The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling

. 2021 Apr 30 ; 22 (9) : . [epub] 20210430

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33946230

Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.

Zobrazit více v PubMed

Goodman L.S., Brunton L.L., Chabner B., Knollmann B.C. Goodman & Gilman’s Pharmacological Basis of Therapeutics. McGraw-Hill; New York, NY, USA: 2011. pp. 721–741.

Von Lueder T.G., Krum H. RAAS inhibitors and cardiovascular protection in large scale trials. Cardiovasc. Drugs Ther. 2013;27:171–179. doi: 10.1007/s10557-012-6424-y. PubMed DOI

Simko F., Pechanova O., Repova-Bednarova K., Krajcirovicova K., Celec P., Kamodyova N., Zorad S., Kucharska J., Gvozdjakova A., Adamcova M., et al. Hypertension and cardiovascular remodelling in rats exposed to continuous light: Protection by ACE-inhibition and melatonin. Mediators Inflamm. 2014;2014:703175:1–703175:10. doi: 10.1155/2014/703175. PubMed DOI PMC

Simko F., Pechanova O., Krajcirovicova K., Matuskova J., Pelouch V., Adamcova M., Paulis L. Effects of captopril, spironolactone, and simvastatin on the cardiovascular system of non-diseased Wistar rats. Int. J. Cardiol. 2015;190:128–130. doi: 10.1016/j.ijcard.2015.04.092. PubMed DOI

Simko F., Pechanova O., Repova K., Aziriova S., Krajcirovicova K., Celec P., Tothova L., Vrankova S., Balazova L., Zorad S., et al. Lactacystin-Induced Model of Hypertension in Rats: Effects of Melatonin and Captopril. Int. J. Mol. Sci. 2017;18:1612. doi: 10.3390/ijms18081612. PubMed DOI PMC

Simko F., Baka T., Poglitsch M., Repova K., Aziriova S., Krajcirovicova K., Zorad S., Adamcova M., Paulis L. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int. J. Mol. Sci. 2018;19:3017. doi: 10.3390/ijms19103017. PubMed DOI PMC

Simko F., Hrenak J., Adamcova M., Paulis L. Renin-Angiotensin-Aldosterone System: Friend or Foe—The Matter of Balance. Insight on History, Therapeutic Implications and COVID-19 Interactions. Int. J. Mol. Sci. 2021;22:3217. doi: 10.3390/ijms22063217. PubMed DOI PMC

Singh K.D., Karnik S.S. Angiotensin Receptors: Structure, Function, Signaling and Clinical Applications. J. Cell. Signal. 2016;1:111. doi: 10.4172/jcs.1000111. PubMed DOI PMC

Ruiz-Ortega M., Lorenzo O., Rupérez M., König S., Wittig B., Egido J. Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: Molecular mechanisms. Circ. Res. 2000;86:1266–1272. doi: 10.1161/01.RES.86.12.1266. PubMed DOI

Schieffer B., Wirger A., Meybrunn M., Seitz S., Holtz J., Riede U.N., Drexler H. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation. 1994;89:2273–2282. doi: 10.1161/01.CIR.89.5.2273. PubMed DOI

Sadoshima J., Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ. Res. 1993;73:413–423. doi: 10.1161/01.RES.73.3.413. PubMed DOI

Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Mullerova M., Bednarova K., Adamcova M., Paulis L. Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats. J. Hypertens. Suppl. 2009;27:S5–S10. doi: 10.1097/01.hjh.0000358830.95439.e8. PubMed DOI

AbdAlla S., Lother H., Abdel-tawab A.M., Quitterer U. The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem. 2001;276:39721–39726. doi: 10.1074/jbc.M105253200. PubMed DOI

Uehara Y., Miura S., Yahiro E., Saku K. Non-ACE pathway-induced angiotensin II production. Curr. Pharm. Des. 2013;19:3054–3059. doi: 10.2174/1381612811319170012. PubMed DOI

Simko F., Simko J., Fabryová M. ACE-inhibition and angiotensin II receptor blockers in chronic heart failure: Pathophysiological consideration of the unresolved battle. Cardiovasc. Drugs Ther. 2003;17:287–290. doi: 10.1023/A:1026215712983. PubMed DOI

Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R., et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 2000;87:E1–E9. doi: 10.1161/01.RES.87.5.e1. PubMed DOI

Tipnis S.R., Hooper N.M., Hyde R., Karran E., Christie G., Turner A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 2000;275:33238–33243. doi: 10.1074/jbc.M002615200. PubMed DOI

Hrenak J., Simko F. Renin-Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome. Int. J. Mol. Sci. 2020;21:E8038. doi: 10.3390/ijms21218038. PubMed DOI PMC

Ferrario C.M., Chappell M.C., Tallant E.A., Brosnihan K.B., Diz D.I. Counterregulatory actions of angiotensin-(1-7) Hypertension. 1997;30:535–541. doi: 10.1161/01.HYP.30.3.535. PubMed DOI

Huentelman M.J., Grobe J.L., Vazquez J., Stewart J.M., Mecca A.P., Katovich M.J., Ferrario C.M., Raizada M.K. Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp. Physiol. 2005;90:783–790. doi: 10.1113/expphysiol.2005.031096. PubMed DOI

Crackower M.A., Sarao R., Oudit G.Y., Yagil C., Kozieradzki I., Scanga S.E., Oliveira-dos-Santos A.J., da Costa J., Zhang L., Pei Y., et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822–828. doi: 10.1038/nature00786. PubMed DOI

Santos R.A., Ferreira A.J., Simões E Silva A.C. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp. Physiol. 2008;93:519–527. doi: 10.1113/expphysiol.2008.042002. PubMed DOI

Ferrario C.M. Angiotensin-converting enzyme 2 and angiotensin-(1-7): An evolving story in cardiovascular regulation. Hypertension. 2006;47:515–521. doi: 10.1161/01.HYP.0000196268.08909.fb. PubMed DOI

Schindler C., Bramlage P., Kirch W., Ferrario C.M. Role of the vasodilator peptide angiotensin-(1-7) in cardiovascular drug therapy. Vasc. Health Risk Manag. 2007;3:125–137. PubMed PMC

Walters P.E., Gaspari T.A., Widdop R.E. Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension. 2005;45:960–966. doi: 10.1161/01.HYP.0000160325.59323.b8. PubMed DOI

Tetzner A., Gebolys K., Meinert C., Klein S., Uhlich A., Trebicka J., Villacañas Ó., Walther T. G-Protein-Coupled Receptor MrgD Is a Receptor for Angiotensin-(1-7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase A. Hypertension. 2016;68:185–194. doi: 10.1161/HYPERTENSIONAHA.116.07572. PubMed DOI

Schleifenbaum J. Alamandine and Its Receptor MrgD Pair Up to Join the Protective Arm of the Renin-Angiotensin System. Front. Med. (Lausanne) 2019;6:107. doi: 10.3389/fmed.2019.00107. PubMed DOI PMC

Paz Ocaranza M., Riquelme J.A., García L., Jalil J.E., Chiong M., Santos R.A.S., Lavandero S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 2020;17:116–129. doi: 10.1038/s41569-019-0244-8. PubMed DOI PMC

Jankowski V., Vanholder R., van der Giet M., Tölle M., Karadogan S., Gobom J., Furkert J., Oksche A., Krause E., Tran T.N., et al. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler. Thromb. Vasc. Biol. 2007;27:297–302. doi: 10.1161/01.ATV.0000253889.09765.5f. PubMed DOI

Jankowski V., Tölle M., Santos R.A., Günthner T., Krause E., Beyermann M., Welker P., Bader M., Pinheiro S.V., Sampaio W.O., et al. Angioprotectin: An angiotensin II-like peptide causing vasodilatory effects. FASEB J. 2011;25:2987–2995. doi: 10.1096/fj.11-185470. PubMed DOI

Albiston A.L., McDowall S.G., Matsacos D., Sim P., Clune E., Mustafa T., Lee J., Mendelsohn F.A., Simpson R.J., Connolly L.M., et al. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J. Biol. Chem. 2001;276:48623–48626. doi: 10.1074/jbc.C100512200. PubMed DOI

Wright J.W., Miller-Wing A.V., Shaffer M.J., Higginson C., Wright D.E., Hanesworth J.M., Harding J.W. Angiotensin II(3-8) (ANG IV) hippocampal binding: Potential role in the facilitation of memory. Brain Res. Bull. 1993;32:497–502. doi: 10.1016/0361-9230(93)90297-O. PubMed DOI

Hrenak J., Paulis L., Simko F. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP): Potential target molecule in research of heart, kidney and brain. Curr. Pharm. Des. 2015;21:5135–5143. doi: 10.2174/1381612821666150909093927. PubMed DOI

