Lactacystin-Induced Model of Hypertension in Rats: Effects of Melatonin and Captopril
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
PubMed
28757582
PubMed Central
PMC5578004
DOI
10.3390/ijms18081612
PII: ijms18081612
Knihovny.cz E-zdroje
- Klíčová slova
- captopril, fibrosis, hypertension, lactacystin, melatonin, remodelling,
- MeSH
- acetylcystein škodlivé účinky analogy a deriváty MeSH
- antihypertenziva aplikace a dávkování farmakologie MeSH
- fibróza MeSH
- hypertenze chemicky indukované farmakoterapie etiologie MeSH
- kaptopril aplikace a dávkování farmakologie MeSH
- krysa rodu Rattus MeSH
- melatonin aplikace a dávkování farmakologie MeSH
- modely nemocí na zvířatech MeSH
- NG-nitroargininmethylester škodlivé účinky MeSH
- potkani Wistar MeSH
- remodelace komor účinky léků MeSH
- srdeční komory účinky léků patologie MeSH
- světlo škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- acetylcystein MeSH
- antihypertenziva MeSH
- kaptopril MeSH
- lactacystin MeSH Prohlížeč
- melatonin MeSH
- NG-nitroargininmethylester MeSH
Lactacystin is a proteasome inhibitor that interferes with several factors involved in heart remodelling. The aim of this study was to investigate whether the chronic administration of lactacystin induces hypertension and heart remodelling and whether these changes can be modified by captopril or melatonin. In addition, the lactacystin-model was compared with NG-nitro-l-arginine-methyl ester (L-NAME)- and continuous light-induced hypertension. Six groups of three-month-old male Wistar rats (11 per group) were treated for six weeks as follows: control (vehicle), L-NAME (40 mg/kg/day), continuous light (24 h/day), lactacystin (5 mg/kg/day) alone, and lactacystin with captopril (100 mg/kg/day), or melatonin (10 mg/kg/day). Lactacystin treatment increased systolic blood pressure (SBP) and induced fibrosis of the left ventricle (LV), as observed in L-NAME-hypertension and continuous light-hypertension. LV weight and the cross-sectional area of the aorta were increased only in L-NAME-induced hypertension. The level of oxidative load was preserved or reduced in all three models of hypertension. Nitric oxide synthase (NOS) activity in the LV and kidney was unchanged in the lactacystin group. Nuclear factor-kappa B (NF-κB) protein expression in the LV was increased in all treated groups in the cytoplasm, however, in neither group in the nucleus. Although melatonin had no effect on SBP, only this indolamine (but not captopril) reduced the concentration of insoluble and total collagen in the LV and stimulated the NO-pathway in the lactacystin group. We conclude that chronic administration of lactacystin represents a novel model of hypertension with collagenous rebuilding of the LV, convenient for testing antihypertensive drugs or agents exerting a cardiovascular benefit beyond blood pressure reduction.
3rd Clinic of Internal Medicine Faculty of Medicine Comenius University 83305 Bratislava Slovakia
Department of Physiology Faculty of Medicine Charles University 50003 Hradec Kralove Czech Republic
Institute of Molecular Biomedicine Faculty of Medicine Comenius University 81108 Bratislava Slovakia
Institute of Normal and Pathological Physiology Slovak Academy of Sciences 81371 Bratislava Slovakia
Zobrazit více v PubMed
Klingbeil A.U., Schneider M., Martus P., Messerli F.H., Schmieder R.E. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am. J. Med. 2003;115:41–46. doi: 10.1016/S0002-9343(03)00158-X. PubMed DOI
Simko F. Pathophysiological principles of the relation between myocardial hypertrophy of the left ventricle and its regression. Physiol. Res. 1994;43:259–266. PubMed
Simko F. Left ventricular hypertrophy regression as a process with variable biological implications. Can. J. Cardiol. 1996;12:507–513. PubMed
Weber K.T., Sun Y., Bhattacharya S.K., Ahokas R.A., Gerling I.C. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol. 2013;10:15–26. doi: 10.1038/nrcardio.2012.158. PubMed DOI
Simko F., Matuskova J., Luptak I., Krajcirovicova K., Kucharska J., Gvozdjakova A., Babal P., Pechanova O. Effect of simvastatin on remodeling of the left ventricle and aorta in L-NAME-induced hypertension. Life Sci. 2004;74:1211–1224. doi: 10.1016/j.lfs.2003.07.032. PubMed DOI
Simko F. Statins—A prespective for left ventricular hypertrophy treatment (review) Eur. J. Clin. Investig. 2007;37:681–691. doi: 10.1111/j.1365-2362.2007.01837.x. PubMed DOI
Simko F., Pechanova O. Remodelling of the heart and vessels in experimental hypertension: Advances in protection. J. Hypertens. 2010;28:S1–S6. doi: 10.1097/01.hjh.0000388487.43460.db. PubMed DOI
Zanchetti A. Hypertension: Cardiac hypertrophy as a target of antihypertensive therapy. Nat. Rev. Cardiol. 2010;7:66–67. doi: 10.1038/nrcardio.2009.229. PubMed DOI
Simko F., Simko J. Heart failure and angiotensin converting enzyme inhibition: Problems and perspectives. Physiol. Res. 1999;48:1–8. PubMed
Simko F., Simko J. The potential role of nitric oxide in the hypertrophic growth of the left ventricle. Physiol. Res. 2000;49:37–46. PubMed
Mandarim-De-Lacerda C.A., Pereira L.M. Effect of telmisartan on preexistent cardiac and renal lesions in spontaneously hypertensive mature rats. Histol. Histopathol. 2004;19:727–733. PubMed
Mearini G., Schlossarek S., Willis M.S., Carrier L. The ubiquitin-proteasome system in cardiac dysfunction. Biochim. Biophys. Acta. 2008;1782:749–763. doi: 10.1016/j.bbadis.2008.06.009. PubMed DOI
Madonna R., Massaro M., de Caterina R. Insulin potentiates cytokine-induced VCAM-1 expression in human endothelial cells. Biochim. Biophys. Acta. 2008;1782:511–516. doi: 10.1016/j.bbadis.2008.05.006. PubMed DOI
Carbajosa N.A., Corradi G., Verrilli M.A., Guil M.J., Vatta M.S., Gironacci M.M. Tyrosine hydroxylase is short-term regulated by the ubiquitin-proteasome system in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats: Possible implications in hypertension. PLoS ONE. 2015;24:e0116597. doi: 10.1371/journal.pone.0116597. PubMed DOI PMC
Martin A., Perez-Giren J.V., Hernanz R., Palacios R., Briones A.M., Fortuño A., Zalba G., Salaices M., Alonso M.J. Peroxisome proliferator-activated receptor-γ activation reduces cyclooxygenase-2 expression in vascular smooth muscle cells from hypertensive rats by interfering with oxidative stress. J. Hypertens. 2012;30:315–326. doi: 10.1097/HJH.0b013e32834f043b. PubMed DOI
Eble D.M., Spragia M.L., Ferguson A.G., Samarel A.M. Sarcomeric myosin heavy chain is degraded by the proteasome. Cell Tissue Res. 1999;296:541–548. doi: 10.1007/s004410051315. PubMed DOI
Dominguez-Rodriguez A., Abreu-Gonzalez P., de la Torre-Hernandez J.M., Gonzalez-Gonzalez J., Garcia-Camarero T., Consuegra-Sanchez L., Garcia-Saiz M.D., Aldea-Perona A., Virgos-Aller T., Azpeitia A., et al. Effect of intravenous and intracoronary melatonin as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: Results of the melatonin adjunct in the acute myocaRdial infarction treated with angioplasty trial. J. Pineal Res. 2017;62 doi: 10.1111/jpi.12374. PubMed DOI
