Renin-Angiotensin-Aldosterone System: Friend or Foe-The Matter of Balance. Insight on History, Therapeutic Implications and COVID-19 Interactions
Language English Country Switzerland Media electronic
Document type Editorial
Grant support
VEGA 1/0035/19, VEGA 2/0112/19, VEGA 1/0127/17, Progres Q40/5
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PubMed
33809971
PubMed Central
PMC8004737
DOI
10.3390/ijms22063217
PII: ijms22063217
Knihovny.cz E-resources
- MeSH
- COVID-19 physiopathology therapy MeSH
- Humans MeSH
- Renin-Angiotensin System * MeSH
- SARS-CoV-2 metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Editorial MeSH
The renin-angiotensin-aldosterone system (RAAS) ranks among the most challenging puzzles in cardiovascular medicine [...].
Department of Physiology Faculty of Medicine Charles University 50003 Hradec Kralove Czech Republic
Institute of Pathophysiology Faculty of Medicine Comenius University 81108 Bratislava Slovakia
See more in PubMed
Simko F., Simko J. Heart failure and angiotensin converting enzyme inhibition: Problems and perspectives. Physiol. Res. 1999;48:1–8. PubMed
Unger T., Paulis L., Sica D.A. Therapeutic perspectives in hypertension: Novel means for renin-angiotensin-aldosterone system modulation and emerging device-based approaches. Eur. Heart J. 2011;32:2739–2747. doi: 10.1093/eurheartj/ehr253. PubMed DOI PMC
Simko F., Pechanova O. Remodelling of the heart and vessels in experimental hypertension: Advances in protection. J. Hypertens. 2010;28(Suppl. 1):S1–S6. doi: 10.1097/01.hjh.0000388487.43460.db. PubMed DOI
Simko F., Baka T., Poglitsch M., Repova K., Aziriova S., Krajcirovicova K., Zorad S., Adamcova M., Paulis L. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int. J. Mol. Sci. 2018;19:3017. doi: 10.3390/ijms19103017. PubMed DOI PMC
Paulis L., Rajkovicova R., Simko F. New developments in the pharmacological treatment of hypertension: Dead-end or a glimmer at the horizon? Curr. Hypertens. Rep. 2015;17:557. doi: 10.1007/s11906-015-0557-x. PubMed DOI PMC
Hrenak J., Simko F. Renin-Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome. Int. J. Mol. Sci. 2020;21:8038. doi: 10.3390/ijms21218038. PubMed DOI PMC
Rahman A., Sawano T., Sen A., Hossain A., Jahan N., Kobara H., Masaki T., Kosaka S., Kitada K., Nakano D., et al. Cardioprotective Effects of a Nonsteroidal Mineralocorticoid Receptor Blocker, Esaxerenone, in Dahl Salt-Sensitive Hypertensive Rats. Int. J. Mol. Sci. 2021;22:2069. doi: 10.3390/ijms22042069. PubMed DOI PMC
Tigerstedt R., Bergman P.G. Niere und Kreislauf. Skand. Arch. Physiol. 1898;8:223–271. doi: 10.1111/j.1748-1716.1898.tb00272.x. DOI
Goldblatt H.J., Lynch J., Hanzal R.F., Summerville W.W. Studies on experimental hypertension. I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J. Exp. Med. 1934;59:347–380. doi: 10.1084/jem.59.3.347. PubMed DOI PMC
Braun-Menendez E., Fasciolo J.C., Leloir L.F., Muñoz J.M. The substance causing renal hypertension. J. Physiol. 1940;98:283–298. doi: 10.1113/jphysiol.1940.sp003850. PubMed DOI PMC
Mulrow P.J., Ganong W.R. Stimulation of aldosterone secretion by angiotensin II. Yale J. Biol. Med. 1961;33:386–395. PubMed PMC
Hall J.E., Guyton A.C., Jackson T.E., Coleman T.G., Lohmeier T.E., Trippodo N.C. Control of glomerular filtration rate by renin-angiotensin system. Am. J. Physiol. 1977;233:F366–F372. doi: 10.1152/ajprenal.1977.233.5.F366. PubMed DOI
Hall J.E. Historical perspective of the renin-angiotensin system. Mol. Biotechnol. 2003;24:27–39. doi: 10.1385/MB:24:1:27. PubMed DOI
Dzau V.J. Evolving concepts of the renin-angiotensin system. Focus on renal and vascular mechanisms. (4 Pt 2)Am. J. Hypertens. 1988;1:334S–337S. doi: 10.1093/ajh/1.4.334S. PubMed DOI
Bader M., Ganten D. Update on tissue renin–angiotensin systems. J. Mol. Med. 2008;86:615–621. doi: 10.1007/s00109-008-0336-0. PubMed DOI
Santos R.A., Brosnihan K.B., Chappell M.C., Pesquero J., Chernicky C.L., Greene L.J., Ferrario C.M. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension. 1988;11:I153–I157. doi: 10.1161/01.HYP.11.2_Pt_2.I153. PubMed DOI
Santos R.A.S., Oudit G.Y., Verano-Braga T., Canta G., Steckelings U.M., Bader M. The renin-angiotensin system: Going beyond the classical paradigms. Am. J. Physiol. Heart Circ. Physiol. 2019;316:H958–H970. doi: 10.1152/ajpheart.00723.2018. PubMed DOI PMC
Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145. PubMed DOI PMC
Pfeffer M.A., Braunwald E., Moyé L.A., Basta L., Brown E.J., Jr., Cuddy T.E., Davis B.R., Geltman E.M., Goldman S., Flaker G.C., et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N. Engl. J. Med. 1992;327:669–677. doi: 10.1056/NEJM199209033271001. PubMed DOI
Simko F., Simko J., Fabryova M. ACE-inhibition and angiotensin II receptor blockers in chronic heart failure: Pathophysiological consideration of the unresolved battle. Cardiovasc. Drugs Ther. 2003;17:287–290. doi: 10.1023/A:1026215712983. PubMed DOI
Pitt B., Zannad F., Remme W.J., Cody R., Castaigne A., Perez A., Palensky J., Wittes J. The effect of spironolac-tone on morbidity and mortality in patients with severe heart failure.Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999;341:709–717. doi: 10.1056/NEJM199909023411001. PubMed DOI
Parving H.H., Brenner B.M., McMurray J.J., De Zeeuw D., Haffner S.M., Solomon S.D., Chaturvedi N., Ghadanfar M., Weissbach N., Xiang Z., et al. Aliskiren trial in type 2 diabetes using cardio-renal endpoints (ALTITUDE): Rationale and study design. Nephrol. Dial. Transplant. 2009;24:1663–1671. doi: 10.1093/ndt/gfn721. PubMed DOI
Yusuf S., Teo K.K., Pogue J., Dyal L., Copland I., Schumacher H., Dagenais G., Sleight P., Anderson C. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 2008;358:1547–1559. doi: 10.1056/NEJMoa0801317. PubMed DOI
Mancia G., Fagard R., Narkiewicz K., Redon J., Zanchetti A., Böhm M., Christiaens T., Cifkova R., De Backer G., Dominiczak A., et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) Eur. Heart J. 2013;34:2159–2219. doi: 10.1093/eurheartj/eht151. PubMed DOI
Esteras R., Perez-Gomez M.V., Rodriguez-Osorio L., Ortiz A., Fernandez-Fernandez B. Combination use of medicines from two classes of renin-angiotensin system blocking agents: Risk of hyperkalemia, hypotension, and impaired renal function. Ther. Adv. Drug. Saf. 2015;6:166–176. doi: 10.1177/2042098615589905. PubMed DOI PMC
Oudit G.Y., Pfeffer M.A. Plasma angiotensin-converting enzyme 2: Novel biomarker in heart failure with implications for COVID-19. Eur. Heart J. 2020;41:1818–1820. doi: 10.1093/eurheartj/ehaa414. PubMed DOI PMC
Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A., Solomon S.D. Renin–angiotensin–aldosterone system inhibitors in patients with COVID-19. N. Engl. J. Med. 2020;382:1653–1659. doi: 10.1056/NEJMsr2005760. PubMed DOI PMC
Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.C., Turner A.J., Raizada M.K., Grant M.B., Oudit G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020;126:1456–1474. doi: 10.1161/CIRCRESAHA.120.317015. PubMed DOI PMC
Liu Y., Yang Y., Zhang C., Huang F., Wang F., Yuan J., Wang Z., Li J., Feng C., Zhang Z., et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020;63:364–374. doi: 10.1007/s11427-020-1643-8. PubMed DOI PMC
Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020 doi: 10.1016/S2213-2600(20)30116-8. PubMed DOI PMC
Hrenak J., Zorad S., Simko F. Renin-angiotensin system and SARS-CoV-2 interaction: Underlying mechanisms and potential clinical implications. Gen. Physiol. Biophys. 2020;39:203–204. doi: 10.4149/gpb_2020019. PubMed DOI
Hrenak J., Paulis L., Simko F. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP): Potential target molecule in research of heart, kidney and brain. Curr. Pharm. Des. 2015;21:5135–5143. doi: 10.2174/1381612821666150909093927. PubMed DOI
Koshy A.N., Murphy A.C., Farouque O., Ramchand J., Burrell L.M., Yudi M.B. Renin-angiotensin system inhibition and risk of infection and mortality in COVID-19: A systematic review and meta-analysis. Intern. Med. J. 2020;50:1468–1474. doi: 10.1111/imj.15002. PubMed DOI PMC
Hrenak J., Paulis L., Simko F. Angiotensin A/Alamandine/MrgD Axis: Another Clue to Understanding Cardiovascular Pathophysiology. Int. J. Mol. Sci. 2016;17:1098. doi: 10.3390/ijms17071098. PubMed DOI PMC
Steckelings U.M., Sumners C. Correcting the imbalanced protective RAS in COVID-19 with angiotensin AT2-receptor agonists. Clin. Sci. (Lond.) 2020;134:2987–3006. doi: 10.1042/CS20200922. PubMed DOI
Sodhi C.P., Wohlford-Lenane C., Yamaguchi Y., Prindle T., Fulton W.B., Wang S., McCray P.B., Jr., Chappell M., Hackam D.J., Jia H., et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg 9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018;314:L17–L31. doi: 10.1152/ajplung.00498.2016. PubMed DOI PMC
Mansour E., Bueno F.F., De Lima-Júnior J.C., Palma A., Monfort-Pires M., Bombassaro B., Araujo E.P., Bernardes A.F., Ulaf R.G., Nunes T.A., et al. Trials. Evaluation of the efficacy and safety of icatibant and C1 esterase/kallikrein inhibitor in severe COVID-19: Study protocol for a three-armed randomized controlled trial. Int. J. Mol. Sci. 2021;22:71. doi: 10.1186/s13063-021-05027-9. PubMed DOI PMC
Esteban V., Ruperez M., Sánchez-López E., Rodríguez-Vita J., Lorenzo O., Demaegdt H., Vanderheyden P., Egido J., Ruiz-Ortega M. Angiotensin IV activates the nuclear transcription factor-kappaB and related proinflammatory genes in vascular smooth muscle cells. Circ. Res. 2005;96:965–973. doi: 10.1161/01.RES.0000166326.91395.74. PubMed DOI
D’Armiento J. Randomized Controlled Trial of Angiotensin 1-7 (TXA127) for the Treatment of Severe COVID-19. [(accessed on 19 March 2021)];2020 clinicaltrials.gov; Report No.: NCT04401423. Available online: https://clinicaltrials.gov/ct2/show/NCT04401423.
Lumpuy-Castillo J., Lorenzo-Almorós A., Pello-Lázaro A.M., Sánchez-Ferrer C., Egido J., Tuñón J., Peiró C., Lorenzo Ó. Cardiovascular Damage in COVID-19: Therapeutic Approaches Targeting the Renin-Angiotensin-Aldosterone System. Int. J. Mol. Sci. 2020;21:6471. doi: 10.3390/ijms21186471. PubMed DOI PMC
Bellis A., Mauro C., Barbato E., Trimarco B., Morisco C. The Rationale for Angiotensin Receptor Neprilysin Inhibitors in a Multi-Targeted Therapeutic Approach to COVID-19. Int. J. Mol. Sci. 2020;21:8612. doi: 10.3390/ijms21228612. PubMed DOI PMC
Wilcox C.S., Pitt B.J. Is spironolactone the preferred renin-angiotensin-aldosterone inhibitor for protection against COVID-19? Cardiovasc. Pharmacol. 2020 doi: 10.1097/FJC.0000000000000960. PubMed DOI
Simko F., Hrenak J., Dominguez-Rodriguez A., Reiter R.J. Melatonin as a putative protection against myocardial injury in COVID-19 infection. Editorial. Expert. Rev. Clin. Pharmacol. 2020;13:921–924. doi: 10.1080/17512433.2020.1814141. PubMed DOI
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling