19, 1318–1330. 10.3892/mmr.2018.9708 PubMed DOI
Li N., Wang Z., Gao F., Lei Y., Li Z. (2020). Melatonin ameliorates renal fibroblast-myofibroblast transdifferentiation and renal fibrosis through miR-21-5p regulation. J. Cell. Mol. Med. 24, 5615–5628. 10.1111/jcmm.15221 PubMed DOI PMC
Lopes T. G., de Souza M. L., da Silva V. D., Dos Santos M., da Silva W. I. C., Itaquy T. P., et al. (2019). Markers of renal fibrosis: How do they correlate with podocyte damage in glomerular diseases? PLoS One 14, e0217585. 10.1371/journal.pone.0217585 PubMed DOI PMC
Mearini G., Schlossarek S., Willis M. S., Carrier L. (2008). The ubiquitin-proteasome system in cardiac dysfunction. Biochim. Biophys. Acta 1782, 749–763. 10.1016/j.bbadis.2008.06.009 PubMed DOI
Mennuni S., Rubattu S., Pierelli G., Tocci G., Fofi C., Volpe M. (2014). Hypertension and kidneys: Unraveling complex molecular mechanisms underlying hypertensive renal damage. J. Hum. Hypertens. 28, 74–79. 10.1038/jhh.2013.55 PubMed DOI
Murdaca J., Treins C., Monthouël-Kartmann M.-N., Pontier-Bres R., Kumar S., Van Obberghen E., et al. (2004). Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J. Biol. Chem. 279, 26754–26761. 10.1074/jbc.M311802200 PubMed DOI
Nazneen A., Razzaque M. S., Liu D., Taguchi T. (2002). Possible role of Ets-1 and MMP-1 in matrix remodeling in experimental cisplatin nephropathy. Med. Electron Microsc. 35, 242–247. 10.1007/s007950200028 PubMed DOI
Ōmura S., Crump A. (2019). Lactacystin: First-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J. Antibiot. 72, 189–201. 10.1038/s41429-019-0141-8 PubMed DOI PMC
Pagan J., Seto T., Pagano M., Cittadini A. (2013). Role of the ubiquitin proteasome system in the heart. Circ. Res. 112, 1046–1058. 10.1161/CIRCRESAHA.112.300521 PubMed DOI
Parajuli N. (2019). A cycle of altered proteasome and reactive oxygen species production in renal proximal tubular cells. Toxicol. Forensic Med. 4, 13–17. 10.17140/tfmoj-4-128 PubMed DOI PMC
Paulis L., Simko F. (2007). Blood pressure modulation and cardiovascular protection by melatonin: Potential mechanisms behind. Physiol. Res. 56, 671–684. 10.33549/physiolres.931236 PubMed DOI
Pechánová O., Bernátová I., Pelouch V., Simko F. (1997). Protein remodelling of the heart in NO-deficient hypertension: The effect of captopril. J. Mol. Cell. Cardiol. 29, 3365–3374. 10.1006/jmcc.1997.0566 PubMed DOI
Pechanova O., Matuskova J., Capikova D., Jendekova L., Paulis L., Simko F. (2006). Effect of spironolactone and captopril on nitric oxide and S-nitrosothiol formation in kidney of L-NAME-treated rats. Kidney Int. 70, 170–176. 10.1038/sj.ki.5001513 PubMed DOI
Pfeffer M. A., Braunwald E., Moyé L. A., Basta L., Brown E. J., Cuddy T. E., et al. (1992). Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N. Engl. J. Med. 327, 669–677. 10.1056/NEJM199209033271001 PubMed DOI
Reddy G. K., Enwemeka C. S. (1996). A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 29, 225–229. 10.1016/0009-9120(96)00003-6 PubMed DOI
Reiter R. J., Manchester L. C., Fuentes-Broto L., Tan D.-X. (2010). Cardiac hypertrophy and remodelling: Pathophysiological consequences and protective effects of melatonin. J. Hypertens. 28 (1), S7–S12. 10.1097/01.hjh.0000388488.51083.2b PubMed DOI
Reiter R. J., Rosales-Corral S., Sharma R. (2020). Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology. Adv. Med. Sci. 65, 394–402. 10.1016/j.advms.2020.07.001 PubMed DOI
Reiter R. J., Tan D. X., Rosales-Corral S., Galano A., Zhou X. J., Xu B. (2018). Mitochondria: Central organelles for melatonin’s antioxidant and anti-aging actions. Molecules 23, E509. 10.3390/molecules23020509 PubMed DOI PMC
Repová-Bednárová K., Aziriová S., Hrenák J., Krajčírovičová K., Adamcová M., Paulis L., et al. (2013). Effect of captopril and melatonin on fibrotic rebuilding of the aorta in 24 hour light-induced hypertension. Physiol. Res. 62, S135–S141. 10.33549/physiolres.932592 PubMed DOI
Russcher M., Koch B., Nagtegaal E., van der Putten K., ter Wee P., Gaillard C. (2012). The role of melatonin treatment in chronic kidney disease. Front. Biosci. 17, 2644–2656. 10.2741/4075 PubMed DOI
Schlondorff D. O. (2008). Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int. 74, 860–866. 10.1038/ki.2008.351 PubMed DOI
Seccia T. M., Maniero C., Belloni A. S., Guidolin D., Pothen P., Pessina A. C., et al. (2008). Role of angiotensin II, endothelin-1 and L-type calcium channel in the development of glomerular, tubulointerstitial and perivascular fibrosis. J. Hypertens. 26, 2022–2029. 10.1097/HJH.0b013e328309f00a PubMed DOI
Sharma N. M., Haibara A. S., Katsurada K., Liu X., Patel K. P. (2020). Central angiotensin II-Protein inhibitor of neuronal nitric oxide synthase (PIN) axis contribute to neurogenic hypertension. Nitric Oxide 94, 54–62. 10.1016/j.niox.2019.10.007 PubMed DOI PMC
Shi S., Lei S., Tang C., Wang K., Xia Z. (2019). Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway. Biosci. Rep. 39, BSR20181614. 10.1042/BSR20181614 PubMed DOI PMC
Shirazi M., Noorafshan A., Bahri M. A., Tanideh N. (2007). Captopril reduces interstitial renal fibrosis and preserves more normal renal tubules in neonatal dogs with partial urethral obstruction: A preliminary study. Urol. Int. 78, 173–177. 10.1159/000098078 PubMed DOI
Shirazi M., Soltani M.-R., Jahanabadi Z., Abdollahifar M.-A., Tanideh N., Noorafshan A. (2014). Stereological comparison of the effects of pentoxifylline, captopril, simvastatin, and tamoxifen on kidney and bladder structure after partial urethral obstruction in rats. Korean J. Urol. 55, 756–763. 10.4111/kju.2014.55.11.756 PubMed DOI PMC
Silver F. H., Horvath I., Foran D. J. (2001). Viscoelasticity of the vessel wall: The role of collagen and elastic fibers. Crit. Rev. Biomed. Eng. 29, 279–301. 10.1615/critrevbiomedeng.v29.i3.10 PubMed DOI
Simko F., Hrenak J., Dominguez-Rodriguez A., Reiter R. J. (2020). Melatonin as a putative protection against myocardial injury in COVID-19 infection. Expert Rev. Clin. Pharmacol. 13, 921–924. 10.1080/17512433.2020.1814141 PubMed DOI
Simko F., Paulis L. (2013). Antifibrotic effect of melatonin--perspective protection in hypertensive heart disease. Int. J. Cardiol. 168, 2876–2877. 10.1016/j.ijcard.2013.03.139 PubMed DOI
Simko F., Paulis L. (2007). Melatonin as a potential antihypertensive treatment. J. Pineal Res. 42, 319–322. 10.1111/j.1600-079X.2007.00436.x PubMed DOI
Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Celec P., Palffy R., et al. (2010). Continuous light and L-NAME-induced left ventricular remodelling: Different protection with melatonin and captopril. J. Hypertens. 28 (1), S13–S18. 10.1097/01.hjh.0000388489.28213.08 PubMed DOI
Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Mullerova M., Bednarova K., et al. (2009). Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats. J. Hypertens. Suppl. 27, S5–S10. 10.1097/01.hjh.0000358830.95439.e8 PubMed DOI
Simko F., Pechanova O. (2009). Potential roles of melatonin and chronotherapy among the new trends in hypertension treatment. J. Pineal Res. 47, 127–133. 10.1111/j.1600-079X.2009.00697.x PubMed DOI
Simko F., Pechanova O., Repova Bednarova K., Krajcirovicova K., Celec P., Kamodyova N., et al. (2014). Hypertension and cardiovascular remodelling in rats exposed to continuous light: Protection by ACE-inhibition and melatonin. Mediat. Inflamm. 2014, 703175. 10.1155/2014/703175 PubMed DOI PMC
Simko F., Pechanova O., Repova K., Aziriova S., Krajcirovicova K., Celec P., et al. (2017). Lactacystin-induced model of hypertension in rats: Effects of melatonin and captopril. Int. J. Mol. Sci. 18, E1612. 10.3390/ijms18081612 PubMed DOI PMC
Simko F., Reiter R. J., Paulis L. (2019). Melatonin as a rational alternative in the conservative treatment of resistant hypertension. Hypertens. Res. 42, 1828–1831. 10.1038/s41440-019-0318-3 PubMed DOI PMC
Sonoda K., Ohtake K., Uchida H., Ito J., Uchida M., Natsume H., et al. (2017). Dietary nitrite supplementation attenuates cardiac remodeling in l-NAME-induced hypertensive rats. Nitric Oxide 67, 1–9. 10.1016/j.niox.2017.04.009 PubMed DOI
Sopakayang R., De Vita R., Kwansa A., Freeman J. W. (2012). Elastic and viscoelastic properties of a type I collagen fiber. J. Theor. Biol. 293, 197–205. 10.1016/j.jtbi.2011.10.018 PubMed DOI
Stanko P., Baka T., Repova K., Aziriova S., Krajcirovicova K., Barta A., et al. (2020). Ivabradine ameliorates kidney fibrosis in L-NAME-induced hypertension. Front. Med. 7, 325. 10.3389/fmed.2020.00325 PubMed DOI PMC
Tang M., Li J., Huang W., Su H., Liang Q., Tian Z., et al. (2010). Proteasome functional insufficiency activates the calcineurin-NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovasc. Res. 88, 424–433. 10.1093/cvr/cvq217 PubMed DOI PMC
Tobeiha M., Jafari A., Fadaei S., Mirazimi S. M. A., Dashti F., Amiri A., et al. (2022). Evidence for the benefits of melatonin in cardiovascular disease. Front. Cardiovasc. Med. 9. 10.3389/fcvm.2022.888319 PubMed DOI PMC
Vrankova S., Parohova J., Barta A., Janega P., Simko F., Pechanova O. (2010). Effect of nuclear factor kappa B inhibition on L-NAME-induced hypertension and cardiovascular remodelling. J. Hypertens. 28 (1), S45–S49. 10.1097/01.hjh.0000388494.58707.0f PubMed DOI
Wang H., Gao M., Li J., Sun J., Wu R., Han D., et al. (2019). MMP-9-positive neutrophils are essential for establishing profibrotic microenvironment in the obstructed kidney of UUO mice. Acta Physiol. 227, e13317. 10.1111/apha.13317 PubMed DOI
Wang Z., Dong H., Li M., Liang X.-B. (2022). Ubiquitin-conjugating enzyme UBE2Q2 participates in HUWE1-mediated protection on renal tubulointerstitial fibrosis. Sheng Li Xue Bao 74, 117–124. PubMed
Willis M. S., Schisler J. C., Li L., Rodríguez J. E., Hilliard E. G., Charles P. C., et al. (2009). Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo . Circ. Res. 105, 80–88. 10.1161/CIRCRESAHA.109.194928 PubMed DOI PMC
Yoon Y. M., Go G., Yun C. W., Lim J. H., Lee J. H., Lee S. H. (2020). Melatonin suppresses renal cortical fibrosis by inhibiting cytoskeleton reorganization and mitochondrial dysfunction through regulation of miR-4516. Int. J. Mol. Sci. 21, E5323. 10.3390/ijms21155323 PubMed DOI PMC
Zhang Y., Zhang L., Fan X., Yang W., Yu B., Kou J., et al. (2019). Captopril attenuates TAC-induced heart failure via inhibiting Wnt3a/β-catenin and Jak2/Stat3 pathways. Biomed. Pharmacother. 113, 108780. 10.1016/j.biopha.2019.108780 PubMed DOI
Zhao M., Zheng S., Yang J., Wu Y., Ren Y., Kong X., et al. (2015). Suppression of TGF-β1/Smad signaling pathway by sesamin contributes to the attenuation of myocardial fibrosis in spontaneously hypertensive rats. PLoS One 10, e0121312. 10.1371/journal.pone.0121312 PubMed DOI PMC