Hu W., Ma Z., Jiang S., Fan C., Deng C., Yan X., Di S., Lv J., Reiter R.J., Yang Y. Melatonin: The dawning of a treatment for fibrosis? J. Pineal Res. 2016;60:121–131. doi: 10.1111/jpi.12302. PubMed DOI
Hu J., Zhang L., Yang Y., Guo Y., Fan Y., Zhang M., Man W., Gao E., Hu W., Reiter R.J., et al. Melatonin alleviates postinfarction cardiac remodeling and dysfunction by inhibiting Mst1. J. Pineal Res. 2017;62 doi: 10.1111/jpi.12368. PubMed DOI
Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Mullerova M., Bednárova K., Adamcova M., Paulis L. Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodeling in spontaneously hypertensive rats. J. Hypertens. 2009;27:S5–S10. doi: 10.1097/01.hjh.0000358830.95439.e8. PubMed DOI
Simko F., Pechanova O., Repova-Bednarova K., Krajcirovicova K., Celec P., Kamodyova N., Zorad S., Kucharska J., Gvozdjakova A., Adamcova M., et al. Hypertension and cardiovascular remodelling in rats exposed to continuous light: Protection by ACE-inhibition and melatonin. Mediat. Inflamm. 2014;2014:703175. doi: 10.1155/2014/703175. PubMed DOI PMC
Simko F., Pechanova O. Recent trends in hypertension treatment: Perspectives from animal studies. J. Hypertens. 2009;27:S1–S4. doi: 10.1097/01.hjh.0000358829.87815.d4. PubMed DOI
Galano A., Medina M.E., Tan D.X., Reiter R.J. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: A physicochemical analysis. J. Pineal Res. 2015;58:107–116. doi: 10.1111/jpi.12196. PubMed DOI
Reiter R.J., Mayo J.C., Tan D.X., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016;61:253–278. doi: 10.1111/jpi.12360. PubMed DOI
Manchester L.C., Coto-Montes A., Boga J.A., Andersen L.P., Zhou Z., Galano A., Vriend J., Tan D.X., Reiter R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 2015;59:403–419. doi: 10.1111/jpi.12267. PubMed DOI
Tain Y.L., Leu S., Wu K.L., Lee W.C., Chan J.Y. Melatonin prevents maternal fructose intake-induced programmed hypertension in the offspring: Roles of nitric oxide and arachidonic acid metabolites. J. Pineal Res. 2014;57:80–89. doi: 10.1111/jpi.12145. PubMed DOI
Torres F., González-Candia A., Montt C., Ebensperger G., Chubretovic M., Serón-Ferré M., Reyes R.V., Llanos A.J., Herrera E.A. Melatonin reduces oxidative stress and improves vascular function in pulmonary hypertensive newborn sheep. J. Pineal Res. 2015;58:362–373. doi: 10.1111/jpi.12222. PubMed DOI
Shi H., Chen Y., Tan D.X., Reiter R.J., Chan Z., He C. Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. J. Pineal Res. 2015;59:102–108. doi: 10.1111/jpi.12244. PubMed DOI
Dominguez-Rodriguez A., Abreu-Gonzalez P., Sanchez-Sanchez J.J., Kaski J.C., Reiter R.J. Melatonin and circadian biology in human cardiovascular disease. J. Pineal Res. 2010;49:14–22. doi: 10.1111/j.1600-079X.2010.00773.x. PubMed DOI
Vriend J., Reiter R.J. Melatonin feedback on clock genes: A theory involving the proteasome. J. Pineal Res. 2015;58:1–11. doi: 10.1111/jpi.12189. PubMed DOI
Simko F., Baka T., Paulis L., Reiter R.J. Elevated heart rate and nondipping heart rate as potential targets for melatonin: A review. J. Pineal Res. 2016;61:127–137. doi: 10.1111/jpi.12348. PubMed DOI
Weber K.T. From inflammation to fibrosis: A stiff stretch of highway. Hypertension. 2004;43:716–719. doi: 10.1161/01.HYP.0000118586.38323.5b. PubMed DOI
Naviaux R.K. Oxidative shielding or oxidative stress? J. Pharmacol. Exp. Ther. 2012;342:608–618. doi: 10.1124/jpet.112.192120. PubMed DOI
Pechanova O., Simko F. Chronic antioxidant therapy fails to ameliorate hypertension: Potential mechanisms behind. J. Hypertens. 2009;27:S32–S36. doi: 10.1097/01.hjh.0000358835.25934.5e. PubMed DOI
Grossman E. Does increased oxidative stress cause hypertension? Diabetes Care. 2008;3:S185–S189. doi: 10.2337/dc08-s246. PubMed DOI
Heart Protection Study Collaborative Group MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: A randomised placebo-controlled trial. Lancet. 2002;360:23–33. PubMed
Ceriello A. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care. 2008;31:S181–S184. doi: 10.2337/dc08-s245. PubMed DOI
Watson J.D. Type 2 diabetes as a redox disease. Lancet. 2014;383:841. doi: 10.1016/S0140-6736(13)62365-X. PubMed DOI
Lalu M.M., Xu H., Sankaralingam S., Davidge S.T. Proteasome inhibition decreases inflammation in human endothelial cells exposed to lipopolysaccharide. J. Cardiovasc. Pharmacol. 2012;60:381–389. doi: 10.1097/FJC.0b013e3182657eec. PubMed DOI
Paulis L., Simko F. LA419, a novel nitric oxide donor, prevents cardiac remodeling via the endothelial nitric oxide pathway. NO donors as a means of antiremodeling. Hypertension. 2007;50:1009–1011. doi: 10.1161/HYPERTENSIONAHA.107.100032. PubMed DOI
Paulis L., Pechanova O., Zicha J., Krajcirovicova K., Barta A., Pelouch V., Adamcova M., Simko F. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-l-arginine-methyl ester hypertensive rats. J. Hypertens. 2009;27:S11–S16. doi: 10.1097/01.hjh.0000358831.33558.97. PubMed DOI
Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Celec P., Palffy R., Bednarova K., Vrankova S., Adamcova M., Paulis L. Continuous light and L-NAME—Induced left ventricular remodelling: Different protection by melatonin and captopril. J. Hypertens. 2010;28:S13–S18. doi: 10.1097/01.hjh.0000388489.28213.08. PubMed DOI
Simko F., Bednarova K., Krajcirovicova K., Hrenak J., Celec P., Kamodyova N., Gajdosechova L., Zorad S., Adamcova M. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J. Pineal Res. 2014;57:177–184. doi: 10.1111/jpi.12154. PubMed DOI
Simko F., Paulis L. Antifibrotic effect of melatonin—Perspective protection in hypertensive heart disease. Int. J. Cardiol. 2013;168:2876–2877. doi: 10.1016/j.ijcard.2013.03.139. PubMed DOI
Simko F., Reiter R.J., Pechanova O., Paulis L. Experimental models of melatonin-deficient hypertension. Front. Biosci. 2013;18:616–625. doi: 10.2741/4125. PubMed DOI
Gupta S., Young D., Maitra R.K., Gupta A., Popovic Z.B., Yong S.L., Mahajan A., Wang Q., Sen S. Prevention of cardiac hypertrophy and heart failure by silencing of NF-κB. J. Mol. Biol. 2008;375:637–649. doi: 10.1016/j.jmb.2007.10.006. PubMed DOI PMC
Heidrich F.M., Ehrlich B.E. Calcium, calpains, and cardiac hypertrophy: A new link. Circ. Res. 2009;104:e19–e20. doi: 10.1161/CIRCRESAHA.108.191072. PubMed DOI PMC
Timmers L., van Keulen J.K., Hoefer I.E., Meijs M.F., van Middelaar B., den Ouden K., van Echteld C.J., Pasterkamp G., de Kleijn D.P. Targeted deletion of nuclear factor κB p50 enhances cardiac remodeling and dysfunction following myocardial infarction. Circ. Res. 2009;104:699–706. doi: 10.1161/CIRCRESAHA.108.189746. PubMed DOI
Dai W., Chen H., Jiang J., Kong W., Wang Y. Silencing MR-1 attenuates inflammatory damage in mice heart induced by Ang II. Biochem. Biophys. Res. Commun. 2010;391:1573–1578. doi: 10.1016/j.bbrc.2009.12.130. PubMed DOI
Hingtgen S.D., Li Z., Kutschke W., Tian X., Sharma R.V., Davisson R.L. Superoxide scavenging and Akt inhibition in myocardium ameliorate pressure overload-induced NF-κB activation and cardiac hypertrophy. Physiol. Genom. 2010;41:127–136. doi: 10.1152/physiolgenomics.00202.2009. PubMed DOI PMC
Zelarayan L., Renger A., Noack C., Zafiriou M.P., Gehrke C., van der Nagel R., Dietz R., de Windt L., Bergmann M.W. NF-κB activation is required for adaptive cardiac hypertrophy. Cardiovasc. Res. 2009;84:416–424. doi: 10.1093/cvr/cvp237. PubMed DOI
Ali T., Badshah H., Kim T.H., Kim M.O. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model. J. Pineal Res. 2015;58:71–85. doi: 10.1111/jpi.12194. PubMed DOI
Jumnongprakhon P., Govitrapong P., Tocharus C., Tocharus J. Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells. Brain Res. 2016;1:182–192. doi: 10.1016/j.brainres.2016.05.049. PubMed DOI
Ju H.Q., Li H., Tian T., Lu Y.X., Bai L., Chen L.Z., Sheng H., Mo H.Y., Zeng J.B., Deng W., et al. Melatonin overcomes gemcitabine resistance in pancreatic ductal adenocarcinoma by abrogating nuclear factor-κB activation. J. Pineal Res. 2016;60:27–38. doi: 10.1111/jpi.12285. PubMed DOI
Lin Y.W., Lee L.M., Lee W.J., Chu C.Y., Tan P., Yang Y.C., Chen W.Y., Yang S.F., Hsiao M., Chien M.H. Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-κB DNA-binding activity. J. Pineal Res. 2016;60:277–290. doi: 10.1111/jpi.12308. PubMed DOI
Wu S.M., Lin W.Y., Shen C.C., Pan H.C., Keh-Bin W., Chen Y.C., Jan Y.J., Lai D.W., Tang S.C., Tien H.R., et al. Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBPβ and NF-κB cleavage. J. Pineal Res. 2016;60:142–154. doi: 10.1111/jpi.12295. PubMed DOI
Forman K., Vara E., García C., Kireev R., Cuesta S., Acuña-Castroviejo D., Tresguerres J.A. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging. J. Pineal Res. 2010;49:312–320. doi: 10.1111/j.1600-079X.2010.00800.x. PubMed DOI
Vriend J., Reiter R.J. Melatonin as a proteasome inhibitor. Is there any clinical evidence? Life Sci. 2014;12:8–14. doi: 10.1016/j.lfs.2014.08.024. PubMed DOI
Vriend J., Reiter R.J. The KEAP1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Mol. Cell. Endocrinol. 2015;5:213–220. doi: 10.1016/j.mce.2014.12.013. PubMed DOI
Li J., Brasier A.R. Angiotensinogen gene activation by angiotensin II is mediated by the Rel A (nuclear factor-κB p65) transcription factor: One mechanism for the renin angiotensin system positive feedback loop in hepatocytes. Mol. Endocrinol. 1996;10:252–264. PubMed
Sekiguchi K., Li X., Coker M., Flesch M., Barger P.M., Sivasubramanian N., Mann D.L. Cross-regulation between the renin-angiotensin system and inflammatory mediators in cardiac hypertrophy and failure. Cardiovasc. Res. 2004;15:433–442. doi: 10.1016/j.cardiores.2004.02.005. PubMed DOI
Hernández-Presa M., Bustos C., Ortego M., Tuñon J., Renedo G., Ruiz-Ortega M., Egido J. Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-κB activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation. 1997;18:1532–1541. doi: 10.1161/01.CIR.95.6.1532. PubMed DOI
Grumbach I.M., Chen W., Mertens S.A., Harrison D.G. A negative feedback mechanism involving nitric oxide and nuclear factor κB modulates endothelial nitric oxide synthase transcription. J. Mol. Cell. Cardiol. 2005;39:595–603. doi: 10.1016/j.yjmcc.2005.06.012. PubMed DOI
Pechanova O., Simko F. The role of nuclear factor κB and nitric oxide interaction in heart remodelling. J. Hypertens. 2010;28:S39–S44. doi: 10.1097/01.hjh.0000388493.81578.b1. PubMed DOI
Paulis L., Matuskova J., Adamcova M., Pelouch V., Simko J., Krajcirovicova K., Potacova A., Hulin I., Janega P., Pechanova O., et al. Regression of left ventricular hypertrophy and aortic remodelling in NO-deficient hypertensive rats: Effect of l-arginine and spironolactone. Acta Physiol. 2008;194:45–55. doi: 10.1111/j.1748-1716.2008.01862.x. PubMed DOI
Pelouch V., Milerova M., Ostadal B., Samánek M., Hucín B. Protein profiling of human atrial and ventricular musculature: The effect of normoxaemia and hypoxaemia in congenital heart diseases. Physiol. Res. 1993;42:235–242. PubMed
Pelouch V., Milerova M., Ostadal B., Hucín B., Samánek M. Differences between atrial and ventricular protein profiling in children with congenital heart disease. Mol. Cell. Biochem. 1995;147:43–49. doi: 10.1007/BF00944782. PubMed DOI
Reddy G.K., Enwemeka C.S. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI
Bredt D.S., Snyder S.H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA. 1990;87:682–685. doi: 10.1073/pnas.87.2.682. PubMed DOI PMC
Munch G. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur. J. Clin. Chem. Clin. Biochem. 1997;35:669–677. doi: 10.1515/cclm.1997.35.9.669. PubMed DOI
Bhatwadekar A.D., Ghole V.S. Rapid method for the preparation of an AGE-BSA standard calibrator using thermal glycation. J. Clin. Lab. Anal. 2005;19:11–15. doi: 10.1002/jcla.20048. PubMed DOI PMC
Witko-Sarsat V. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–1313. doi: 10.1038/ki.1996.186. PubMed DOI
Behuliak M., Palffy R., Gardlik R., Hodosy J., Halcak L., Celec P. Variability of thiobarbituric acid reacting substances in saliva. Dis. Mark. 2009;26:49–53. doi: 10.1155/2009/175683. PubMed DOI PMC
Benzie I.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI
Helenius M., Hänninen M., Lehtinen S.K., Salminen A. Aging-induced upregulation of nuclear binding activities of oxidative stress responsive NF-κB transcription factor in mouse cardiac muscle. J. Mol. Cell. Cardiol. 1996;28:487–498. doi: 10.1006/jmcc.1996.0045. PubMed DOI
Welinder C., Ekblad L. Coomassie staining as loading control in Western blot analysis. J. Proteome Res. 2011;10:1416–1419. doi: 10.1021/pr1011476. PubMed DOI
Anrather J., Racchumi G., Iadecola C. cis-Acting, element-specific transcriptional activity of differentially phosphorylated nuclear factor-κB. J. Biol. Chem. 2005;7:244–252. doi: 10.1074/jbc.M409344200. PubMed DOI
Perkins N.D. Post-translational modifications regulating the activity and function of the nuclear factor κB pathway. Oncogene. 2006;30:6717–6730. doi: 10.1038/sj.onc.1209937. PubMed DOI
Mikenberg I., Widera D., Kaus A., Kaltschmidt B., Kaltschmidt C. Transcription factor NF-κB is transported to the nucleus via cytoplasmic dynein/dynactin motor complex in hippocampal neurons. PLoS ONE. 2007;11:e589. doi: 10.1371/journal.pone.0000589. PubMed DOI PMC
Islam K.N., Bae J.W., Gao E., Koch W.J. Regulation of nuclear factor κB (NF-κB) in the nucleus of cardiomyocytes by G protein-coupled receptor kinase 5 (GRK5) J. Biol. Chem. 2013;13:35683–35689. doi: 10.1074/jbc.M113.529347. PubMed DOI PMC
Paulis L., Pechanova O., Zicha J., Barta A., Gardlik R., Celec P., Kunes J., Simko F. Melatonin interactions with blood pressure and vascular function during L-NAME-induced hypertension. J. Pineal Res. 2010;48:102–108. doi: 10.1111/j.1600-079X.2009.00732.x. PubMed DOI
Lactacystin-induced kidney fibrosis: Protection by melatonin and captopril
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling
Ivabradine Ameliorates Kidney Fibrosis in L-NAME-Induced Hypertension
Effect of Melatonin on the Renin-Angiotensin-Aldosterone System in l-NAME-Induced Hypertension