Chen L.J., Xu R., Yu H.M., Chang Q., Zhong J.C. The ACE2/Apelin Signaling, MicroRNAs, and Hypertension. Int. J. Hypertens. 2015;2015:896861. doi: 10.1155/2015/896861. PubMed DOI PMC

Yu X.H., Tang Z.B., Liu L.J., Qian H., Tang S.L., Zhang D.W., Tian G.P., Tang C.K. Apelin and its receptor APJ in cardiovascular diseases. Clin. Chim. Acta. 2014;428:1–8. doi: 10.1016/j.cca.2013.09.001. PubMed DOI

Wysocka M.B., Pietraszek-Gremplewicz K., Nowak D. The Role of Apelin in Cardiovascular Diseases, Obesity and Cancer. Front. Physiol. 2018;9:557. doi: 10.3389/fphys.2018.00557. PubMed DOI PMC

Paul M., Poyan Mehr A., Kreutz R. Physiology of local renin-angiotensin systems. Physiol. Rev. 2006;86:747–803. doi: 10.1152/physrev.00036.2005. PubMed DOI

Simko F., Simko J. Heart failure and angiotensin converting enzyme inhibition: Problems and perspectives. Physiol. Res. 1999;48:1–8. PubMed

Nguyen G., Danser A.H. Prorenin and (pro)renin receptor: A review of available data from in vitro studies and experimental models in rodents. Exp. Physiol. 2008;93:557–563. doi: 10.1113/expphysiol.2007.040030. PubMed DOI

Mahmud H., Silljé H.H., Cannon M.V., van Gilst W.H., de Boer R.A. Regulation of the (pro)renin-renin receptor in cardiac remodelling. J. Cell Mol. Med. 2012;16:722–729. doi: 10.1111/j.1582-4934.2011.01377.x. PubMed DOI PMC

Ichihara A., Yatabe M.S. The (pro)renin receptor in health and disease. Nat. Rev. Nephrol. 2019;15:693–712. doi: 10.1038/s41581-019-0160-5. PubMed DOI

Nehme A., Zouein F.A., Zayeri Z.D., Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J. Cardiovasc. Dev. Dis. 2019;6:E14. doi: 10.3390/jcdd6020014. PubMed DOI PMC

Singh V.P., Le B., Bhat V.B., Baker K.M., Kumar R. High-glucose-induced regulation of intracellular ANG II synthesis and nuclear redistribution in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H939–H948. doi: 10.1152/ajpheart.00391.2007. PubMed DOI

Kumar R., Singh V.P., Baker K.M. The intracellular renin-angiotensin system: A new paradigm. Trends Endocrinol. Metab. 2007;18:208–214. doi: 10.1016/j.tem.2007.05.001. PubMed DOI

Kumar R., Singh V.P., Baker K.M. The intracellular renin-angiotensin system in the heart. Curr. Hypertens. Rep. 2009;11:104–110. doi: 10.1007/s11906-009-0020-y. PubMed DOI

Singh V.P., Baker K.M., Kumar R. Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: Role in extracellular matrix production. Am. J. Physiol. Heart Circ. Physiol. 2008;294:H1675–H1684. doi: 10.1152/ajpheart.91493.2007. PubMed DOI

Singh V.P., Le B., Khode R., Baker K.M., Kumar R. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes. 2008;57:3297–3306. doi: 10.2337/db08-0805. PubMed DOI PMC

Azevedo P.S., Polegato B.F., Minicucci M.F., Paiva S.A., Zornoff L.A. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq. Bras. Cardiol. 2016;106:62–69. doi: 10.5935/abc.20160005. PubMed DOI PMC

Nakamura M., Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 2018;15:387–407. doi: 10.1038/s41569-018-0007-y. PubMed DOI

Travers J.G., Kamal F.A., Robbins J., Yutzey K.E., Blaxall B.C. Cardiac Fibrosis: The Fibroblast Awakens. Circ. Res. 2016;118:1021–1040. doi: 10.1161/CIRCRESAHA.115.306565. PubMed DOI PMC

Crabos M., Roth M., Hahn A.W., Erne P. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. J. Clin. Investig. 1994;93:2372–2378. doi: 10.1172/JCI117243. PubMed DOI PMC

Ohkubo N., Matsubara H., Nozawa Y., Mori Y., Murasawa S., Kijima K., Maruyama K., Masaki H., Tsutumi Y., Shibazaki Y., et al. Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation. 1997;96:3954–3962. doi: 10.1161/01.CIR.96.11.3954. PubMed DOI

Senbonmatsu T., Ichihara S., Price E., Gaffney F.A., Inagami T. Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J. Clin. Investig. 2000;106:R25–R29. doi: 10.1172/JCI10037. PubMed DOI PMC

Ma Z.G., Yuan Y.P., Wu H.M., Zhang X., Tang Q.Z. Cardiac fibrosis: New insights into the pathogenesis. Int. J. Biol. Sci. 2018;14:1645–1657. doi: 10.7150/ijbs.28103. PubMed DOI PMC

Leri A., Claudio P.P., Li Q., Wang X., Reiss K., Wang S., Malhotra A., Kajstura J., Anversa P. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J. Clin. Investig. 1998;101:1326–1342. doi: 10.1172/JCI316. PubMed DOI PMC

Hunyady L., Catt K.J. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol. Endocrinol. 2006;20:953–970. doi: 10.1210/me.2004-0536. PubMed DOI

Kawai T., Forrester S.J., O’Brien S., Baggett A., Rizzo V., Eguchi S. AT1 receptor signaling pathways in the cardiovascular system. Pharmacol. Res. 2017;125:4–13. doi: 10.1016/j.phrs.2017.05.008. PubMed DOI PMC

Lunde I.G., Kvaløy H., Austbø B., Christensen G., Carlson C.R. Angiotensin II and norepinephrine activate specific calcineurin-dependent NFAT transcription factor isoforms in cardiomyocytes. J. Appl. Physiol. (1985) 2011;111:1278–1289. doi: 10.1152/japplphysiol.01383.2010. PubMed DOI

Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc. Res. 2004;63:423–432. doi: 10.1016/j.cardiores.2004.04.030. PubMed DOI

Ghildiyal M., Zamore P.D. Small silencing RNAs: An expanding universe. Nat. Rev. Genet. 2009;10:94–108. doi: 10.1038/nrg2504. PubMed DOI PMC

Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014;15:509–524. doi: 10.1038/nrm3838. PubMed DOI

Doench J.G., Petersen C.P., Sharp P.A. siRNAs can function as miRNAs. Genes Dev. 2003;17:438–442. doi: 10.1101/gad.1064703. PubMed DOI PMC

Van Rooij E. The art of microRNA research. Circ. Res. 2011;108:219–234. doi: 10.1161/CIRCRESAHA.110.227496. PubMed DOI

Hanna J., Hossain G.S., Kocerha J. The Potential for microRNA Therapeutics and Clinical Research. Front. Genet. 2019;10:478. doi: 10.3389/fgene.2019.00478. PubMed DOI PMC

Chen C., Ponnusamy M., Liu C., Gao J., Wang K., Li P. MicroRNA as a Therapeutic Target in Cardiac Remodeling. Biomed. Res. Int. 2017;2017:1278436. doi: 10.1155/2017/1278436. PubMed DOI PMC

Deiuliis J., Mihai G., Zhang J., Taslim C., Varghese J.J., Maiseyeu A., Huang K., Rajagopalan S. Renin-sensitive microRNAs correlate with atherosclerosis plaque progression. J. Hum. Hypertens. 2014;28:251–258. doi: 10.1038/jhh.2013.97. PubMed DOI

Butterworth M.B. Role of microRNAs in aldosterone signaling. Curr. Opin. Nephrol. Hypertens. 2018;27:390–394. doi: 10.1097/MNH.0000000000000440. PubMed DOI

Butterworth M.B. Non-coding RNAs and the mineralocorticoid receptor in the kidney. Mol. Cell Endocrinol. 2021;521:111115. doi: 10.1016/j.mce.2020.111115. PubMed DOI PMC

Forrester S.J., Booz G.W., Sigmund C.D., Coffman T.M., Kawai T., Rizzo V., Scalia R., Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018;98:1627–1738. doi: 10.1152/physrev.00038.2017. PubMed DOI PMC

Shimizu I., Minamino T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 2016;97:245–262. doi: 10.1016/j.yjmcc.2016.06.001. PubMed DOI

Tham Y.K., Bernardo B.C., Ooi J.Y., Weeks K.L., McMullen J.R. Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch. Toxicol. 2015;89:1401–1438. doi: 10.1007/s00204-015-1477-x. PubMed DOI

Takefuji M., Wirth A., Lukasova M., Takefuji S., Boettger T., Braun T., Althoff T., Offermanns S., Wettschureck N. G(13)-mediated signaling pathway is required for pressure overload-induced cardiac remodeling and heart failure. Circulation. 2012;126:1972–1982. doi: 10.1161/CIRCULATIONAHA.112.109256. PubMed DOI

Forrester S.J., Kawai T., O’Brien S., Thomas W., Harris R.C., Eguchi S. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System. Annu. Rev. Pharmacol. Toxicol. 2016;56:627–653. doi: 10.1146/annurev-pharmtox-070115-095427. PubMed DOI PMC

Jia L., Li Y., Xiao C., Du J. Angiotensin II induces inflammation leading to cardiac remodeling. Front. Biosci. (Landmark Ed.) 2012;17:221–231. doi: 10.2741/3923. PubMed DOI

Benigni A., Cassis P., Remuzzi G. Angiotensin II revisited: New roles in inflammation, immunology and aging. EMBO Mol. Med. 2010;2:247–257. doi: 10.1002/emmm.201000080. PubMed DOI PMC

Funakoshi Y., Ichiki T., Ito K., Takeshita A. Induction of interleukin-6 expression by angiotensin II in rat vascular smooth muscle cells. Hypertension. 1999;34:118–125. doi: 10.1161/01.HYP.34.1.118. PubMed DOI

Zhang W., Wang W., Yu H., Zhang Y., Dai Y., Ning C., Tao L., Sun H., Kellems R.E., Blackburn M.R., et al. Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension. 2012;59:136–144. doi: 10.1161/HYPERTENSIONAHA.111.173328. PubMed DOI PMC

Luther J.M., Gainer J.V., Murphey L.J., Yu C., Vaughan D.E., Morrow J.D., Brown N.J. Angiotensin II induces interleukin-6 in humans through a mineralocorticoid receptor-dependent mechanism. Hypertension. 2006;48:1050–1057. doi: 10.1161/01.HYP.0000248135.97380.76. PubMed DOI

Sriramula S., Francis J. Tumor Necrosis Factor-Alpha Is Essential for Angiotensin II-Induced Ventricular Remodeling: Role for Oxidative Stress. PLoS ONE. 2015;10:e0138372. doi: 10.1371/journal.pone.0138372. PubMed DOI PMC

Dandona P., Dhindsa S., Ghanim H., Chaudhuri A. Angiotensin II and inflammation: The effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J. Hum. Hypertens. 2007;21:20–27. doi: 10.1038/sj.jhh.1002101. PubMed DOI

Bendall J.K., Cave A.C., Heymes C., Gall N., Shah A.M. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation. 2002;105:293–296. doi: 10.1161/hc0302.103712. PubMed DOI

Zhang M., Prosser B.L., Bamboye M.A., Gondim A.N.S., Santos C.X., Martin D., Ghigo A., Perino A., Brewer A.C., Ward C.W., et al. Contractile Function During Angiotensin-II Activation: Increased Nox2 Activity Modulates Cardiac Calcium Handling via Phospholamban Phosphorylation. J. Am. Coll. Cardiol. 2015;66:261–272. doi: 10.1016/j.jacc.2015.05.020. PubMed DOI PMC

Zhao Q.D., Viswanadhapalli S., Williams P., Shi Q., Tan C., Yi X., Bhandari B., Abboud H.E. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways. Circulation. 2015;131:643–655. doi: 10.1161/CIRCULATIONAHA.114.011079. PubMed DOI PMC

Dai D.F., Johnson S.C., Villarin J.J., Chin M.T., Nieves-Cintrón M., Chen T., Marcinek D.J., Dorn G.W., Kang Y.J., Prolla T.A., et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ. Res. 2011;108:837–846. doi: 10.1161/CIRCRESAHA.110.232306. PubMed DOI PMC

Lin L., Liu X., Xu J., Weng L., Ren J., Ge J., Zou Y. Mas receptor mediates cardioprotection of angiotensin-(1-7) against Angiotensin II-induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress. J. Cell. Mol. Med. 2016;20:48–57. doi: 10.1111/jcmm.12687. PubMed DOI PMC

Kishore R., Krishnamurthy P., Garikipati V.N., Benedict C., Nickoloff E., Khan M., Johnson J., Gumpert A.M., Koch W.J., Verma S.K. Interleukin-10 inhibits chronic angiotensin II-induced pathological autophagy. J. Mol. Cell. Cardiol. 2015;89:203–213. doi: 10.1016/j.yjmcc.2015.11.004. PubMed DOI PMC

Yin Q., Wang X., McBride J., Fewell C., Flemington E. B-cell receptor activation induces BIC/miR-155 expression through a conserved AP-1 element. J. Biol. Chem. 2008;283:2654–2662. doi: 10.1074/jbc.M708218200. PubMed DOI PMC

Elton T.S., Selemon H., Elton S.M., Parinandi N.L. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532:1–12. doi: 10.1016/j.gene.2012.12.009. PubMed DOI

Teng G., Papavasiliou F.N. Shhh! Silencing by microRNA-155. Philos. Trans. R Soc. Lond. B Biol. Sci. 2009;364:631–637. doi: 10.1098/rstb.2008.0209. PubMed DOI PMC

Heymans S., Corsten M.F., Verhesen W., Carai P., van Leeuwen R.E., Custers K., Peters T., Hazebroek M., Stöger L., Wijnands E., et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation. 2013;128:1420–1432. doi: 10.1161/CIRCULATIONAHA.112.001357. PubMed DOI

Seok H.Y., Chen J., Kataoka M., Huang Z.P., Ding J., Yan J., Hu X., Wang D.Z. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res. 2014;114:1585–1595. doi: 10.1161/CIRCRESAHA.114.303784. PubMed DOI PMC

Yuan Y., Wang J., Chen Q., Wu Q., Deng W., Zhou H., Shen D. Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling. Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865:1421–1427. doi: 10.1016/j.bbadis.2019.02.014. PubMed DOI

Yu H., Qin L., Peng Y., Bai W., Wang Z. Exosomes Derived from Hypertrophic Cardiomyocytes Induce Inflammation in Macrophages via miR-155 Mediated MAPK Pathway. Front. Immunol. 2020;11:606045. doi: 10.3389/fimmu.2020.606045. PubMed DOI PMC

Yang Y., Zhou Y., Cao Z., Tong X.Z., Xie H.Q., Luo T., Hua X.P., Wang H.Q. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy. Exp. Ther. Med. 2016;12:1556–1562. doi: 10.3892/etm.2016.3506. PubMed DOI PMC

Zhu N., Zhang D., Chen S., Liu X., Lin L., Huang X., Guo Z., Liu J., Wang Y., Yuan W., et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. 2011;215:286–293. doi: 10.1016/j.atherosclerosis.2010.12.024. PubMed DOI

Cheng W., Liu T., Jiang F., Liu C., Zhao X., Gao Y., Wang H., Liu Z. microRNA-155 regulates angiotensin II type 1 receptor expression in umbilical vein endothelial cells from severely pre-eclamptic pregnant women. Int. J. Mol. Med. 2011;27:393–399. doi: 10.3892/ijmm.2011.598. PubMed DOI

Sun H.X., Zeng D.Y., Li R.T., Pang R.P., Yang H., Hu Y.L., Zhang Q., Jiang Y., Huang L.Y., Tang Y.B., et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension. 2012;60:1407–1414. doi: 10.1161/HYPERTENSIONAHA.112.197301. PubMed DOI

Alexy T., Rooney K., Weber M., Gray W.D., Searles C.D. TNF-α alters the release and transfer of microparticle-encapsulated miRNAs from endothelial cells. Physiol. Genom. 2014;46:833–840. doi: 10.1152/physiolgenomics.00079.2014. PubMed DOI PMC

Zheng L., Xu C.C., Chen W.D., Shen W.L., Ruan C.C., Zhu L.M., Zhu D.L., Gao P.J. MicroRNA-155 regulates angiotensin II type 1 receptor expression and phenotypic differentiation in vascular adventitial fibroblasts. Biochem. Biophys. Res. Commun. 2010;400:483–488. doi: 10.1016/j.bbrc.2010.08.067. PubMed DOI

Yang L.X., Liu G., Zhu G.F., Liu H., Guo R.W., Qi F., Zou J.H. MicroRNA-155 inhibits angiotensin II-induced vascular smooth muscle cell proliferation. J. Renin Angiotensin Aldosterone Syst. 2014;15:109–116. doi: 10.1177/1470320313503693. PubMed DOI

Liu X., Meng H., Jiang C., Yang S., Cui F., Yang P. Differential microRNA Expression and Regulation in the Rat Model of Post-Infarction Heart Failure. PLoS ONE. 2016;11:e0160920. doi: 10.1371/journal.pone.0160920. PubMed DOI PMC

Van Rooij E., Quiat D., Johnson B.A., Sutherland L.B., Qi X., Richardson J.A., Kelm R.J., Olson E.N. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17:662–673. doi: 10.1016/j.devcel.2009.10.013. PubMed DOI PMC

Kakimoto Y., Tanaka M., Kamiguchi H., Hayashi H., Ochiai E., Osawa M. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart. Int. J. Cardiol. 2016;211:43–48. doi: 10.1016/j.ijcard.2016.02.145. PubMed DOI

Callis T.E., Pandya K., Seok H.Y., Tang R.H., Tatsuguchi M., Huang Z.P., Chen J.F., Deng Z., Gunn B., Shumate J., et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Investig. 2009;119:2772–2786. doi: 10.1172/JCI36154. PubMed DOI PMC

Montgomery R.L., Hullinger T.G., Semus H.M., Dickinson B.A., Seto A.G., Lynch J.M., Stack C., Latimer P.A., Olson E.N., van Rooij E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124:1537–1547. doi: 10.1161/CIRCULATIONAHA.111.030932. PubMed DOI PMC

Meng L.D., Meng A.C., Zhu Q., Jia R.Y., Kong Q.Z. Effect of microRNA-208a on mitochondrial apoptosis of cardiomyocytes of neonatal rats. Asian Pac. J. Trop. Med. 2015;8:747–751. doi: 10.1016/j.apjtm.2015.07.023. PubMed DOI

Tony H., Yu K., Qiutang Z. MicroRNA-208a Silencing Attenuates Doxorubicin Induced Myocyte Apoptosis and Cardiac Dysfunction. Oxid. Med. Cell. Longev. 2015;2015:597032. doi: 10.1155/2015/597032. PubMed DOI PMC

Wang X., Yang C., Liu X., Yang P. Ghrelin Alleviates Angiotensin II-Induced H9c2 Apoptosis: Impact of the miR-208 Family. Med. Sci. Monit. 2018;24:6707–6716. doi: 10.12659/MSM.908096. PubMed DOI PMC

Huang Y., Yang Y., He Y., Huang C., Meng X., Li J. MicroRNA-208a Potentiates Angiotensin II-triggered Cardiac Myoblasts Apoptosis via Inhibiting Nemo-like Kinase (NLK) Curr. Pharm. Des. 2016;22:4868–4875. doi: 10.2174/1381612822666160210143047. PubMed DOI

Rana I., Velkoska E., Patel S.K., Burrell L.M., Charchar F.J. MicroRNAs mediate the cardioprotective effect of angiotensin-converting enzyme inhibition in acute kidney injury. Am. J. Physiol. Renal Physiol. 2015;309:F943–F954. doi: 10.1152/ajprenal.00183.2015. PubMed DOI

Jeppesen P.L., Christensen G.L., Schneider M., Nossent A.Y., Jensen H.B., Andersen D.C., Eskildsen T., Gammeltoft S., Hansen J.L., Sheikh S.P. Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes. Br. J. Pharmacol. 2011;164:394–404. doi: 10.1111/j.1476-5381.2011.01375.x. PubMed DOI PMC

Ucar A., Gupta S.K., Fiedler J., Erikci E., Kardasinski M., Batkai S., Dangwal S., Kumarswamy R., Bang C., Holzmann A., et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun. 2012;3:1078. doi: 10.1038/ncomms2090. PubMed DOI PMC

Eskildsen T.V., Jeppesen P.L., Schneider M., Nossent A.Y., Sandberg M.B., Hansen P.B., Jensen C.H., Hansen M.L., Marcussen N., Rasmussen L.M., et al. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int. J. Mol. Sci. 2013;14:11190–11207. doi: 10.3390/ijms140611190. PubMed DOI PMC

Eskildsen T.V., Schneider M., Sandberg M.B., Skov V., Brønnum H., Thomassen M., Kruse T.A., Andersen D.C., Sheikh S.P. The microRNA-132/212 family fine-tunes multiple targets in Angiotensin II signalling in cardiac fibroblasts. J. Renin Angiotensin Aldosterone Syst. 2015;16:1288–1297. doi: 10.1177/1470320314539367. PubMed DOI

Foinquinos A., Batkai S., Genschel C., Viereck J., Rump S., Gyöngyösi M., Traxler D., Riesenhuber M., Spannbauer A., Lukovic D., et al. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat. Commun. 2020;11:633. doi: 10.1038/s41467-020-14349-2. PubMed DOI PMC

Cheng Y., Ji R., Yue J., Yang J., Liu X., Chen H., Dean D.B., Zhang C. MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy. Am. J. Pathol. 2007;170:1831–1840. doi: 10.2353/ajpath.2007.061170. PubMed DOI PMC

Duygu B., Da Costa Martins P.A. miR-21: A star player in cardiac hypertrophy. Cardiovasc. Res. 2015;105:235–237. doi: 10.1093/cvr/cvv026. PubMed DOI

Clark A.L., Maruyama S., Sano S., Accorsi A., Girgenrath M., Walsh K., Naya F.J. miR-410 and miR-495 Are Dynamically Regulated in Diverse Cardiomyopathies and Their Inhibition Attenuates Pathological Hypertrophy. PLoS ONE. 2016;11:e0151515. doi: 10.1371/journal.pone.0151515. PubMed DOI PMC

Song D.W., Ryu J.Y., Kim J.O., Kwon E.J., Kim D.H. The miR-19a/b family positively regulates cardiomyocyte hypertrophy by targeting atrogin-1 and MuRF-1. Biochem. J. 2014;457:151–162. doi: 10.1042/BJ20130833. PubMed DOI

Gao F., Kataoka M., Liu N., Liang T., Huang Z.P., Gu F., Ding J., Liu J., Zhang F., Ma Q., et al. Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat. Commun. 2019;10:1802. doi: 10.1038/s41467-019-09530-1. PubMed DOI PMC

Gao S., Liu T.W., Wang Z., Jiao Z.Y., Cai J., Chi H.J., Yang X.C. Downregulation of microRNA-19b contributes to angiotensin II-induced overexpression of connective tissue growth factor in cardiomyocytes. Cardiology. 2014;127:114–120. doi: 10.1159/000355429. PubMed DOI

Liu K., Hao Q., Wei J., Li G.H., Wu Y., Zhao Y.F. MicroRNA-19a/b-3p protect the heart from hypertension-induced pathological cardiac hypertrophy through PDE5A. J. Hypertens. 2018;36:1847–1857. doi: 10.1097/HJH.0000000000001769. PubMed DOI PMC

Qiu Y., Cheng R., Liang C., Yao Y., Zhang W., Zhang J., Zhang M., Li B., Xu C., Zhang R. MicroRNA-20b Promotes Cardiac Hypertrophy by the Inhibition of Mitofusin 2-Mediated Inter-organelle Ca2+ Cross-Talk. Mol. Ther. Nucleic Acids. 2020;19:1343–1356. doi: 10.1016/j.omtn.2020.01.017. PubMed DOI PMC

Wei L.H., Huang X.R., Zhang Y., Li Y.Q., Chen H.Y., Yan B.P., Yu C.M., Lan H.Y. Smad7 inhibits angiotensin II-induced hypertensive cardiac remodelling. Cardiovasc. Res. 2013;99:665–673. doi: 10.1093/cvr/cvt151. PubMed DOI

Liang Z.G., Yao H., Xie R.S., Gong C.L., Tian Y. MicroRNA-20b-5p promotes ventricular remodeling by targeting the TGF-β/Smad signaling pathway in a rat model of ischemia-reperfusion injury. Int. J. Mol. Med. 2018;42:975–987. doi: 10.3892/ijmm.2018.3695. PubMed DOI PMC

Yan M., Chen C., Gong W., Yin Z., Zhou L., Chaugai S., Wang D.W. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc. Res. 2015;105:340–352. doi: 10.1093/cvr/cvu254. PubMed DOI

Liu Y., Wang Z., Xiao W. MicroRNA-26a protects against cardiac hypertrophy via inhibiting GATA4 in rat model and cultured cardiomyocytes. Mol. Med. Rep. 2016;14:2860–2866. doi: 10.3892/mmr.2016.5574. PubMed DOI

Bang C., Batkai S., Dangwal S., Gupta S.K., Foinquinos A., Holzmann A., Just A., Remke J., Zimmer K., Zeug A., et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Investig. 2014;124:2136–2146. doi: 10.1172/JCI70577. PubMed DOI PMC

Huang S., Zou X., Zhu J.N., Fu Y.H., Lin Q.X., Liang Y.Y., Deng C.Y., Kuang S.J., Zhang M.Z., Liao Y.L., et al. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy. J. Cell. Mol. Med. 2015;19:608–619. doi: 10.1111/jcmm.12445. PubMed DOI PMC

Yang Y., Ago T., Zhai P., Abdellatif M., Sadoshima J. Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ. Res. 2011;108:305–313. doi: 10.1161/CIRCRESAHA.110.228437. PubMed DOI PMC

Pan W., Zhong Y., Cheng C., Liu B., Wang L., Li A., Xiong L., Liu S. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS ONE. 2013;8:e53950. doi: 10.1371/journal.pone.0053950. PubMed DOI PMC

Huang J., Sun W., Huang H., Ye J., Pan W., Zhong Y., Cheng C., You X., Liu B., Xiong L., et al. miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. PLoS ONE. 2014;9:e94382. doi: 10.1371/journal.pone.0094382. PubMed DOI PMC

Xiao Y., Zhao J., Tuazon J.P., Borlongan C.V., Yu G. MicroRNA-133a and Myocardial Infarction. Cell Transplant. 2019;28:831–838. doi: 10.1177/0963689719843806. PubMed DOI PMC

Leptidis S., El Azzouzi H., Lok S.I., de Weger R., Olieslagers S., Olieslagers S., Kisters N., Silva G.J., Heymans S., Cuppen E., et al. A deep sequencing approach to uncover the miRNOME in the human heart. PLoS ONE. 2013;8:e57800. doi: 10.1371/journal.pone.0057800. PubMed DOI PMC

Carè A., Catalucci D., Felicetti F., Bonci D., Addario A., Gallo P., Bang M.L., Segnalini P., Gu Y., Dalton N.D., et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 2007;13:613–618. doi: 10.1038/nm1582. PubMed DOI

Chen S., Puthanveetil P., Feng B., Matkovich S.J., Dorn G.W., Chakrabarti S. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J. Cell. Mol. Med. 2014;18:415–421. doi: 10.1111/jcmm.12218. PubMed DOI PMC

Feng B., Chen S., George B., Feng Q., Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab. Res. Rev. 2010;26:40–49. doi: 10.1002/dmrr.1054. PubMed DOI

Matkovich S.J., Wang W., Tu Y., Eschenbacher W.H., Dorn L.E., Condorelli G., Diwan A., Nerbonne J.M., Dorn G.W. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ. Res. 2010;106:166–175. doi: 10.1161/CIRCRESAHA.109.202176. PubMed DOI PMC

Sayed D., Hong C., Chen I.Y., Lypowy J., Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 2007;100:416–424. doi: 10.1161/01.RES.0000257913.42552.23. PubMed DOI

Abdellatif M. The role of microRNA-133 in cardiac hypertrophy uncovered. Circ. Res. 2010;106:16–18. doi: 10.1161/CIRCRESAHA.109.212183. PubMed DOI PMC

Chen J.F., Mandel E.M., Thomson J.M., Wu Q., Callis T.E., Hammond S.M., Conlon F.L., Wang D.Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006;38:228–233. doi: 10.1038/ng1725. PubMed DOI PMC

Liu N., Bezprozvannaya S., Williams A.H., Qi X., Richardson J.A., Bassel-Duby R., Olson E.N. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22:3242–3254. doi: 10.1101/gad.1738708. PubMed DOI PMC

Xu C., Lu Y., Pan Z., Chu W., Luo X., Lin H., Xiao J., Shan H., Wang Z., Yang B. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J. Cell Sci. 2007;120:3045–3052. doi: 10.1242/jcs.010728. PubMed DOI

Duisters R.F., Tijsen A.J., Schroen B., Leenders J.J., Lentink V., van der Made I., Herias V., van Leeuwen R.E., Schellings M.W., Barenbrug P., et al. miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 2009;104:170–178. doi: 10.1161/CIRCRESAHA.108.182535. PubMed DOI

Castoldi G., Di Gioia C.R., Bombardi C., Catalucci D., Corradi B., Gualazzi M.G., Leopizzi M., Mancini M., Zerbini G., Condorelli G., et al. MiR-133a regulates collagen 1A1: Potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J. Cell Physiol. 2012;227:850–856. doi: 10.1002/jcp.22939. PubMed DOI

Li Q., Lin X., Yang X., Chang J. NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am. J. Physiol. Heart Circ. Physiol. 2010;298:H1340–H1347. doi: 10.1152/ajpheart.00592.2009. PubMed DOI PMC

Sharma N.M., Nandi S.S., Zheng H., Mishra P.K., Patel K.P. A novel role for miR-133a in centrally mediated activation of the renin-angiotensin system in congestive heart failure. Am. J. Physiol. Heart Circ. Physiol. 2017;312:H968–H979. doi: 10.1152/ajpheart.00721.2016. PubMed DOI PMC

Li Y., Cai X., Guan Y., Wang L., Wang S., Li Y., Fu Y., Gao X., Su G. Adiponectin Upregulates MiR-133a in Cardiac Hypertrophy through AMPK Activation and Reduced ERK1/2 Phosphorylation. PLoS ONE. 2016;11:e0148482. doi: 10.1371/journal.pone.0148482. PubMed DOI PMC

Ceylan-Isik A.F., Kandadi M.R., Xu X., Hua Y., Chicco A.J., Ren J., Nair S. Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J. Mol. Cell. Cardiol. 2013;63:4–13. doi: 10.1016/j.yjmcc.2013.07.002. PubMed DOI

Nandi S.S., Zheng H., Sharma N.M., Shahshahan H.R., Patel K.P., Mishra P.K. Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase. Diabetes. 2016;65:3075–3090. doi: 10.2337/db16-0023. PubMed DOI PMC

Nandi S.S., Shahshahan H.R., Shang Q., Kutty S., Boska M., Mishra P.K. MiR-133a Mimic Alleviates T1DM-Induced Systolic Dysfunction in Akita: An MRI-Based Study. Front. Physiol. 2018;9:1275. doi: 10.3389/fphys.2018.01275. PubMed DOI PMC

Yin H., Zhao L., Zhang S., Zhang Y., Lei S. MicroRNA-1 suppresses cardiac hypertrophy by targeting nuclear factor of activated T cells cytoplasmic 3. Mol. Med. Rep. 2015;12:8282–8288. doi: 10.3892/mmr.2015.4441. PubMed DOI

Zaglia T., Ceriotti P., Campo A., Borile G., Armani A., Carullo P., Prando V., Coppini R., Vida V., Stølen T.O., et al. Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proc. Natl. Acad. Sci. USA. 2017;114:E9006–E9015. doi: 10.1073/pnas.1708772114. PubMed DOI PMC

Li Q., Song X.W., Zou J., Wang G.K., Kremneva E., Li X.Q., Zhu N., Sun T., Lappalainen P., Yuan W.J., et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J. Cell Sci. 2010;123:2444–2452. doi: 10.1242/jcs.067165. PubMed DOI

Yuan W., Tang C., Zhu W., Zhu J., Lin Q., Fu Y., Deng C., Xue Y., Yang M., Wu S., et al. CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Mol. Cell. Biochem. 2016;412:289–296. doi: 10.1007/s11010-015-2635-4. PubMed DOI

Elia L., Contu R., Quintavalle M., Varrone F., Chimenti C., Russo M.A., Cimino V., De Marinis L., Frustaci A., Catalucci D., et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation. 2009;120:2377–2385. doi: 10.1161/CIRCULATIONAHA.109.879429. PubMed DOI PMC

Li Q., Xie J., Wang B., Li R., Bai J., Ding L., Gu R., Wang L., Xu B. Overexpression of microRNA-99a Attenuates Cardiac Hypertrophy. PLoS ONE. 2016;11:e0148480. doi: 10.1371/journal.pone.0148480. PubMed DOI PMC

Wei L., Yuan M., Zhou R., Bai Q., Zhang W., Zhang M., Huang Y., Shi L. MicroRNA-101 inhibits rat cardiac hypertrophy by targeting Rab1a. J. Cardiovasc. Pharmacol. 2015;65:357–363. doi: 10.1097/FJC.0000000000000203. PubMed DOI

Sotomayor-Flores C., Rivera-Mejías P., Vásquez-Trincado C., López-Crisosto C., Morales P.E., Pennanen C., Polakovicova I., Aliaga-Tobar V., García L., Roa J.C., et al. Angiotensin-(1-9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death Differ. 2020;27:2586–2604. doi: 10.1038/s41418-020-0522-3. PubMed DOI PMC

Wen H., Gwathmey J.K., Xie L.H. Oxidative stress-mediated effects of angiotensin II in the cardiovascular system. World J. Hypertens. 2012;2:34–44. doi: 10.5494/wjh.v2.i4.34. PubMed DOI PMC

Johar S., Cave A.C., Narayanapanicker A., Grieve D.J., Shah A.M. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 2006;20:1546–1548. doi: 10.1096/fj.05-4642fje. PubMed DOI

Bracey N.A., Gershkovich B., Chun J., Vilaysane A., Meijndert H.C., Wright J.R., Fedak P.W., Beck P.L., Muruve D.A., Duff H.J. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J. Biol. Chem. 2014;289:19571–19584. doi: 10.1074/jbc.M114.550624. PubMed DOI PMC

Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC

Lassègue B., San Martín A., Griendling K.K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 2012;110:1364–1390. doi: 10.1161/CIRCRESAHA.111.243972. PubMed DOI PMC

Sag C.M., Santos C.X., Shah A.M. Redox regulation of cardiac hypertrophy. J. Mol. Cell. Cardiol. 2014;73:103–111. doi: 10.1016/j.yjmcc.2014.02.002. PubMed DOI

Belo V.A., Guimarães D.A., Castro M.M. Matrix Metalloproteinase 2 as a Potential Mediator of Vascular Smooth Muscle Cell Migration and Chronic Vascular Remodeling in Hypertension. J. Vasc. Res. 2015;52:221–231. doi: 10.1159/000441621. PubMed DOI

Luchtefeld M., Grote K., Grothusen C., Bley S., Bandlow N., Selle T., Strüber M., Haverich A., Bavendiek U., Drexler H., et al. Angiotensin II induces MMP-2 in a p47phox-dependent manner. Biochem. Biophys. Res. Commun. 2005;328:183–188. doi: 10.1016/j.bbrc.2004.12.152. PubMed DOI

Li L., Fan D., Wang C., Wang J.Y., Cui X.B., Wu D., Zhou Y., Wu L.L. Angiotensin II increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-β1 pathways in cardiac fibroblasts. Cardiovasc. Res. 2011;91:80–89. doi: 10.1093/cvr/cvr067. PubMed DOI

Nguyen Dinh Cat A., Montezano A.C., Burger D., Touyz R.M. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid. Redox Signal. 2013;19:1110–1120. doi: 10.1089/ars.2012.4641. PubMed DOI PMC

Olson E.R., Shamhart P.E., Naugle J.E., Meszaros J.G. Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase Cdelta and intracellular calcium in adult rat cardiac fibroblasts. Hypertension. 2008;51:704–711. doi: 10.1161/HYPERTENSIONAHA.107.098459. PubMed DOI

Davis J., Molkentin J.D. Myofibroblasts: Trust your heart and let fate decide. J. Mol. Cell. Cardiol. 2014;70:9–18. doi: 10.1016/j.yjmcc.2013.10.019. PubMed DOI PMC

Omura T., Yoshiyama M., Kim S., Matsumoto R., Nakamura Y., Izumi Y., Ichijo H., Sudo T., Akioka K., Iwao H., et al. Involvement of apoptosis signal-regulating kinase-1 on angiotensin II-induced monocyte chemoattractant protein-1 expression. Arterioscler. Thromb. Vasc. Biol. 2004;24:270–275. doi: 10.1161/01.ATV.0000112930.40564.89. PubMed DOI

Balakumar P., Jagadeesh G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell. Signal. 2014;26:2147–2160. doi: 10.1016/j.cellsig.2014.06.011. PubMed DOI

Ongherth A., Pasch S., Wuertz C.M., Nowak K., Kittana N., Weis C.A., Jatho A., Vettel C., Tiburcy M., Toischer K., et al. p63RhoGEF regulates auto- and paracrine signaling in cardiac fibroblasts. J. Mol. Cell. Cardiol. 2015;88:39–54. doi: 10.1016/j.yjmcc.2015.09.009. PubMed DOI

Li C., Zhen G., Chai Y., Xie L., Crane J.L., Farber E., Farber C.R., Luo X., Gao P., Cao X., et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat. Commun. 2016;7:11455. doi: 10.1038/ncomms11455. PubMed DOI PMC

Somanna N.K., Valente A.J., Krenz M., Fay W.P., Delafontaine P., Chandrasekar B. The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4. J. Cell Physiol. 2016;231:1130–1141. doi: 10.1002/jcp.25210. PubMed DOI PMC

Liu R.M., Desai L.P. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015;6:565–577. doi: 10.1016/j.redox.2015.09.009. PubMed DOI PMC

Moriguchi Y., Matsubara H., Mori Y., Murasawa S., Masaki H., Maruyama K., Tsutsumi Y., Shibasaki Y., Tanaka Y., Nakajima T., et al. Angiotensin II-induced transactivation of epidermal growth factor receptor regulates fibronectin and transforming growth factor-beta synthesis via transcriptional and posttranscriptional mechanisms. Circ. Res. 1999;84:1073–1084. doi: 10.1161/01.RES.84.9.1073. PubMed DOI

Peng K., Tian X., Qian Y., Skibba M., Zou C., Liu Z., Wang J., Xu Z., Li X., Liang G. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J. Cell. Mol. Med. 2016;20:482–494. doi: 10.1111/jcmm.12763. PubMed DOI PMC

Bai D., Ge L., Gao Y., Lu X., Wang H., Yang G. Cytoplasmic translocation of HuR contributes to angiotensin II induced cardiac fibrosis. Biochem. Biophys. Res. Commun. 2015;463:1273–1277. doi: 10.1016/j.bbrc.2015.06.101. PubMed DOI

Border W.A., Noble N.A. Transforming growth factor beta in tissue fibrosis. N. Engl. J. Med. 1994;331:1286–1292. doi: 10.1056/NEJM199411103311907. PubMed DOI

Poniatowski Ł.A., Wojdasiewicz P., Gasik R., Szukiewicz D. Transforming growth factor Beta family: Insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediat. Inflamm. 2015;2015:137823. doi: 10.1155/2015/137823. PubMed DOI PMC

Lijnen P.J., Petrov V.V., Fagard R.H. Induction of cardiac fibrosis by transforming growth factor-beta(1) Mol. Genet. Metab. 2000;71:418–435. doi: 10.1006/mgme.2000.3032. PubMed DOI

Bujak M., Frangogiannis N.G. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 2007;74:184–195. doi: 10.1016/j.cardiores.2006.10.002. PubMed DOI PMC

Khalil H., Kanisicak O., Prasad V., Correll R.N., Fu X., Schips T., Vagnozzi R.J., Liu R., Huynh T., Lee S.J., et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Investig. 2017;127:3770–3783. doi: 10.1172/JCI94753. PubMed DOI PMC

Schultz J.E.J., Witt S.A., Glascock B.J., Nieman M.L., Reiser P.J., Nix S.L., Kimball T.R., Doetschman T. TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J. Clin. Investig. 2002;109:787–796. doi: 10.1172/JCI0214190. PubMed DOI PMC

Wenzel S., Taimor G., Piper H.M., Schlüter K.D. Redox-sensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-beta expression in adult ventricular cardiomyocytes. FASEB J. 2001;15:2291–2293. doi: 10.1096/fj.00-0827fje. PubMed DOI

Rodríguez-Vita J., Sánchez-López E., Esteban V., Rupérez M., Egido J., Ruiz-Ortega M. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation. 2005;111:2509–2517. doi: 10.1161/01.CIR.0000165133.84978.E2. PubMed DOI

Ruiz-Ortega M., Rodríguez-Vita J., Sanchez-Lopez E., Carvajal G., Egido J. TGF-beta signaling in vascular fibrosis. Cardiovasc. Res. 2007;74:196–206. doi: 10.1016/j.cardiores.2007.02.008. PubMed DOI

Wang W., Huang X.R., Canlas E., Oka K., Truong L.D., Deng C., Bhowmick N.A., Ju W., Bottinger E.P., Lan H.Y. Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circ. Res. 2006;98:1032–1039. doi: 10.1161/01.RES.0000218782.52610.dc. PubMed DOI PMC

Hao J., Wang B., Jones S.C., Jassal D.S., Dixon I.M. Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am. J. Physiol. Heart Circ. Physiol. 2000;279:H3020–H3030. doi: 10.1152/ajpheart.2000.279.6.H3020. PubMed DOI

Carvajal G., Rodríguez-Vita J., Rodrigues-Díez R., Sánchez-López E., Rupérez M., Cartier C., Esteban V., Ortiz A., Egido J., Mezzano S.A., et al. Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int. 2008;74:585–595. doi: 10.1038/ki.2008.213. PubMed DOI

Shi Y., Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700. doi: 10.1016/S0092-8674(03)00432-X. PubMed DOI

Zhang Y.E. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–139. doi: 10.1038/cr.2008.328. PubMed DOI PMC

Massagué J., Seoane J., Wotton D. Smad transcription factors. Genes Dev. 2005;19:2783–2810. doi: 10.1101/gad.1350705. PubMed DOI

Li J.H., Zhu H.J., Huang X.R., Lai K.N., Johnson R.J., Lan H.Y. Smad7 inhibits fibrotic effect of TGF-Beta on renal tubular epithelial cells by blocking Smad2 activation. J. Am. Soc. Nephrol. 2002;13:1464–1472. doi: 10.1097/01.ASN.0000014252.37680.E4. PubMed DOI

Wang B., Omar A., Angelovska T., Drobic V., Rattan S.G., Jones S.C., Dixon I.M. Regulation of collagen synthesis by inhibitory Smad7 in cardiac myofibroblasts. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H1282–H1290. doi: 10.1152/ajpheart.00910.2006. PubMed DOI

Meng X.M., Huang X.R., Chung A.C., Qin W., Shao X., Igarashi P., Ju W., Bottinger E.P., Lan H.Y. Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. J. Am. Soc. Nephrol. 2010;21:1477–1487. doi: 10.1681/ASN.2009121244. PubMed DOI PMC

Zhang D., Gaussin V., Taffet G.E., Belaguli N.S., Yamada M., Schwartz R.J., Michael L.H., Overbeek P.A., Schneider M.D., Schneider M.D. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat. Med. 2000;6:556–563. doi: 10.1038/75037. PubMed DOI

Wang W., Zhou G., Hu M.C., Yao Z., Tan T.H. Activation of the hematopoietic progenitor kinase-1 (HPK1)-dependent, stress-activated c-Jun N-terminal kinase (JNK) pathway by transforming growth factor beta (TGF-beta)-activated kinase (TAK1), a kinase mediator of TGF beta signal transduction. J. Biol. Chem. 1997;272:22771–22775. doi: 10.1074/jbc.272.36.22771. PubMed DOI

Thum T., Gross C., Fiedler J., Fischer T., Kissler S., Bussen M., Galuppo P., Just S., Rottbauer W., Frantz S., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–984. doi: 10.1038/nature07511. PubMed DOI

Roy S., Khanna S., Hussain S.R., Biswas S., Azad A., Rink C., Gnyawali S., Shilo S., Nuovo G.J., Sen C.K. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 2009;82:21–29. doi: 10.1093/cvr/cvp015. PubMed DOI PMC

Liu R.H., Ning B., Ma X.E., Gong W.M., Jia T.H. Regulatory roles of microRNA-21 in fibrosis through interaction with diverse pathways (Review) Mol. Med. Rep. 2016;13:2359–2366. doi: 10.3892/mmr.2016.4834. PubMed DOI

Meng F., Henson R., Wehbe-Janek H., Ghoshal K., Jacob S.T., Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–658. doi: 10.1053/j.gastro.2007.05.022. PubMed DOI PMC

Adam O., Löhfelm B., Thum T., Gupta S.K., Puhl S.L., Schäfers H.J., Böhm M., Laufs U. Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol. 2012;107:278. doi: 10.1007/s00395-012-0278-0. PubMed DOI

Siddesha J.M., Valente A.J., Yoshida T., Sakamuri S.S., Delafontaine P., Iba H., Noda M., Chandrasekar B. Docosahexaenoic acid reverses angiotensin II-induced RECK suppression and cardiac fibroblast migration. Cell. Signal. 2014;26:933–941. doi: 10.1016/j.cellsig.2014.01.005. PubMed DOI PMC

Lorenzen J.M., Schauerte C., Hübner A., Kölling M., Martino F., Scherf K., Batkai S., Zimmer K., Foinquinos A., Kaucsar T., et al. Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur. Heart J. 2015;36:2184–2196. doi: 10.1093/eurheartj/ehv109. PubMed DOI PMC

Zhong X., Chung A.C., Chen H.Y., Meng X.M., Lan H.Y. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J. Am. Soc. Nephrol. 2011;22:1668–1681. doi: 10.1681/ASN.2010111168. PubMed DOI PMC

García R., Nistal J.F., Merino D., Price N.L., Fernández-Hernando C., Beaumont J., González A., Hurlé M.A., Villar A.V. p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling. Biochim. Biophys. Acta. 2015;1852:1520–1530. doi: 10.1016/j.bbadis.2015.04.006. PubMed DOI

Lin L., Gan H., Zhang H., Tang W., Sun Y., Tang X., Kong D., Zhou J., Wang Y., Zhu Y. MicroRNA-21 inhibits SMAD7 expression through a target sequence in the 3′ untranslated region and inhibits proliferation of renal tubular epithelial cells. Mol. Med. Rep. 2014;10:707–712. doi: 10.3892/mmr.2014.2312. PubMed DOI

Yuan J., Chen H., Ge D., Xu Y., Xu H., Yang Y., Gu M., Zhou Y., Zhu J., Ge T., et al. Mir-21 Promotes Cardiac Fibrosis after Myocardial Infarction Via Targeting Smad7. Cell. Physiol. Biochem. 2017;42:2207–2219. doi: 10.1159/000479995. PubMed DOI

Yu Y., Kanwar S.S., Patel B.B., Oh P.S., Nautiyal J., Sarkar F.H., Majumdar A.P. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis. 2012;33:68–76. doi: 10.1093/carcin/bgr246. PubMed DOI PMC

Kumarswamy R., Volkmann I., Jazbutyte V., Dangwal S., Park D.H., Thum T. Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler. Thromb. Vasc. Biol. 2012;32:361–369. doi: 10.1161/ATVBAHA.111.234286. PubMed DOI

Sun N.N., Yu C.H., Pan M.X., Zhang Y., Zheng B.J., Yang Q.J., Zheng Z.M., Meng Y. Mir-21 Mediates the Inhibitory Effect of Ang (1-7) on AngII-induced NLRP3 Inflammasome Activation by Targeting Spry1 in lung fibroblasts. Sci. Rep. 2017;7:14369. doi: 10.1038/s41598-017-13305-3. PubMed DOI PMC

Tao L., Bei Y., Chen P., Lei Z., Fu S., Zhang H., Xu J., Che L., Chen X., Sluijter J.P., et al. Crucial Role of miR-433 in Regulating Cardiac Fibrosis. Theranostics. 2016;6:2068–2083. doi: 10.7150/thno.15007. PubMed DOI PMC

Zhou Y., Deng L., Zhao D., Chen L., Yao Z., Guo X., Liu X., Lv L., Leng B., Xu W., et al. MicroRNA-503 promotes angiotensin II-induced cardiac fibrosis by targeting Apelin-13. J. Cell. Mol. Med. 2016;20:495–505. doi: 10.1111/jcmm.12754. PubMed DOI PMC

Wen Y., Chen R., Zhu C., Qiao H., Liu Y., Ji H., Miao J., Chen L., Liu X., Yang Y. MiR-503 suppresses hypoxia-induced proliferation, migration and angiogenesis of endothelial progenitor cells by targeting Apelin. Peptides. 2018;105:58–65. doi: 10.1016/j.peptides.2018.05.008. PubMed DOI

Chen K., Zhao X.L., Li L.B., Huang L.Y., Tang Z., Luo J., Yang L., Qin A.P., Hu F. miR-503/Apelin-12 mediates high glucose-induced microvascular endothelial cells injury via JNK and p38MAPK signaling pathway. Regen. Ther. 2020;14:111–118. doi: 10.1016/j.reth.2019.12.002. PubMed DOI PMC

Matsumoto S., Sakata Y., Suna S., Nakatani D., Usami M., Hara M., Kitamura T., Hamasaki T., Nanto S., Kawahara Y., et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ. Res. 2013;113:322–326. doi: 10.1161/CIRCRESAHA.113.301209. PubMed DOI

Bernardo B.C., Gao X.M., Winbanks C.E., Boey E.J., Tham Y.K., Kiriazis H., Gregorevic P., Obad S., Kauppinen S., Du X.J., et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl. Acad. Sci. USA. 2012;109:17615–17620. doi: 10.1073/pnas.1206432109. PubMed DOI PMC

Boon R.A., Iekushi K., Lechner S., Seeger T., Fischer A., Heydt S., Kaluza D., Tréguer K., Carmona G., Bonauer A., et al. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013;495:107–110. doi: 10.1038/nature11919. PubMed DOI

Desai V.G., C Kwekel J., Vijay V., Moland C.L., Herman E.H., Lee T., Han T., Lewis S.M., Davis K.J., Muskhelishvili L., et al. Early biomarkers of doxorubicin-induced heart injury in a mouse model. Toxicol. Appl. Pharmacol. 2014;281:221–229. doi: 10.1016/j.taap.2014.10.006. PubMed DOI

Piegari E., Russo R., Cappetta D., Esposito G., Urbanek K., Dell’Aversana C., Altucci L., Berrino L., Rossi F., De Angelis A. MicroRNA-34a regulates doxorubicin-induced cardiotoxicity in rat. Oncotarget. 2016;7:62312–62326. doi: 10.18632/oncotarget.11468. PubMed DOI PMC

Huang Y., Qi Y., Du J.Q., Zhang D.F. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4. Expert Opin. Ther. Targets. 2014;18:1355–1365. doi: 10.1517/14728222.2014.961424. PubMed DOI

Wei Y., Yan X., Yan L., Hu F., Ma W., Wang Y., Lu S., Zeng Q., Wang Z. Inhibition of microRNA-155 ameliorates cardiac fibrosis in the process of angiotensin II-induced cardiac remodeling. Mol. Med. Rep. 2017;16:7287–7296. doi: 10.3892/mmr.2017.7584. PubMed DOI PMC

Wang J., Guo L., Shen D., Xu X., Wang J., Han S., He W. The Role of c-SKI in Regulation of TGFβ-Induced Human Cardiac Fibroblast Proliferation and ECM Protein Expression. J. Cell. Biochem. 2017;118:1911–1920. doi: 10.1002/jcb.25935. PubMed DOI

Eissa M.G., Artlett C.M. The MicroRNA miR-155 Is Essential in Fibrosis. Noncoding RNA. 2019;5:E23. doi: 10.3390/ncrna5010023. PubMed DOI PMC

Wei C., Kim I.K., Kumar S., Jayasinghe S., Hong N., Castoldi G., Catalucci D., Jones W.K., Gupta S. NF-κB mediated miR-26a regulation in cardiac fibrosis. J. Cell Physiol. 2013;228:1433–1442. doi: 10.1002/jcp.24296. PubMed DOI

Angelini A., Li Z., Mericskay M., Decaux J.F. Regulation of Connective Tissue Growth Factor and Cardiac Fibrosis by an SRF/MicroRNA-133a Axis. PLoS ONE. 2015;10:e0139858. doi: 10.1371/journal.pone.0139858. PubMed DOI PMC

Zou M., Wang F., Gao R., Wu J., Ou Y., Chen X., Wang T., Zhou X., Zhu W., Li P., et al. Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-β R II during TGF-β1-induced fibrogenesis in human cardiac fibroblasts. Sci. Rep. 2016;6:24747. doi: 10.1038/srep24747. PubMed DOI PMC

Jiang T., Ye L., Han Z., Liu Y., Yang Y., Peng Z., Fan J. miR-19b-3p promotes colon cancer proliferation and oxaliplatin-based chemoresistance by targeting SMAD4: Validation by bioinformatics and experimental analyses. J. Exp. Clin. Cancer Res. 2017;36:131. doi: 10.1186/s13046-017-0602-5. PubMed DOI PMC

Zhao M., Mishra L., Deng C.X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018;14:111–123. doi: 10.7150/ijbs.23230. PubMed DOI PMC

Liu Y., Taylor N.E., Lu L., Usa K., Cowley A.W., Ferreri N.R., Yeo N.C., Liang M. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension. 2010;55:974–982. doi: 10.1161/HYPERTENSIONAHA.109.144428. PubMed DOI PMC

Van Rooij E., Sutherland L.B., Thatcher J.E., DiMaio J.M., Naseem R.H., Marshall W.S., Hill J.A., Olson E.N. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA. 2008;105:13027–13032. doi: 10.1073/pnas.0805038105. PubMed DOI PMC

Montgomery R.L., Yu G., Latimer P.A., Stack C., Robinson K., Dalby C.M., Kaminski N., van Rooij E. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol. Med. 2014;6:1347–1356. doi: 10.15252/emmm.201303604. PubMed DOI PMC

Zhang Y., Huang X.R., Wei L.H., Chung A.C., Yu C.M., Lan H.Y. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol. Ther. 2014;22:974–985. doi: 10.1038/mt.2014.25. PubMed DOI PMC

Hong Y., Cao H., Wang Q., Ye J., Sui L., Feng J., Cai X., Song H., Zhang X., Chen X. MiR-22 may Suppress Fibrogenesis by Targeting TGFβR I in Cardiac Fibroblasts. Cell. Physiol. Biochem. 2016;40:1345–1353. doi: 10.1159/000453187. PubMed DOI

Wang X., Wang H.X., Li Y.L., Zhang C.C., Zhou C.Y., Wang L., Xia Y.L., Du J., Li H.H. MicroRNA Let-7i negatively regulates cardiac inflammation and fibrosis. Hypertension. 2015;66:776–785. doi: 10.1161/HYPERTENSIONAHA.115.05548. PubMed DOI

Marques F.Z., Campain A.E., Tomaszewski M., Zukowska-Szczechowska E., Yang Y.H., Charchar F.J., Morris B.J. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension. 2011;58:1093–1098. doi: 10.1161/HYPERTENSIONAHA.111.180729. PubMed DOI

Jackson K.L., Marques F.Z., Watson A.M., Palma-Rigo K., Nguyen-Huu T.P., Morris B.J., Charchar F.J., Davern P.J., Head G.A. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension. 2013;62:775–781. doi: 10.1161/HYPERTENSIONAHA.113.01701. PubMed DOI

Jackson K.L., Gueguen C., Lim K., Eikelis N., Stevenson E.R., Charchar F.J., Lambert G.W., Burke S.L., Paterson M.R., Marques F.Z., et al. Neural suppression of miRNA-181a in the kidney elevates renin expression and exacerbates hypertension in Schlager mice. Hypertens. Res. 2020;43:1152–1164. doi: 10.1038/s41440-020-0453-x. PubMed DOI

Satoh M., Takahashi Y., Tabuchi T., Tamada M., Takahashi K., Itoh T., Morino Y., Nakamura M. Circulating Toll-like receptor 4-responsive microRNA panel in patients with coronary artery disease: Results from prospective and randomized study of treatment with renin-angiotensin system blockade. Clin. Sci. (Lond.) 2015;128:483–491. doi: 10.1042/CS20140417. PubMed DOI

Cordes K.R., Sheehy N.T., White M.P., Berry E.C., Morton S.U., Muth A.N., Lee T.H., Miano J.M., Ivey K.N., Srivastava D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705–710. doi: 10.1038/nature08195. PubMed DOI PMC

Xin M., Small E.M., Sutherland L.B., Qi X., McAnally J., Plato C.F., Richardson J.A., Bassel-Duby R., Olson E.N. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23:2166–2178. doi: 10.1101/gad.1842409. PubMed DOI PMC

Elia L., Quintavalle M., Zhang J., Contu R., Cossu L., Latronico M.V., Peterson K.L., Indolfi C., Catalucci D., Chen J., et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: Correlates with human disease. Cell Death Differ. 2009;16:1590–1598. doi: 10.1038/cdd.2009.153. PubMed DOI PMC

Boettger T., Beetz N., Kostin S., Schneider J., Krüger M., Hein L., Braun T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Investig. 2009;119:2634–2647. doi: 10.1172/JCI38864. PubMed DOI PMC

Goyal R., Goyal D., Leitzke A., Gheorghe C.P., Longo L.D. Brain renin-angiotensin system: Fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod. Sci. 2010;17:227–238. doi: 10.1177/1933719109351935. PubMed DOI

Hu B., Song J.T., Qu H.Y., Bi C.L., Huang X.Z., Liu X.X., Zhang M. Mechanical stretch suppresses microRNA-145 expression by activating extracellular signal-regulated kinase 1/2 and upregulating angiotensin-converting enzyme to alter vascular smooth muscle cell phenotype. PLoS ONE. 2014;9:e96338. doi: 10.1371/journal.pone.0096338. PubMed DOI PMC

Kontaraki J.E., Marketou M.E., Zacharis E.A., Parthenakis F.I., Vardas P.E. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: Novel targets in essential hypertension. J. Hum. Hypertens. 2014;28:510–516. doi: 10.1038/jhh.2013.117. PubMed DOI

Lambert D.W., Lambert L.A., Clarke N.E., Hooper N.M., Porter K.E., Turner A.J. Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by miR-421. Clin. Sci. (Lond.) 2014;127:243–249. doi: 10.1042/CS20130420. PubMed DOI

Gu Q., Wang B., Zhang X.F., Ma Y.P., Liu J.D., Wang X.Z. Contribution of renin-angiotensin system to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Cardiovasc. Pathol. 2014;23:298–305. doi: 10.1016/j.carpath.2014.05.006. PubMed DOI

Kemp J.R., Unal H., Desnoyer R., Yue H., Bhatnagar A., Karnik S.S. Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the renin-angiotensin system. J. Mol. Cell. Cardiol. 2014;75:25–39. doi: 10.1016/j.yjmcc.2014.06.008. PubMed DOI PMC

Maharjan S., Mopidevi B., Kaw M.K., Puri N., Kumar A. Human aldosterone synthase gene polymorphism promotes miRNA binding and regulates gene expression. Physiol. Genom. 2014;46:860–865. doi: 10.1152/physiolgenomics.00084.2014. PubMed DOI PMC

Huang Y.F., Zhang Y., Liu C.X., Huang J., Ding G.H. microRNA-125b contributes to high glucose-induced reactive oxygen species generation and apoptosis in HK-2 renal tubular epithelial cells by targeting angiotensin-converting enzyme 2. Eur. Rev. Med. Pharmacol. Sci. 2016;20:4055–4062. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...