Lactacystin-Induced Model of Hypertension in Rats: Effects of Melatonin and Captopril

. 2017 Jul 25 ; 18 (8) : . [epub] 20170725

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28757582

Lactacystin is a proteasome inhibitor that interferes with several factors involved in heart remodelling. The aim of this study was to investigate whether the chronic administration of lactacystin induces hypertension and heart remodelling and whether these changes can be modified by captopril or melatonin. In addition, the lactacystin-model was compared with NG-nitro-l-arginine-methyl ester (L-NAME)- and continuous light-induced hypertension. Six groups of three-month-old male Wistar rats (11 per group) were treated for six weeks as follows: control (vehicle), L-NAME (40 mg/kg/day), continuous light (24 h/day), lactacystin (5 mg/kg/day) alone, and lactacystin with captopril (100 mg/kg/day), or melatonin (10 mg/kg/day). Lactacystin treatment increased systolic blood pressure (SBP) and induced fibrosis of the left ventricle (LV), as observed in L-NAME-hypertension and continuous light-hypertension. LV weight and the cross-sectional area of the aorta were increased only in L-NAME-induced hypertension. The level of oxidative load was preserved or reduced in all three models of hypertension. Nitric oxide synthase (NOS) activity in the LV and kidney was unchanged in the lactacystin group. Nuclear factor-kappa B (NF-κB) protein expression in the LV was increased in all treated groups in the cytoplasm, however, in neither group in the nucleus. Although melatonin had no effect on SBP, only this indolamine (but not captopril) reduced the concentration of insoluble and total collagen in the LV and stimulated the NO-pathway in the lactacystin group. We conclude that chronic administration of lactacystin represents a novel model of hypertension with collagenous rebuilding of the LV, convenient for testing antihypertensive drugs or agents exerting a cardiovascular benefit beyond blood pressure reduction.

Zobrazit více v PubMed

Klingbeil A.U., Schneider M., Martus P., Messerli F.H., Schmieder R.E. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am. J. Med. 2003;115:41–46. doi: 10.1016/S0002-9343(03)00158-X. PubMed DOI

Simko F. Pathophysiological principles of the relation between myocardial hypertrophy of the left ventricle and its regression. Physiol. Res. 1994;43:259–266. PubMed

Simko F. Left ventricular hypertrophy regression as a process with variable biological implications. Can. J. Cardiol. 1996;12:507–513. PubMed

Weber K.T., Sun Y., Bhattacharya S.K., Ahokas R.A., Gerling I.C. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol. 2013;10:15–26. doi: 10.1038/nrcardio.2012.158. PubMed DOI

Simko F., Matuskova J., Luptak I., Krajcirovicova K., Kucharska J., Gvozdjakova A., Babal P., Pechanova O. Effect of simvastatin on remodeling of the left ventricle and aorta in L-NAME-induced hypertension. Life Sci. 2004;74:1211–1224. doi: 10.1016/j.lfs.2003.07.032. PubMed DOI

Simko F. Statins—A prespective for left ventricular hypertrophy treatment (review) Eur. J. Clin. Investig. 2007;37:681–691. doi: 10.1111/j.1365-2362.2007.01837.x. PubMed DOI

Simko F., Pechanova O. Remodelling of the heart and vessels in experimental hypertension: Advances in protection. J. Hypertens. 2010;28:S1–S6. doi: 10.1097/01.hjh.0000388487.43460.db. PubMed DOI

Zanchetti A. Hypertension: Cardiac hypertrophy as a target of antihypertensive therapy. Nat. Rev. Cardiol. 2010;7:66–67. doi: 10.1038/nrcardio.2009.229. PubMed DOI

Simko F., Simko J. Heart failure and angiotensin converting enzyme inhibition: Problems and perspectives. Physiol. Res. 1999;48:1–8. PubMed

Simko F., Simko J. The potential role of nitric oxide in the hypertrophic growth of the left ventricle. Physiol. Res. 2000;49:37–46. PubMed

Mandarim-De-Lacerda C.A., Pereira L.M. Effect of telmisartan on preexistent cardiac and renal lesions in spontaneously hypertensive mature rats. Histol. Histopathol. 2004;19:727–733. PubMed

Mearini G., Schlossarek S., Willis M.S., Carrier L. The ubiquitin-proteasome system in cardiac dysfunction. Biochim. Biophys. Acta. 2008;1782:749–763. doi: 10.1016/j.bbadis.2008.06.009. PubMed DOI

Madonna R., Massaro M., de Caterina R. Insulin potentiates cytokine-induced VCAM-1 expression in human endothelial cells. Biochim. Biophys. Acta. 2008;1782:511–516. doi: 10.1016/j.bbadis.2008.05.006. PubMed DOI

