Preparation and Evaluation of a Dosage Form for Individualized Administration of Lyophilized Probiotics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/IGA/0942/2021
Masaryk University
APVV-19-0234
Agency for Research and Development
PubMed
36986771
PubMed Central
PMC10053861
DOI
10.3390/pharmaceutics15030910
PII: pharmaceutics15030910
Knihovny.cz E-zdroje
- Klíčová slova
- antropozoonoses, individual treatment, lyophilization, principal component analysis, probiotic bacteria, viability of bacteria,
- Publikační typ
- časopisecké články MeSH
Probiotics have been used in human and veterinary medicine to increase resistance to pathogens and provide protection against external impacts for many years. Pathogens are often transmitted to humans through animal product consumption. Therefore, it is assumed that probiotics protecting animals may also protect the humans who consume them. Many tested strains of probiotic bacteria can be used for individualized therapy. The recently isolated Lactobacillus plantarum R2 Biocenol™ has proven to be preferential in aquaculture, and potential benefits in humans are expected. A simple oral dosage form should be developed to test this hypothesis by a suitable preparation method, i.e., lyophilization, allowing the bacteria to survive longer. Lyophilizates were formed from silicates (Neusilin® NS2N; US2), cellulose derivates (Avicel® PH-101), and saccharides (inulin; saccharose; modified starch® 1500). They were evaluated for their physicochemical properties (pH leachate, moisture content, water absorption, wetting time, DSC tests, densities, and flow properties); their bacterial viability was determined in conditions including relevant studies over 6 months at 4 °C and scanned under an electron microscope. Lyophilizate composed of Neusilin® NS2N and saccharose appeared to be the most advantageous in terms of viability without any significant decrease. Its physicochemical properties are also suitable for capsule encapsulation, subsequent clinical evaluation, and individualized therapy.
Zobrazit více v PubMed
Zhang F., Cheng W. The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics. 2022;11:1215. doi: 10.3390/antibiotics11091215. PubMed DOI PMC
Baker R.E., Mahmud A.S., Miller I.F., Rajeev M., Rasambainarivo F., Rice B.L., Takahashi S., Tatem A.J., Wagner C.E., Wang L.-F., et al. Infectious Disease in an Era of Global Change. Nat. Rev. Microbiol. 2022;20:193–205. doi: 10.1038/s41579-021-00639-z. PubMed DOI PMC
Omitola O.O., Taylor-Robinson A.W. Emerging and Re-Emerging Bacterial Zoonoses in Nigeria: Current Preventive Measures and Future Approaches to Intervention. Heliyon. 2020;6:e04095. doi: 10.1016/j.heliyon.2020.e04095. PubMed DOI PMC
Murphy R.J.T. Ph.D. Thesis. Curtin University; Perth, Australia: 2022. Antimicrobial Resistance at the Human-Animal Interface.
Hernández-González J.C., Martínez-Tapia A., Lazcano-Hernández G., García-Pérez B.E., Castrejón-Jiménez N.S. Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals. 2021;11:979. doi: 10.3390/ani11040979. PubMed DOI PMC
D’Accolti M., Soffritti I., Bini F., Mazziga E., Mazzacane S., Caselli E. Pathogen Control in the Built Environment: A Probiotic-Based System as a Remedy for the Spread of Antibiotic Resistance. Microorganisms. 2022;10:225. doi: 10.3390/microorganisms10020225. PubMed DOI PMC
Reid G., Bruce A.W., McGroarty J.A., Cheng K.J., Costerton J.W. Is There a Role for Lactobacilli in Prevention of Urogenital and Intestinal Infections? Clin. Microbiol. Rev. 1990;3:335–344. doi: 10.1128/CMR.3.4.335. PubMed DOI PMC
Peng X., Ed-Dra A., Yue M. Whole Genome Sequencing for the Risk Assessment of Probiotic Lactic Acid Bacteria. Crit. Rev. Food Sci. Nutr. 2022;3:1–19. doi: 10.1080/10408398.2022.2087174. PubMed DOI
Mota-Gutierrez J., Cocolin L. Current Trends and Applications of Plant Origin Lactobacilli in the Promotion of Sustainable Food Systems. Trends Food Sci. Technol. 2021;114:198–211. doi: 10.1016/j.tifs.2021.05.030. DOI
Patil Y., Gooneratne R., Ju X.-H. Interactions between Host and Gut Microbiota in Domestic Pigs: A Review. Gut Microbes. 2020;11:310–334. doi: 10.1080/19490976.2019.1690363. PubMed DOI PMC
Angelis M.D., Siragusa S., Caputo L., Ragni A., Burzigotti R., Gobbetti M. Survival and Persistence of Lactobacillus Plantarum 4.1 and Lactobacillus Reuteri 3S7 in the Gastrointestinal Tract of Pigs. Vet. Microbiol. 2007;123:133–144. doi: 10.1016/j.vetmic.2007.02.022. PubMed DOI
Fečkaninová A., Koščová J., Mudroňová D., Schusterová P., Cingeľová Maruščáková I., Popelka P. Characterization of Two Novel Lactic Acid Bacteria Isolated from the Intestine of Rainbow Trout (Oncorhynchus Mykiss, Walbaum) in Slovakia. Aquaculture. 2019;506:294–301. doi: 10.1016/j.aquaculture.2019.03.026. DOI
Jiang G., Ameer K., Kim H., Lee E.-J., Ramachandraiah K., Hong G.-P. Strategies for Sustainable Substitution of Livestock Meat. Foods. 2020;9:1227. doi: 10.3390/foods9091227. PubMed DOI PMC
Halwart M. Fish Farming High on the Global Food System Agenda in 2020. [(accessed on 15 January 2023)];FAO Aquac. Newsl. 2020 61 Available online: https://www.fao.org/3/ca9229en/ca9229en.pdf.
Guijarro J.A., García-Torrico A.I., Cascales D., Méndez J. The Infection Process of Yersinia Ruckeri: Reviewing the Pieces of the Jigsaw Puzzle. Front. Cell. Infect. Microbiol. 2018;8:218. doi: 10.3389/fcimb.2018.00218. PubMed DOI PMC
Vincent A.T., Fernández-Bravo A., Sanchis M., Mayayo E., Figueras M.J., Charette S.J. Investigation of the Virulence and Genomics of Aeromonas Salmonicida Strains Isolated from Human Patients. Infect. Genet. Evol. 2019;68:1–9. doi: 10.1016/j.meegid.2018.11.019. PubMed DOI
Volodina V.V., Proskurina V.V., Solokhina T.A., Voronina E.A., Konkova A.V. Fishes from the Volga-Caspian Basin—Vectors of Pathogens of Anthropozoonoses. [(accessed on 20 December 2022)];Gig. Sanit. 2016 95:517–520. doi: 10.18821/0016-9900-2016-95-6-517-520. Available online: https://pubmed.ncbi.nlm.nih.gov/29424216/ PubMed DOI
Zhao W., Peng C., Sakandar H.A., Kwok L.-Y., Zhang W. Meta-Analysis: Randomized Trials of Lactobacillus Plantarum on Immune Regulation Over the Last Decades. Front. Immunol. 2021;12:728. doi: 10.3389/fimmu.2021.643420. PubMed DOI PMC
Di Cerbo A., Palmieri B., Aponte M., Morales-Medina J.C., Iannitti T. Mechanisms and Therapeutic Effectiveness of Lactobacilli. J. Clin. Pathol. 2016;69:187–203. doi: 10.1136/jclinpath-2015-202976. PubMed DOI PMC
Knackstedt R., Knackstedt T., Gatherwright J. The Role of Topical Probiotics on Wound Healing: A Review of Animal and Human Studies. Int. Wound J. 2020;17:1687–1694. doi: 10.1111/iwj.13451. PubMed DOI PMC
Isolauri E., Kirjavainen P.V., Salminen S. Probiotics: A Role in the Treatment of Intestinal Infection and Inflammation? Gut. 2002;50:54–59. doi: 10.1136/gut.50.suppl_3.iii54. PubMed DOI PMC
Zhang L., Chu J., Hao W., Zhang J., Li H., Yang C., Yang J., Chen X., Wang H. Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications. Mediators Inflamm. 2021;2021:5110276. doi: 10.1155/2021/5110276. PubMed DOI PMC
Chibbar R., Dieleman L.A. Probiotics in the Management of Ulcerative Colitis. J. Clin. Gastroenterol. 2015;49:50–55. doi: 10.1097/MCG.0000000000000368. PubMed DOI
Chiu C.-J., Huang M.-T. Asthma in the Precision Medicine Era: Biologics and Probiotics. Int. J. Mol. Sci. 2021;22:4528. doi: 10.3390/ijms22094528. PubMed DOI PMC
Bubnov R.V., Spivak M.Y., Lazarenko L.M., Bomba A., Boyko N.V. Probiotics and Immunity: Provisional Role for Personalized Diets and Disease Prevention. EPMA J. 2015;6:14. doi: 10.1186/s13167-015-0036-0. PubMed DOI PMC
Kong Y., Olejar K.J., On S.L.W., Chelikani V. The Potential of Lactobacillus Spp. for Modulating Oxidative Stress in the Gastrointestinal Tract. Antioxidants. 2020;9:610. doi: 10.3390/antiox9070610. PubMed DOI PMC
Wang H., Zhou C., Huang J., Kuai X., Shao X. The Potential Therapeutic Role of Lactobacillus Reuteri for Treatment of Inflammatory Bowel Disease. [(accessed on 10 January 2023)];Am. J. Transl. Res. 2020 12:1569–1583. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270012/ PubMed PMC
Capurso L. Thirty Years of Lactobacillus Rhamnosus GG. J. Clin. Gastroenterol. 2019;53:S1–S41. doi: 10.1097/MCG.0000000000001170. PubMed DOI
Ishaq M., Khan A., Bacha A.S., Shah T., Hanif A., Ahmad A.A., Ke W., Li F., Ud Din A., Ding Z., et al. Microbiota Targeted Interventions of Probiotic Lactobacillus as an Anti-Ageing Approach: A Review. Antioxidants. 2021;10:1930. doi: 10.3390/antiox10121930. PubMed DOI PMC
Nature-Backed Probiotic Solutions. [(accessed on 8 January 2023)]. Available online: https://www.ab-biotics.com/wp-content/uploads/2021/05/ABB_Product-Portfolio.pdf.
Testerman T., Beka L., Reichley S.R., King S., Welch T.J., Wiens G.D., Graf J. A Large-Scale, Multi-Year Microbial Community Survey of a Freshwater Trout Aquaculture Facility. FEMS Microbiol. Ecol. 2022;98:fiac101. doi: 10.1093/femsec/fiac101. PubMed DOI
Aquilina G., Bories G., Chesson A., Cocconcelli P.S., Knecht J.D., Dierick A., Gralak A., Gropp J., Halle I., Hogstrand C., et al. Guidance on the Assessment of Bacterial Susceptibility to Antimicrobials of Human and Veterinary Importance. EFSA J. 2012;10:2740. doi: 10.2903/J.EFSA.2012.2740. DOI
Cingeľová Maruščáková I., Schusterová P., Popelka P., Gancarčíková S., Csank T., Fečkaninová A., Ratvaj M., Mudroňová D. Effect of Autochthonous Lactobacilli on Immunologically Important Molecules of Rainbow Trout after Bacterial Infection Studied on Intestinal Primoculture. Fish Shellfish. Immunol. 2021;119:379–383. doi: 10.1016/j.fsi.2021.10.021. PubMed DOI
Appanna V.D. Human Microbes—The Power Within. Springer; Singapore: 2018. What If the Workings of the Microbiome Are Fully Uncovered?—A Revolution in Human Health, Wellness and Beyond; pp. 123–159. DOI
Lokesh J., Ghislain M., Reyrolle M., Bechec M.L., Pigot T., Terrier F., Roy J., Panserat S., Ricaud K. Prebiotics Modify Host Metabolism in Rainbow Trout (Oncorhynchus Mykiss) Fed with a Total Plant-Based Diet: Potential Implications for Microbiome-Mediated Diet Optimization. Aquaculture. 2022;561:738699. doi: 10.1016/j.aquaculture.2022.738699. DOI
Nimalan N., Sørensen S.L., Fečkaninová A., Koščová J., Mudroňová D., Gancarčíková S., Vatsos I.N., Bisa S., Kiron V., Sørensen M. Supplementation of Lactic Acid Bacteria Has Positive Effects on the Mucosal Health of Atlantic Salmon (Salmo Salar) Fed Soybean Meal. Aquac. Rep. 2023;28:101461. doi: 10.1016/j.aqrep.2022.101461. DOI
Marcial-Coba M.S., Cieplak T., Cahú T.B., Blennow A., Knøchel S., Nielsen D.S. Viability of Microencapsulated Akkermansia Muciniphila and Lactobacillus Plantarum during Freeze-Drying, Storage and in Vitro Simulated Upper Gastrointestinal Tract Passage. Food Funct. 2018;9:5868–5879. doi: 10.1039/C8FO01331D. PubMed DOI
Fareez I.M., Lim S.M., Mishra R.K., Ramasamy K. Chitosan Coated Alginate–Xanthan Gum Bead Enhanced PH and Thermotolerance of Lactobacillus Plantarum LAB12. Int. J. Biol. Macromol. 2015;72:1419–1428. doi: 10.1016/j.ijbiomac.2014.10.054. PubMed DOI
Franc A., Dvořáčková K., Kejdušová M., Goněc R. Physiological Factors with Impact on the Drug Behaviour in the Gastrointestinal Tract. [(accessed on 12 December 2022)];Ces. Slov. Farm. 2013 62:243–248. Available online: https://pubmed.ncbi.nlm.nih.gov/24393111/ PubMed
Franc A., Vetchý D., Fülöpová N. Commercially Available Enteric Empty Hard Capsules, Production Technology and Application. Pharmaceuticals. 2022;15:1398. doi: 10.3390/ph15111398. PubMed DOI PMC
Fülöpová N., Pavloková S., DeBono I., Vetchý D., Franc A. Development and Comparison of Various Coated Hard Capsules Suitable for Enteric Administration to Small Patient Cohorts. Pharmaceutics. 2022;14:1577. doi: 10.3390/pharmaceutics14081577. PubMed DOI PMC
Rapacz-Kmita A., Stodolak-Zych E., Dudek M., Gajek M., Ziąbka M. Magnesium Aluminium Silicate–Gentamicin Complex for Drug Delivery Systems. J. Therm. Anal. Calorim. 2017;127:871–880. doi: 10.1007/s10973-016-5918-4. DOI
Nacheva I., Georgieva L., Tsvetkov T. Possibilities for Application of Cellulose Derivatives under Cryoconservation of Probiotics. [(accessed on 15 January 2023)];Bulg. J. Agric. Sci. 2007 13:153–159. Available online: https://www.agrojournal.org/13/02-01-07.pdf.
Reddy K.B.P.K., Awasthi S.P., Madhu A.N., Prapulla S.G. Role of Cryoprotectants on the Viability and Functional Properties of Probiotic Lactic Acid Bacteria during Freeze Drying. Food Biotechnol. 2009;23:243–265. doi: 10.1080/08905430903106811. DOI
Morais A.R.D.V., Alencar É.D.N., Xavier Júnior F.H., Oliveira C.M.D., Marcelino H.R., Barratt G., Fessi H., Egito E.S.T.D., Elaissari A. Freeze-Drying of Emulsified Systems: A Review. Int. J. Pharm. 2016;503:102–114. doi: 10.1016/j.ijpharm.2016.02.047. PubMed DOI
Keivani Nahr F., Mokarram R.R., Hejazi M.A., Ghanbarzadeh B., Sowti Khiyabani M., Zoroufchi Benis K. Optimization of the Nanocellulose Based Cryoprotective Medium to Enhance the Viability of Freeze Dried Lactobacillus Plantarum Using Response Surface Methodology. LWT Food Sci. Technol. 2015;64:326–332. doi: 10.1016/j.lwt.2015.06.004. DOI
Franc A., Vetchý D., Vodáčková P., Kubaľák R., Jendryková L., Goněc Roman Co-Processed Excipients for Direct Compression of Tablets. [(accessed on 18 December 2022)];Čes. Slov. Farm. 2018 67:175–181. Available online: https://www.prolekare.cz/en/journals/czech-and-slovak-pharmacy/2018-5-6-1/co-processed-excipients-for-direct-compression-of-tablets-108170. PubMed
Svačinová P., Vraníková B., Dominik M., Elbl J., Pavloková S., Kubalák R., Kopecká P., Franc A. Comprehensive Study of Co-Processed Excipients F- Melts®: Flow, Viscoelastic and Compacts Properties. Powder Technol. 2019;355:675–687. doi: 10.1016/j.powtec.2019.07.048. DOI
Vodáčková P., Vraníková B., Svačinová P., Franc A., Elbl J., Muselík J., Kubalák R., Solný T. Evaluation and Comparison of Three Types of Spray Dried Coprocessed Excipient Avicel® for Direct Compression. BioMed Res. Int. 2018;2018:2739428. doi: 10.1155/2018/2739428. PubMed DOI PMC
Dominik M., Vraníková B., Svačinová P., Elbl J., Pavloková S., Prudilová B.B., Šklubalová Z., Franc A. Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®. Pharmaceutics. 2021;13:1486. doi: 10.3390/pharmaceutics13091486. PubMed DOI PMC
Technical Sheet: MRS Agar and MRS Broth. [(accessed on 10 November 2022)]. Available online: https://gest.joyadv.it/public/cartellina-allegati-schede-certificazioni/schede-tecniche-inglese/ts-541728.pdf.
Zheng J., Wittouck S., Salvetti E., Franz C.M.A.P., Harris H.M.B., Mattarelli P., O’Toole P.W., Pot B., Vandamme P., Walter J., et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020;70:2782–2858. doi: 10.1099/ijsem.0.004107. PubMed DOI
Parashar A. International Depository Authority and Its Role in Microorganism’s Deposition. JCDR. 2017;11:DE01. doi: 10.7860/JCDR/2017/29077.10408. PubMed DOI PMC
Ph. Eur. MMXVII . European Pharmacopoeia. 9th ed. European Pharmacopoeia Commission; Strasbourg, France: 2017.
Hao F., Fu N., Ndiaye H., Woo M.W., Jeantet R., Chen X.D. Thermotolerance, Survival, and Stability of Lactic Acid Bacteria After Spray Drying as Affected by the Increase of Growth Temperature. Food Bioproc. Tech. 2021;14:120–132. doi: 10.1007/s11947-020-02571-1. DOI
Fečkaninová A., Koščová J., Franc A., Mudroňová D., Popelka P. Surviving of production probiotic strains in a selected application form. Čes. Slov. Farm. 2022;71:27–33. doi: 10.5817/CSF2022-1-27. PubMed DOI
Committee For Veterinary Medicinal Products. Guideline EMA. [(accessed on 27 February 2023)]. Available online: http://www.eudra.org/emea.html.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 18 January 2023)]. Available online: https://www.r-project.org/
Bílik T., Vysloužil J., Naiserová M., Muselík J., Pavelková M., Mašek J., Čopová D., Čulen M., Kubová K. Exploration of Neusilin® US2 as an Acceptable Filler in HPMC Matrix Systems—Comparison of Pharmacopoeial and Dynamic Biorelevant Dissolution Study. Pharmaceutics. 2022;14:127. doi: 10.3390/pharmaceutics14010127. PubMed DOI PMC
Saleh K. Preparation and Characterization of Spironolactone-Avicel PH 101 Physical Mixtures and Adsorbates. Zagazig J. Pharm. Sci. 2013;22:69–78. doi: 10.21608/zjps.2013.163431. DOI
Rowe R.C., Sheskey P.J., Weller P.J. Handbook of Pharmaceutical Excipients. The Pharmaceutical Press; London, UK: 2003.
Axelsson L. Lactic Acid Bacteria: Classification and Physiology. In: Salminen S., Wright A.V., editors. Lactic Acid Bacteria. 3rd ed. CRC Press; Boca Raton, FL, USA: London, UK: 2004. DOI
Smetanková J., Hladíková Z., Valach F., Zimanová M., Kohajdová Z., Greif G., Greifová M. Influence of Aerobic and Anaerobic Conditions on the Growth and Metabolism of Selected Strains of Lactobacillus Plantarum. Acta Chim. Slovaca. 2012;5:204–210. doi: 10.2478/v10188-012-0031-1. DOI
Kearney L., Upton M., McLoughlin A. Enhancing the Viability of Lactobacillus Plantarum Inoculum by Immobilizing the Cells in Calcium-Alginate Beads Incorporating Cryoprotectants. Appl. Environ. Microbiol. 1990;56:3112–3116. doi: 10.1128/aem.56.10.3112-3116.1990. PubMed DOI PMC
Zeman J., Pavloková S., Vetchý D., Staňo A., Moravec Z., Matějovský L., Pitschmann V. Utilization of Pharmaceutical Technology Methods for the Development of Innovative Porous Metasilicate Pellets with a Very High Specific Surface Area for Chemical Warfare Agents Detection. Pharmaceutics. 2021;13:1860. doi: 10.3390/pharmaceutics13111860. PubMed DOI PMC
Roškar R., Kmetec V. Evaluation of the Moisture Sorption Behaviour of Several Excipients by BET, GAB and Microcalorimetric Approaches. [(accessed on 20 November 2022)];Chem. Pharm. Bull. 2005 53:662–665. doi: 10.1248/cpb.53.662. Available online: https://pubmed.ncbi.nlm.nih.gov/15930778/ PubMed DOI
Sparkes J.D., Fenje P. The Effect of Residual Moisture in Lyophilized Smallpox Vaccine on Its Stability at Different Temperatures. [(accessed on 10 January 2023)];Bull World Health Organ. 1972 46:729–734. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480867/ PubMed PMC
Molnar A., Lakat T., Hosszu A., Szebeni B., Balogh A., Orfi L., Szabo A.J., Fekete A., Hodrea J. Lyophilization and Homogenization of Biological Samples Improves Reproducibility and Reduces Standard Deviation in Molecular Biology Techniques. Amino Acids. 2021;53:917–928. doi: 10.1007/s00726-021-02994-w. PubMed DOI PMC
Masareddy R., Kokate A., Shah V. Development of Orodispersible Tizanidine HCl Tablets Using Spray Dried Coprocessed Exipient Bases. Indian J. Pharm. Sci. 2011;73:392–396. doi: 10.4103/0250-474X.95616. PubMed DOI PMC
Johnson R.E., Kirchhoff C.F., Gaud H.T. Mannitol–Sucrose Mixtures—Versatile Formulations for Protein Lyophilization. J. Pharm. Sci. 2002;91:914–922. doi: 10.1002/jps.10094. PubMed DOI
Schersch K., Betz O., Garidel P., Muehlau S., Bassarab S., Winter G. Systematic Investigation of the Effect of Lyophilizate Collapse on Pharmaceutically Relevant Proteins I: Stability after Freeze-drying. J. Pharm. Sci. 2010;99:2256–2278. doi: 10.1002/jps.22000. PubMed DOI
Strasser S., Neureiter M., Geppl M., Braun R., Danner H. Influence of Lyophilization, Fluidized Bed Drying, Addition of Protectants, and Storage on the Viability of Lactic Acid Bacteria. J. Appl. Microbiol. 2009;107:167–177. doi: 10.1111/j.1365-2672.2009.04192.x. PubMed DOI
Patel S.M., Nail S.L., Pikal M.J., Geidobler R., Winter G., Hawe A., Davagnino J., Gupta S.R. Lyophilized Drug Product Cake Appearance: What Is Acceptable? J. Pharm. Sci. 2017;106:1706–1721. doi: 10.1016/j.xphs.2017.03.014. PubMed DOI
Krupa A., Jachowicz R., Kurek M., Figiel W., Kwiecień M. Preparation of Solid Self-Emulsifying Drug Delivery Systems Using Magnesium Aluminometasilicates and Fluid-Bed Coating Process. Powder Technol. 2014;266:329–339. doi: 10.1016/j.powtec.2014.06.043. DOI
Kostelanská K., Prudilová B.B., Holešová S., Vlček J., Vetchý D., Gajdziok J. Comparative Study of Powder Carriers Physical and Structural Properties. Pharmaceutics. 2022;14:818. doi: 10.3390/pharmaceutics14040818. PubMed DOI PMC
Shah A., Serajuddin A.T.M. Conversion of Solid Dispersion Prepared by Acid–Base Interaction into Free-Flowing and Tabletable Powder by Using Neusilin® US2. Int. J. Pharm. 2015;484:172–180. doi: 10.1016/j.ijpharm.2015.02.060. PubMed DOI
Carvalho A.S., Silva J., Ho P., Teixeira P., Malcata F.X., Gibbs P. Relevant Factors for the Preparation of Freeze-Dried Lactic Acid Bacteria. Int. Dairy J. 2004;14:835–847. doi: 10.1016/j.idairyj.2004.02.001. DOI
Oluwatosin S.O., Tai S.L., Fagan-Endres M.A. Sucrose, Maltodextrin and Inulin Efficacy as Cryoprotectant, Preservative and Prebiotic—Towards a Freeze Dried Lactobacillus Plantarum Topical Probiotic. Biotechnol. Rep. 2022;33:e00696. doi: 10.1016/j.btre.2021.e00696. PubMed DOI PMC
Coulibaly I., Kouassi E., N’guessan E., Destain J., Béra F., Thonart P. Lyophilization (Drying Method) Cause Serious Damages to the Cell Viability of Lactic Acid Bacteria. Annu. Res. Rev. Biol. 2018;24:1–15. doi: 10.9734/ARRB/2018/39265. DOI
Wang G.-Q., Pu J., Yu X.-Q., Xia Y.-J., Ai L.-Z. Influence of Freezing Temperature before Freeze-Drying on the Viability of Various Lactobacillus Plantarum Strains. J. Dairy Sci. 2020;103:3066–3075. doi: 10.3168/jds.2019-17685. PubMed DOI
Kanmani P., Satish Kumar R., Yuvaraj N., Paari K.A., Pattukumar V., Arul V. Effect of Cryopreservation and Microencapsulation of Lactic Acid Bacterium Enterococcus Faecium MC13 for Long-Term Storage. Biochem. Eng. J. 2011;58:140–147. doi: 10.1016/j.bej.2011.09.006. DOI
Kanmani P., Kumar R.S., Yuvaraj N., Paari K.A., Pattukumar V., Arul V. Cryopreservation and Microencapsulation of a Probiotic in Alginate-Chitosan Capsules Improves Survival in Simulated Gastrointestinal Conditions. Biotechnol. Bioprocess Eng. 2011;16:1106–1114. doi: 10.1007/s12257-011-0068-9. DOI
Qin T., Ma Q., Chen H., Shu G.W. Effect of Four Materials Including Trehalose, Soluble Starch, Raffinose and Galactose on Survival of Lactobacillus Acidophilus during Freeze-Drying. Adv. Mater. Res. 2013;700:259–262. doi: 10.4028/www.scientific.net/AMR.700.259. DOI
Pereira A.P.A., Lauretti L.B.C., Alvarenga V.O., Paulino B.N., Angolini C.F.F., Neri-Numa I.A., Orlando E.A., Pallone J.A.L., Sant’Ana A.S., Pastore G.M. Evaluation of Fruta-Do-Lobo (Solanum Lycocarpum St. Hill) Starch on the Growth of Probiotic Strains. Food Res. Int. 2020;133:109187. doi: 10.1016/j.foodres.2020.109187. PubMed DOI
Nikoskelainen S. Effect of Environmental Temperature on Rainbow Trout (Oncorhynchus Mykiss) Innate Immunity. Dev. Comp. Immunol. 2004;28:581–592. doi: 10.1016/j.dci.2003.10.003. PubMed DOI
Allame S.K. Isolation, Identification and Characterization of Leuconostoc Mesenteroides as a New Probiotic from Intestine of Snakehead Fish (Channa Striatus) Afr. J. Biotechnol. 2012;11:3810–3816. doi: 10.5897/AJB11.1871. DOI
Giraud E., Lelong B., Raimbault M. Influence of PH and Initial Lactate Concentration on the Growth of Lactobacillus Plantarum. Appl. Microbiol. Biotechnol. 1991;36:96–99. doi: 10.1007/BF00164706. DOI
Gupta A., Mishra A.K., Gupta V., Bansal P., Singh R., Singh A.K. Recent Trends of Fast Dissolving Tablet—An Overview of Formulation Technology. [(accessed on 9 December 2022)];Int. J. Pharm. Biol. Arch. 2010 1:1–10. Available online: https://www.researchgate.net/profile/Parveen-Bansal/publication/259466262_Recent_Trends_of_Fast_Dissolving_Tablet_-_An_Overview_of_Formulation_Technology/links/58b6a04492851c471d448183/Recent-Trends-of-Fast-Dissolving-Tablet-An-Overview-of-Formulation-Technology.pdf.
Parker M.D., York P., Rowe R.C. Binder-Substrate Interactions in Wet Granulation. 3: The Effect of Excipient Source Variation. Int. J. Pharm. 1992;80:179–190. doi: 10.1016/0378-5173(92)90276-8. DOI
Van Bokhorst-Van de Veen H., Abee T., Tempelaars M., Bron P.A., Kleerebezem M., Marco M.L. Short- and Long-Term Adaptation to Ethanol Stress and Its Cross-Protective Consequences in Lactobacillus Plantarum. Appl. Environ. Microbiol. 2011;77:5247–5256. doi: 10.1128/AEM.00515-11. PubMed DOI PMC
Corsetti A., Valmorri S. Lactic Acid Bacteria, Lactobacillus Spp.: Lactobacillus Plantarum. In: Fuquay J.W., Fox P.F., McSweeney P.L.H., editors. Encyclopedia of Dairy Sciences. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2011. pp. 111–118.