Carbajosa N.A., Corradi G., Verrilli M.A., Guil M.J., Vatta M.S., Gironacci M.M. Tyrosine hydroxylase is short-term regulated by the ubiquitin-proteasome system in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats: Possible implications in hypertension. PLoS ONE. 2015;24:e0116597. doi: 10.1371/journal.pone.0116597. PubMed DOI PMC

Martin A., Perez-Giren J.V., Hernanz R., Palacios R., Briones A.M., Fortuño A., Zalba G., Salaices M., Alonso M.J. Peroxisome proliferator-activated receptor-γ activation reduces cyclooxygenase-2 expression in vascular smooth muscle cells from hypertensive rats by interfering with oxidative stress. J. Hypertens. 2012;30:315–326. doi: 10.1097/HJH.0b013e32834f043b. PubMed DOI

Eble D.M., Spragia M.L., Ferguson A.G., Samarel A.M. Sarcomeric myosin heavy chain is degraded by the proteasome. Cell Tissue Res. 1999;296:541–548. doi: 10.1007/s004410051315. PubMed DOI

Dominguez-Rodriguez A., Abreu-Gonzalez P., de la Torre-Hernandez J.M., Gonzalez-Gonzalez J., Garcia-Camarero T., Consuegra-Sanchez L., Garcia-Saiz M.D., Aldea-Perona A., Virgos-Aller T., Azpeitia A., et al. Effect of intravenous and intracoronary melatonin as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: Results of the melatonin adjunct in the acute myocaRdial infarction treated with angioplasty trial. J. Pineal Res. 2017;62 doi: 10.1111/jpi.12374. PubMed DOI

Hu W., Ma Z., Jiang S., Fan C., Deng C., Yan X., Di S., Lv J., Reiter R.J., Yang Y. Melatonin: The dawning of a treatment for fibrosis? J. Pineal Res. 2016;60:121–131. doi: 10.1111/jpi.12302. PubMed DOI

Hu J., Zhang L., Yang Y., Guo Y., Fan Y., Zhang M., Man W., Gao E., Hu W., Reiter R.J., et al. Melatonin alleviates postinfarction cardiac remodeling and dysfunction by inhibiting Mst1. J. Pineal Res. 2017;62 doi: 10.1111/jpi.12368. PubMed DOI

Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Mullerova M., Bednárova K., Adamcova M., Paulis L. Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodeling in spontaneously hypertensive rats. J. Hypertens. 2009;27:S5–S10. doi: 10.1097/01.hjh.0000358830.95439.e8. PubMed DOI

Simko F., Pechanova O., Repova-Bednarova K., Krajcirovicova K., Celec P., Kamodyova N., Zorad S., Kucharska J., Gvozdjakova A., Adamcova M., et al. Hypertension and cardiovascular remodelling in rats exposed to continuous light: Protection by ACE-inhibition and melatonin. Mediat. Inflamm. 2014;2014:703175. doi: 10.1155/2014/703175. PubMed DOI PMC

Simko F., Pechanova O. Recent trends in hypertension treatment: Perspectives from animal studies. J. Hypertens. 2009;27:S1–S4. doi: 10.1097/01.hjh.0000358829.87815.d4. PubMed DOI

Galano A., Medina M.E., Tan D.X., Reiter R.J. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: A physicochemical analysis. J. Pineal Res. 2015;58:107–116. doi: 10.1111/jpi.12196. PubMed DOI

Reiter R.J., Mayo J.C., Tan D.X., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016;61:253–278. doi: 10.1111/jpi.12360. PubMed DOI

Manchester L.C., Coto-Montes A., Boga J.A., Andersen L.P., Zhou Z., Galano A., Vriend J., Tan D.X., Reiter R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 2015;59:403–419. doi: 10.1111/jpi.12267. PubMed DOI

Tain Y.L., Leu S., Wu K.L., Lee W.C., Chan J.Y. Melatonin prevents maternal fructose intake-induced programmed hypertension in the offspring: Roles of nitric oxide and arachidonic acid metabolites. J. Pineal Res. 2014;57:80–89. doi: 10.1111/jpi.12145. PubMed DOI

Torres F., González-Candia A., Montt C., Ebensperger G., Chubretovic M., Serón-Ferré M., Reyes R.V., Llanos A.J., Herrera E.A. Melatonin reduces oxidative stress and improves vascular function in pulmonary hypertensive newborn sheep. J. Pineal Res. 2015;58:362–373. doi: 10.1111/jpi.12222. PubMed DOI

Shi H., Chen Y., Tan D.X., Reiter R.J., Chan Z., He C. Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. J. Pineal Res. 2015;59:102–108. doi: 10.1111/jpi.12244. PubMed DOI

Dominguez-Rodriguez A., Abreu-Gonzalez P., Sanchez-Sanchez J.J., Kaski J.C., Reiter R.J. Melatonin and circadian biology in human cardiovascular disease. J. Pineal Res. 2010;49:14–22. doi: 10.1111/j.1600-079X.2010.00773.x. PubMed DOI

Vriend J., Reiter R.J. Melatonin feedback on clock genes: A theory involving the proteasome. J. Pineal Res. 2015;58:1–11. doi: 10.1111/jpi.12189. PubMed DOI

Simko F., Baka T., Paulis L., Reiter R.J. Elevated heart rate and nondipping heart rate as potential targets for melatonin: A review. J. Pineal Res. 2016;61:127–137. doi: 10.1111/jpi.12348. PubMed DOI

Weber K.T. From inflammation to fibrosis: A stiff stretch of highway. Hypertension. 2004;43:716–719. doi: 10.1161/01.HYP.0000118586.38323.5b. PubMed DOI

Naviaux R.K. Oxidative shielding or oxidative stress? J. Pharmacol. Exp. Ther. 2012;342:608–618. doi: 10.1124/jpet.112.192120. PubMed DOI

Pechanova O., Simko F. Chronic antioxidant therapy fails to ameliorate hypertension: Potential mechanisms behind. J. Hypertens. 2009;27:S32–S36. doi: 10.1097/01.hjh.0000358835.25934.5e. PubMed DOI

Grossman E. Does increased oxidative stress cause hypertension? Diabetes Care. 2008;3:S185–S189. doi: 10.2337/dc08-s246. PubMed DOI

Heart Protection Study Collaborative Group MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: A randomised placebo-controlled trial. Lancet. 2002;360:23–33. PubMed

Ceriello A. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care. 2008;31:S181–S184. doi: 10.2337/dc08-s245. PubMed DOI

Watson J.D. Type 2 diabetes as a redox disease. Lancet. 2014;383:841. doi: 10.1016/S0140-6736(13)62365-X. PubMed DOI

Lalu M.M., Xu H., Sankaralingam S., Davidge S.T. Proteasome inhibition decreases inflammation in human endothelial cells exposed to lipopolysaccharide. J. Cardiovasc. Pharmacol. 2012;60:381–389. doi: 10.1097/FJC.0b013e3182657eec. PubMed DOI

Paulis L., Simko F. LA419, a novel nitric oxide donor, prevents cardiac remodeling via the endothelial nitric oxide pathway. NO donors as a means of antiremodeling. Hypertension. 2007;50:1009–1011. doi: 10.1161/HYPERTENSIONAHA.107.100032. PubMed DOI

Paulis L., Pechanova O., Zicha J., Krajcirovicova K., Barta A., Pelouch V., Adamcova M., Simko F. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-l-arginine-methyl ester hypertensive rats. J. Hypertens. 2009;27:S11–S16. doi: 10.1097/01.hjh.0000358831.33558.97. PubMed DOI

Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Celec P., Palffy R., Bednarova K., Vrankova S., Adamcova M., Paulis L. Continuous light and L-NAME—Induced left ventricular remodelling: Different protection by melatonin and captopril. J. Hypertens. 2010;28:S13–S18. doi: 10.1097/01.hjh.0000388489.28213.08. PubMed DOI

Simko F., Bednarova K., Krajcirovicova K., Hrenak J., Celec P., Kamodyova N., Gajdosechova L., Zorad S., Adamcova M. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J. Pineal Res. 2014;57:177–184. doi: 10.1111/jpi.12154. PubMed DOI

Simko F., Paulis L. Antifibrotic effect of melatonin—Perspective protection in hypertensive heart disease. Int. J. Cardiol. 2013;168:2876–2877. doi: 10.1016/j.ijcard.2013.03.139. PubMed DOI

Simko F., Reiter R.J., Pechanova O., Paulis L. Experimental models of melatonin-deficient hypertension. Front. Biosci. 2013;18:616–625. doi: 10.2741/4125. PubMed DOI

Gupta S., Young D., Maitra R.K., Gupta A., Popovic Z.B., Yong S.L., Mahajan A., Wang Q., Sen S. Prevention of cardiac hypertrophy and heart failure by silencing of NF-κB. J. Mol. Biol. 2008;375:637–649. doi: 10.1016/j.jmb.2007.10.006. PubMed DOI PMC

Heidrich F.M., Ehrlich B.E. Calcium, calpains, and cardiac hypertrophy: A new link. Circ. Res. 2009;104:e19–e20. doi: 10.1161/CIRCRESAHA.108.191072. PubMed DOI PMC

Timmers L., van Keulen J.K., Hoefer I.E., Meijs M.F., van Middelaar B., den Ouden K., van Echteld C.J., Pasterkamp G., de Kleijn D.P. Targeted deletion of nuclear factor κB p50 enhances cardiac remodeling and dysfunction following myocardial infarction. Circ. Res. 2009;104:699–706. doi: 10.1161/CIRCRESAHA.108.189746. PubMed DOI

Dai W., Chen H., Jiang J., Kong W., Wang Y. Silencing MR-1 attenuates inflammatory damage in mice heart induced by Ang II. Biochem. Biophys. Res. Commun. 2010;391:1573–1578. doi: 10.1016/j.bbrc.2009.12.130. PubMed DOI

Hingtgen S.D., Li Z., Kutschke W., Tian X., Sharma R.V., Davisson R.L. Superoxide scavenging and Akt inhibition in myocardium ameliorate pressure overload-induced NF-κB activation and cardiac hypertrophy. Physiol. Genom. 2010;41:127–136. doi: 10.1152/physiolgenomics.00202.2009. PubMed DOI PMC

Zelarayan L., Renger A., Noack C., Zafiriou M.P., Gehrke C., van der Nagel R., Dietz R., de Windt L., Bergmann M.W. NF-κB activation is required for adaptive cardiac hypertrophy. Cardiovasc. Res. 2009;84:416–424. doi: 10.1093/cvr/cvp237. PubMed DOI

Ali T., Badshah H., Kim T.H., Kim M.O. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model. J. Pineal Res. 2015;58:71–85. doi: 10.1111/jpi.12194. PubMed DOI

Jumnongprakhon P., Govitrapong P., Tocharus C., Tocharus J. Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells. Brain Res. 2016;1:182–192. doi: 10.1016/j.brainres.2016.05.049. PubMed DOI

Ju H.Q., Li H., Tian T., Lu Y.X., Bai L., Chen L.Z., Sheng H., Mo H.Y., Zeng J.B., Deng W., et al. Melatonin overcomes gemcitabine resistance in pancreatic ductal adenocarcinoma by abrogating nuclear factor-κB activation. J. Pineal Res. 2016;60:27–38. doi: 10.1111/jpi.12285. PubMed DOI

Lin Y.W., Lee L.M., Lee W.J., Chu C.Y., Tan P., Yang Y.C., Chen W.Y., Yang S.F., Hsiao M., Chien M.H. Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-κB DNA-binding activity. J. Pineal Res. 2016;60:277–290. doi: 10.1111/jpi.12308. PubMed DOI

Wu S.M., Lin W.Y., Shen C.C., Pan H.C., Keh-Bin W., Chen Y.C., Jan Y.J., Lai D.W., Tang S.C., Tien H.R., et al. Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBPβ and NF-κB cleavage. J. Pineal Res. 2016;60:142–154. doi: 10.1111/jpi.12295. PubMed DOI

Forman K., Vara E., García C., Kireev R., Cuesta S., Acuña-Castroviejo D., Tresguerres J.A. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging. J. Pineal Res. 2010;49:312–320. doi: 10.1111/j.1600-079X.2010.00800.x. PubMed DOI

Vriend J., Reiter R.J. Melatonin as a proteasome inhibitor. Is there any clinical evidence? Life Sci. 2014;12:8–14. doi: 10.1016/j.lfs.2014.08.024. PubMed DOI

Vriend J., Reiter R.J. The KEAP1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Mol. Cell. Endocrinol. 2015;5:213–220. doi: 10.1016/j.mce.2014.12.013. PubMed DOI

Li J., Brasier A.R. Angiotensinogen gene activation by angiotensin II is mediated by the Rel A (nuclear factor-κB p65) transcription factor: One mechanism for the renin angiotensin system positive feedback loop in hepatocytes. Mol. Endocrinol. 1996;10:252–264. PubMed

Sekiguchi K., Li X., Coker M., Flesch M., Barger P.M., Sivasubramanian N., Mann D.L. Cross-regulation between the renin-angiotensin system and inflammatory mediators in cardiac hypertrophy and failure. Cardiovasc. Res. 2004;15:433–442. doi: 10.1016/j.cardiores.2004.02.005. PubMed DOI

Hernández-Presa M., Bustos C., Ortego M., Tuñon J., Renedo G., Ruiz-Ortega M., Egido J. Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-κB activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation. 1997;18:1532–1541. doi: 10.1161/01.CIR.95.6.1532. PubMed DOI

Grumbach I.M., Chen W., Mertens S.A., Harrison D.G. A negative feedback mechanism involving nitric oxide and nuclear factor κB modulates endothelial nitric oxide synthase transcription. J. Mol. Cell. Cardiol. 2005;39:595–603. doi: 10.1016/j.yjmcc.2005.06.012. PubMed DOI

Pechanova O., Simko F. The role of nuclear factor κB and nitric oxide interaction in heart remodelling. J. Hypertens. 2010;28:S39–S44. doi: 10.1097/01.hjh.0000388493.81578.b1. PubMed DOI

Paulis L., Matuskova J., Adamcova M., Pelouch V., Simko J., Krajcirovicova K., Potacova A., Hulin I., Janega P., Pechanova O., et al. Regression of left ventricular hypertrophy and aortic remodelling in NO-deficient hypertensive rats: Effect of l-arginine and spironolactone. Acta Physiol. 2008;194:45–55. doi: 10.1111/j.1748-1716.2008.01862.x. PubMed DOI

Pelouch V., Milerova M., Ostadal B., Samánek M., Hucín B. Protein profiling of human atrial and ventricular musculature: The effect of normoxaemia and hypoxaemia in congenital heart diseases. Physiol. Res. 1993;42:235–242. PubMed

Pelouch V., Milerova M., Ostadal B., Hucín B., Samánek M. Differences between atrial and ventricular protein profiling in children with congenital heart disease. Mol. Cell. Biochem. 1995;147:43–49. doi: 10.1007/BF00944782. PubMed DOI

Reddy G.K., Enwemeka C.S. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI

Bredt D.S., Snyder S.H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA. 1990;87:682–685. doi: 10.1073/pnas.87.2.682. PubMed DOI PMC

Munch G. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur. J. Clin. Chem. Clin. Biochem. 1997;35:669–677. doi: 10.1515/cclm.1997.35.9.669. PubMed DOI

Bhatwadekar A.D., Ghole V.S. Rapid method for the preparation of an AGE-BSA standard calibrator using thermal glycation. J. Clin. Lab. Anal. 2005;19:11–15. doi: 10.1002/jcla.20048. PubMed DOI PMC

Witko-Sarsat V. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–1313. doi: 10.1038/ki.1996.186. PubMed DOI

Behuliak M., Palffy R., Gardlik R., Hodosy J., Halcak L., Celec P. Variability of thiobarbituric acid reacting substances in saliva. Dis. Mark. 2009;26:49–53. doi: 10.1155/2009/175683. PubMed DOI PMC

Benzie I.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Helenius M., Hänninen M., Lehtinen S.K., Salminen A. Aging-induced upregulation of nuclear binding activities of oxidative stress responsive NF-κB transcription factor in mouse cardiac muscle. J. Mol. Cell. Cardiol. 1996;28:487–498. doi: 10.1006/jmcc.1996.0045. PubMed DOI

Welinder C., Ekblad L. Coomassie staining as loading control in Western blot analysis. J. Proteome Res. 2011;10:1416–1419. doi: 10.1021/pr1011476. PubMed DOI

Anrather J., Racchumi G., Iadecola C. cis-Acting, element-specific transcriptional activity of differentially phosphorylated nuclear factor-κB. J. Biol. Chem. 2005;7:244–252. doi: 10.1074/jbc.M409344200. PubMed DOI

Perkins N.D. Post-translational modifications regulating the activity and function of the nuclear factor κB pathway. Oncogene. 2006;30:6717–6730. doi: 10.1038/sj.onc.1209937. PubMed DOI

Mikenberg I., Widera D., Kaus A., Kaltschmidt B., Kaltschmidt C. Transcription factor NF-κB is transported to the nucleus via cytoplasmic dynein/dynactin motor complex in hippocampal neurons. PLoS ONE. 2007;11:e589. doi: 10.1371/journal.pone.0000589. PubMed DOI PMC

Islam K.N., Bae J.W., Gao E., Koch W.J. Regulation of nuclear factor κB (NF-κB) in the nucleus of cardiomyocytes by G protein-coupled receptor kinase 5 (GRK5) J. Biol. Chem. 2013;13:35683–35689. doi: 10.1074/jbc.M113.529347. PubMed DOI PMC

Paulis L., Pechanova O., Zicha J., Barta A., Gardlik R., Celec P., Kunes J., Simko F. Melatonin interactions with blood pressure and vascular function during L-NAME-induced hypertension. J. Pineal Res. 2010;48:102–108. doi: 10.1111/j.1600-079X.2009.00732.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace