Preparation and Evaluation of a Dosage Form for Individualized Administration of Lyophilized Probiotics

. 2023 Mar 10 ; 15 (3) : . [epub] 20230310

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36986771

Grantová podpora
MUNI/IGA/0942/2021 Masaryk University
APVV-19-0234 Agency for Research and Development

Odkazy

PubMed 36986771
PubMed Central PMC10053861
DOI 10.3390/pharmaceutics15030910
PII: pharmaceutics15030910
Knihovny.cz E-zdroje

Probiotics have been used in human and veterinary medicine to increase resistance to pathogens and provide protection against external impacts for many years. Pathogens are often transmitted to humans through animal product consumption. Therefore, it is assumed that probiotics protecting animals may also protect the humans who consume them. Many tested strains of probiotic bacteria can be used for individualized therapy. The recently isolated Lactobacillus plantarum R2 Biocenol™ has proven to be preferential in aquaculture, and potential benefits in humans are expected. A simple oral dosage form should be developed to test this hypothesis by a suitable preparation method, i.e., lyophilization, allowing the bacteria to survive longer. Lyophilizates were formed from silicates (Neusilin® NS2N; US2), cellulose derivates (Avicel® PH-101), and saccharides (inulin; saccharose; modified starch® 1500). They were evaluated for their physicochemical properties (pH leachate, moisture content, water absorption, wetting time, DSC tests, densities, and flow properties); their bacterial viability was determined in conditions including relevant studies over 6 months at 4 °C and scanned under an electron microscope. Lyophilizate composed of Neusilin® NS2N and saccharose appeared to be the most advantageous in terms of viability without any significant decrease. Its physicochemical properties are also suitable for capsule encapsulation, subsequent clinical evaluation, and individualized therapy.

Zobrazit více v PubMed

Zhang F., Cheng W. The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics. 2022;11:1215. doi: 10.3390/antibiotics11091215. PubMed DOI PMC

Baker R.E., Mahmud A.S., Miller I.F., Rajeev M., Rasambainarivo F., Rice B.L., Takahashi S., Tatem A.J., Wagner C.E., Wang L.-F., et al. Infectious Disease in an Era of Global Change. Nat. Rev. Microbiol. 2022;20:193–205. doi: 10.1038/s41579-021-00639-z. PubMed DOI PMC

Omitola O.O., Taylor-Robinson A.W. Emerging and Re-Emerging Bacterial Zoonoses in Nigeria: Current Preventive Measures and Future Approaches to Intervention. Heliyon. 2020;6:e04095. doi: 10.1016/j.heliyon.2020.e04095. PubMed DOI PMC

Murphy R.J.T. Ph.D. Thesis. Curtin University; Perth, Australia: 2022. Antimicrobial Resistance at the Human-Animal Interface.

Hernández-González J.C., Martínez-Tapia A., Lazcano-Hernández G., García-Pérez B.E., Castrejón-Jiménez N.S. Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals. 2021;11:979. doi: 10.3390/ani11040979. PubMed DOI PMC

D’Accolti M., Soffritti I., Bini F., Mazziga E., Mazzacane S., Caselli E. Pathogen Control in the Built Environment: A Probiotic-Based System as a Remedy for the Spread of Antibiotic Resistance. Microorganisms. 2022;10:225. doi: 10.3390/microorganisms10020225. PubMed DOI PMC

Reid G., Bruce A.W., McGroarty J.A., Cheng K.J., Costerton J.W. Is There a Role for Lactobacilli in Prevention of Urogenital and Intestinal Infections? Clin. Microbiol. Rev. 1990;3:335–344. doi: 10.1128/CMR.3.4.335. PubMed DOI PMC

Peng X., Ed-Dra A., Yue M. Whole Genome Sequencing for the Risk Assessment of Probiotic Lactic Acid Bacteria. Crit. Rev. Food Sci. Nutr. 2022;3:1–19. doi: 10.1080/10408398.2022.2087174. PubMed DOI

Mota-Gutierrez J., Cocolin L. Current Trends and Applications of Plant Origin Lactobacilli in the Promotion of Sustainable Food Systems. Trends Food Sci. Technol. 2021;114:198–211. doi: 10.1016/j.tifs.2021.05.030. DOI

Patil Y., Gooneratne R., Ju X.-H. Interactions between Host and Gut Microbiota in Domestic Pigs: A Review. Gut Microbes. 2020;11:310–334. doi: 10.1080/19490976.2019.1690363. PubMed DOI PMC

Angelis M.D., Siragusa S., Caputo L., Ragni A., Burzigotti R., Gobbetti M. Survival and Persistence of Lactobacillus Plantarum 4.1 and Lactobacillus Reuteri 3S7 in the Gastrointestinal Tract of Pigs. Vet. Microbiol. 2007;123:133–144. doi: 10.1016/j.vetmic.2007.02.022. PubMed DOI

Fečkaninová A., Koščová J., Mudroňová D., Schusterová P., Cingeľová Maruščáková I., Popelka P. Characterization of Two Novel Lactic Acid Bacteria Isolated from the Intestine of Rainbow Trout (Oncorhynchus Mykiss, Walbaum) in Slovakia. Aquaculture. 2019;506:294–301. doi: 10.1016/j.aquaculture.2019.03.026. DOI

Jiang G., Ameer K., Kim H., Lee E.-J., Ramachandraiah K., Hong G.-P. Strategies for Sustainable Substitution of Livestock Meat. Foods. 2020;9:1227. doi: 10.3390/foods9091227. PubMed DOI PMC

Halwart M. Fish Farming High on the Global Food System Agenda in 2020. [(accessed on 15 January 2023)];FAO Aquac. Newsl. 2020 61 Available online: https://www.fao.org/3/ca9229en/ca9229en.pdf.

Guijarro J.A., García-Torrico A.I., Cascales D., Méndez J. The Infection Process of Yersinia Ruckeri: Reviewing the Pieces of the Jigsaw Puzzle. Front. Cell. Infect. Microbiol. 2018;8:218. doi: 10.3389/fcimb.2018.00218. PubMed DOI PMC

Vincent A.T., Fernández-Bravo A., Sanchis M., Mayayo E., Figueras M.J., Charette S.J. Investigation of the Virulence and Genomics of Aeromonas Salmonicida Strains Isolated from Human Patients. Infect. Genet. Evol. 2019;68:1–9. doi: 10.1016/j.meegid.2018.11.019. PubMed DOI

Volodina V.V., Proskurina V.V., Solokhina T.A., Voronina E.A., Konkova A.V. Fishes from the Volga-Caspian Basin—Vectors of Pathogens of Anthropozoonoses. [(accessed on 20 December 2022)];Gig. Sanit. 2016 95:517–520. doi: 10.18821/0016-9900-2016-95-6-517-520. Available online: https://pubmed.ncbi.nlm.nih.gov/29424216/ PubMed DOI

Zhao W., Peng C., Sakandar H.A., Kwok L.-Y., Zhang W. Meta-Analysis: Randomized Trials of Lactobacillus Plantarum on Immune Regulation Over the Last Decades. Front. Immunol. 2021;12:728. doi: 10.3389/fimmu.2021.643420. PubMed DOI PMC

Di Cerbo A., Palmieri B., Aponte M., Morales-Medina J.C., Iannitti T. Mechanisms and Therapeutic Effectiveness of Lactobacilli. J. Clin. Pathol. 2016;69:187–203. doi: 10.1136/jclinpath-2015-202976. PubMed DOI PMC

Knackstedt R., Knackstedt T., Gatherwright J. The Role of Topical Probiotics on Wound Healing: A Review of Animal and Human Studies. Int. Wound J. 2020;17:1687–1694. doi: 10.1111/iwj.13451. PubMed DOI PMC

Isolauri E., Kirjavainen P.V., Salminen S. Probiotics: A Role in the Treatment of Intestinal Infection and Inflammation? Gut. 2002;50:54–59. doi: 10.1136/gut.50.suppl_3.iii54. PubMed DOI PMC

Zhang L., Chu J., Hao W., Zhang J., Li H., Yang C., Yang J., Chen X., Wang H. Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications. Mediators Inflamm. 2021;2021:5110276. doi: 10.1155/2021/5110276. PubMed DOI PMC

Chibbar R., Dieleman L.A. Probiotics in the Management of Ulcerative Colitis. J. Clin. Gastroenterol. 2015;49:50–55. doi: 10.1097/MCG.0000000000000368. PubMed DOI

Chiu C.-J., Huang M.-T. Asthma in the Precision Medicine Era: Biologics and Probiotics. Int. J. Mol. Sci. 2021;22:4528. doi: 10.3390/ijms22094528. PubMed DOI PMC

Bubnov R.V., Spivak M.Y., Lazarenko L.M., Bomba A., Boyko N.V. Probiotics and Immunity: Provisional Role for Personalized Diets and Disease Prevention. EPMA J. 2015;6:14. doi: 10.1186/s13167-015-0036-0. PubMed DOI PMC

Kong Y., Olejar K.J., On S.L.W., Chelikani V. The Potential of Lactobacillus Spp. for Modulating Oxidative Stress in the Gastrointestinal Tract. Antioxidants. 2020;9:610. doi: 10.3390/antiox9070610. PubMed DOI PMC

Wang H., Zhou C., Huang J., Kuai X., Shao X. The Potential Therapeutic Role of Lactobacillus Reuteri for Treatment of Inflammatory Bowel Disease. [(accessed on 10 January 2023)];Am. J. Transl. Res. 2020 12:1569–1583. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270012/ PubMed PMC

Capurso L. Thirty Years of Lactobacillus Rhamnosus GG. J. Clin. Gastroenterol. 2019;53:S1–S41. doi: 10.1097/MCG.0000000000001170. PubMed DOI

Ishaq M., Khan A., Bacha A.S., Shah T., Hanif A., Ahmad A.A., Ke W., Li F., Ud Din A., Ding Z., et al. Microbiota Targeted Interventions of Probiotic Lactobacillus as an Anti-Ageing Approach: A Review. Antioxidants. 2021;10:1930. doi: 10.3390/antiox10121930. PubMed DOI PMC

Nature-Backed Probiotic Solutions. [(accessed on 8 January 2023)]. Available online: https://www.ab-biotics.com/wp-content/uploads/2021/05/ABB_Product-Portfolio.pdf.

Testerman T., Beka L., Reichley S.R., King S., Welch T.J., Wiens G.D., Graf J. A Large-Scale, Multi-Year Microbial Community Survey of a Freshwater Trout Aquaculture Facility. FEMS Microbiol. Ecol. 2022;98:fiac101. doi: 10.1093/femsec/fiac101. PubMed DOI

Aquilina G., Bories G., Chesson A., Cocconcelli P.S., Knecht J.D., Dierick A., Gralak A., Gropp J., Halle I., Hogstrand C., et al. Guidance on the Assessment of Bacterial Susceptibility to Antimicrobials of Human and Veterinary Importance. EFSA J. 2012;10:2740. doi: 10.2903/J.EFSA.2012.2740. DOI

Cingeľová Maruščáková I., Schusterová P., Popelka P., Gancarčíková S., Csank T., Fečkaninová A., Ratvaj M., Mudroňová D. Effect of Autochthonous Lactobacilli on Immunologically Important Molecules of Rainbow Trout after Bacterial Infection Studied on Intestinal Primoculture. Fish Shellfish. Immunol. 2021;119:379–383. doi: 10.1016/j.fsi.2021.10.021. PubMed DOI

Appanna V.D. Human Microbes—The Power Within. Springer; Singapore: 2018. What If the Workings of the Microbiome Are Fully Uncovered?—A Revolution in Human Health, Wellness and Beyond; pp. 123–159. DOI

Lokesh J., Ghislain M., Reyrolle M., Bechec M.L., Pigot T., Terrier F., Roy J., Panserat S., Ricaud K. Prebiotics Modify Host Metabolism in Rainbow Trout (Oncorhynchus Mykiss) Fed with a Total Plant-Based Diet: Potential Implications for Microbiome-Mediated Diet Optimization. Aquaculture. 2022;561:738699. doi: 10.1016/j.aquaculture.2022.738699. DOI

Nimalan N., Sørensen S.L., Fečkaninová A., Koščová J., Mudroňová D., Gancarčíková S., Vatsos I.N., Bisa S., Kiron V., Sørensen M. Supplementation of Lactic Acid Bacteria Has Positive Effects on the Mucosal Health of Atlantic Salmon (Salmo Salar) Fed Soybean Meal. Aquac. Rep. 2023;28:101461. doi: 10.1016/j.aqrep.2022.101461. DOI

Marcial-Coba M.S., Cieplak T., Cahú T.B., Blennow A., Knøchel S., Nielsen D.S. Viability of Microencapsulated Akkermansia Muciniphila and Lactobacillus Plantarum during Freeze-Drying, Storage and in Vitro Simulated Upper Gastrointestinal Tract Passage. Food Funct. 2018;9:5868–5879. doi: 10.1039/C8FO01331D. PubMed DOI

Fareez I.M., Lim S.M., Mishra R.K., Ramasamy K. Chitosan Coated Alginate–Xanthan Gum Bead Enhanced PH and Thermotolerance of Lactobacillus Plantarum LAB12. Int. J. Biol. Macromol. 2015;72:1419–1428. doi: 10.1016/j.ijbiomac.2014.10.054. PubMed DOI

Franc A., Dvořáčková K., Kejdušová M., Goněc R. Physiological Factors with Impact on the Drug Behaviour in the Gastrointestinal Tract. [(accessed on 12 December 2022)];Ces. Slov. Farm. 2013 62:243–248. Available online: https://pubmed.ncbi.nlm.nih.gov/24393111/ PubMed

Franc A., Vetchý D., Fülöpová N. Commercially Available Enteric Empty Hard Capsules, Production Technology and Application. Pharmaceuticals. 2022;15:1398. doi: 10.3390/ph15111398. PubMed DOI PMC

Fülöpová N., Pavloková S., DeBono I., Vetchý D., Franc A. Development and Comparison of Various Coated Hard Capsules Suitable for Enteric Administration to Small Patient Cohorts. Pharmaceutics. 2022;14:1577. doi: 10.3390/pharmaceutics14081577. PubMed DOI PMC

Rapacz-Kmita A., Stodolak-Zych E., Dudek M., Gajek M., Ziąbka M. Magnesium Aluminium Silicate–Gentamicin Complex for Drug Delivery Systems. J. Therm. Anal. Calorim. 2017;127:871–880. doi: 10.1007/s10973-016-5918-4. DOI

Nacheva I., Georgieva L., Tsvetkov T. Possibilities for Application of Cellulose Derivatives under Cryoconservation of Probiotics. [(accessed on 15 January 2023)];Bulg. J. Agric. Sci. 2007 13:153–159. Available online: https://www.agrojournal.org/13/02-01-07.pdf.

Reddy K.B.P.K., Awasthi S.P., Madhu A.N., Prapulla S.G. Role of Cryoprotectants on the Viability and Functional Properties of Probiotic Lactic Acid Bacteria during Freeze Drying. Food Biotechnol. 2009;23:243–265. doi: 10.1080/08905430903106811. DOI

Morais A.R.D.V., Alencar É.D.N., Xavier Júnior F.H., Oliveira C.M.D., Marcelino H.R., Barratt G., Fessi H., Egito E.S.T.D., Elaissari A. Freeze-Drying of Emulsified Systems: A Review. Int. J. Pharm. 2016;503:102–114. doi: 10.1016/j.ijpharm.2016.02.047. PubMed DOI

Keivani Nahr F., Mokarram R.R., Hejazi M.A., Ghanbarzadeh B., Sowti Khiyabani M., Zoroufchi Benis K. Optimization of the Nanocellulose Based Cryoprotective Medium to Enhance the Viability of Freeze Dried Lactobacillus Plantarum Using Response Surface Methodology. LWT Food Sci. Technol. 2015;64:326–332. doi: 10.1016/j.lwt.2015.06.004. DOI

Franc A., Vetchý D., Vodáčková P., Kubaľák R., Jendryková L., Goněc Roman Co-Processed Excipients for Direct Compression of Tablets. [(accessed on 18 December 2022)];Čes. Slov. Farm. 2018 67:175–181. Available online: https://www.prolekare.cz/en/journals/czech-and-slovak-pharmacy/2018-5-6-1/co-processed-excipients-for-direct-compression-of-tablets-108170. PubMed

Svačinová P., Vraníková B., Dominik M., Elbl J., Pavloková S., Kubalák R., Kopecká P., Franc A. Comprehensive Study of Co-Processed Excipients F- Melts®: Flow, Viscoelastic and Compacts Properties. Powder Technol. 2019;355:675–687. doi: 10.1016/j.powtec.2019.07.048. DOI

Vodáčková P., Vraníková B., Svačinová P., Franc A., Elbl J., Muselík J., Kubalák R., Solný T. Evaluation and Comparison of Three Types of Spray Dried Coprocessed Excipient Avicel® for Direct Compression. BioMed Res. Int. 2018;2018:2739428. doi: 10.1155/2018/2739428. PubMed DOI PMC

Dominik M., Vraníková B., Svačinová P., Elbl J., Pavloková S., Prudilová B.B., Šklubalová Z., Franc A. Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®. Pharmaceutics. 2021;13:1486. doi: 10.3390/pharmaceutics13091486. PubMed DOI PMC

Technical Sheet: MRS Agar and MRS Broth. [(accessed on 10 November 2022)]. Available online: https://gest.joyadv.it/public/cartellina-allegati-schede-certificazioni/schede-tecniche-inglese/ts-541728.pdf.

Zheng J., Wittouck S., Salvetti E., Franz C.M.A.P., Harris H.M.B., Mattarelli P., O’Toole P.W., Pot B., Vandamme P., Walter J., et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020;70:2782–2858. doi: 10.1099/ijsem.0.004107. PubMed DOI

Parashar A. International Depository Authority and Its Role in Microorganism’s Deposition. JCDR. 2017;11:DE01. doi: 10.7860/JCDR/2017/29077.10408. PubMed DOI PMC

Ph. Eur. MMXVII . European Pharmacopoeia. 9th ed. European Pharmacopoeia Commission; Strasbourg, France: 2017.

Hao F., Fu N., Ndiaye H., Woo M.W., Jeantet R., Chen X.D. Thermotolerance, Survival, and Stability of Lactic Acid Bacteria After Spray Drying as Affected by the Increase of Growth Temperature. Food Bioproc. Tech. 2021;14:120–132. doi: 10.1007/s11947-020-02571-1. DOI

Fečkaninová A., Koščová J., Franc A., Mudroňová D., Popelka P. Surviving of production probiotic strains in a selected application form. Čes. Slov. Farm. 2022;71:27–33. doi: 10.5817/CSF2022-1-27. PubMed DOI

Committee For Veterinary Medicinal Products. Guideline EMA. [(accessed on 27 February 2023)]. Available online: http://www.eudra.org/emea.html.

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 18 January 2023)]. Available online: https://www.r-project.org/

Bílik T., Vysloužil J., Naiserová M., Muselík J., Pavelková M., Mašek J., Čopová D., Čulen M., Kubová K. Exploration of Neusilin® US2 as an Acceptable Filler in HPMC Matrix Systems—Comparison of Pharmacopoeial and Dynamic Biorelevant Dissolution Study. Pharmaceutics. 2022;14:127. doi: 10.3390/pharmaceutics14010127. PubMed DOI PMC

Saleh K. Preparation and Characterization of Spironolactone-Avicel PH 101 Physical Mixtures and Adsorbates. Zagazig J. Pharm. Sci. 2013;22:69–78. doi: 10.21608/zjps.2013.163431. DOI

Rowe R.C., Sheskey P.J., Weller P.J. Handbook of Pharmaceutical Excipients. The Pharmaceutical Press; London, UK: 2003.

Axelsson L. Lactic Acid Bacteria: Classification and Physiology. In: Salminen S., Wright A.V., editors. Lactic Acid Bacteria. 3rd ed. CRC Press; Boca Raton, FL, USA: London, UK: 2004. DOI

Smetanková J., Hladíková Z., Valach F., Zimanová M., Kohajdová Z., Greif G., Greifová M. Influence of Aerobic and Anaerobic Conditions on the Growth and Metabolism of Selected Strains of Lactobacillus Plantarum. Acta Chim. Slovaca. 2012;5:204–210. doi: 10.2478/v10188-012-0031-1. DOI

Kearney L., Upton M., McLoughlin A. Enhancing the Viability of Lactobacillus Plantarum Inoculum by Immobilizing the Cells in Calcium-Alginate Beads Incorporating Cryoprotectants. Appl. Environ. Microbiol. 1990;56:3112–3116. doi: 10.1128/aem.56.10.3112-3116.1990. PubMed DOI PMC

Zeman J., Pavloková S., Vetchý D., Staňo A., Moravec Z., Matějovský L., Pitschmann V. Utilization of Pharmaceutical Technology Methods for the Development of Innovative Porous Metasilicate Pellets with a Very High Specific Surface Area for Chemical Warfare Agents Detection. Pharmaceutics. 2021;13:1860. doi: 10.3390/pharmaceutics13111860. PubMed DOI PMC

Roškar R., Kmetec V. Evaluation of the Moisture Sorption Behaviour of Several Excipients by BET, GAB and Microcalorimetric Approaches. [(accessed on 20 November 2022)];Chem. Pharm. Bull. 2005 53:662–665. doi: 10.1248/cpb.53.662. Available online: https://pubmed.ncbi.nlm.nih.gov/15930778/ PubMed DOI

Sparkes J.D., Fenje P. The Effect of Residual Moisture in Lyophilized Smallpox Vaccine on Its Stability at Different Temperatures. [(accessed on 10 January 2023)];Bull World Health Organ. 1972 46:729–734. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480867/ PubMed PMC

Molnar A., Lakat T., Hosszu A., Szebeni B., Balogh A., Orfi L., Szabo A.J., Fekete A., Hodrea J. Lyophilization and Homogenization of Biological Samples Improves Reproducibility and Reduces Standard Deviation in Molecular Biology Techniques. Amino Acids. 2021;53:917–928. doi: 10.1007/s00726-021-02994-w. PubMed DOI PMC

Masareddy R., Kokate A., Shah V. Development of Orodispersible Tizanidine HCl Tablets Using Spray Dried Coprocessed Exipient Bases. Indian J. Pharm. Sci. 2011;73:392–396. doi: 10.4103/0250-474X.95616. PubMed DOI PMC

Johnson R.E., Kirchhoff C.F., Gaud H.T. Mannitol–Sucrose Mixtures—Versatile Formulations for Protein Lyophilization. J. Pharm. Sci. 2002;91:914–922. doi: 10.1002/jps.10094. PubMed DOI

Schersch K., Betz O., Garidel P., Muehlau S., Bassarab S., Winter G. Systematic Investigation of the Effect of Lyophilizate Collapse on Pharmaceutically Relevant Proteins I: Stability after Freeze-drying. J. Pharm. Sci. 2010;99:2256–2278. doi: 10.1002/jps.22000. PubMed DOI

Strasser S., Neureiter M., Geppl M., Braun R., Danner H. Influence of Lyophilization, Fluidized Bed Drying, Addition of Protectants, and Storage on the Viability of Lactic Acid Bacteria. J. Appl. Microbiol. 2009;107:167–177. doi: 10.1111/j.1365-2672.2009.04192.x. PubMed DOI

Patel S.M., Nail S.L., Pikal M.J., Geidobler R., Winter G., Hawe A., Davagnino J., Gupta S.R. Lyophilized Drug Product Cake Appearance: What Is Acceptable? J. Pharm. Sci. 2017;106:1706–1721. doi: 10.1016/j.xphs.2017.03.014. PubMed DOI

Krupa A., Jachowicz R., Kurek M., Figiel W., Kwiecień M. Preparation of Solid Self-Emulsifying Drug Delivery Systems Using Magnesium Aluminometasilicates and Fluid-Bed Coating Process. Powder Technol. 2014;266:329–339. doi: 10.1016/j.powtec.2014.06.043. DOI

Kostelanská K., Prudilová B.B., Holešová S., Vlček J., Vetchý D., Gajdziok J. Comparative Study of Powder Carriers Physical and Structural Properties. Pharmaceutics. 2022;14:818. doi: 10.3390/pharmaceutics14040818. PubMed DOI PMC

Shah A., Serajuddin A.T.M. Conversion of Solid Dispersion Prepared by Acid–Base Interaction into Free-Flowing and Tabletable Powder by Using Neusilin® US2. Int. J. Pharm. 2015;484:172–180. doi: 10.1016/j.ijpharm.2015.02.060. PubMed DOI

Carvalho A.S., Silva J., Ho P., Teixeira P., Malcata F.X., Gibbs P. Relevant Factors for the Preparation of Freeze-Dried Lactic Acid Bacteria. Int. Dairy J. 2004;14:835–847. doi: 10.1016/j.idairyj.2004.02.001. DOI

Oluwatosin S.O., Tai S.L., Fagan-Endres M.A. Sucrose, Maltodextrin and Inulin Efficacy as Cryoprotectant, Preservative and Prebiotic—Towards a Freeze Dried Lactobacillus Plantarum Topical Probiotic. Biotechnol. Rep. 2022;33:e00696. doi: 10.1016/j.btre.2021.e00696. PubMed DOI PMC

Coulibaly I., Kouassi E., N’guessan E., Destain J., Béra F., Thonart P. Lyophilization (Drying Method) Cause Serious Damages to the Cell Viability of Lactic Acid Bacteria. Annu. Res. Rev. Biol. 2018;24:1–15. doi: 10.9734/ARRB/2018/39265. DOI

Wang G.-Q., Pu J., Yu X.-Q., Xia Y.-J., Ai L.-Z. Influence of Freezing Temperature before Freeze-Drying on the Viability of Various Lactobacillus Plantarum Strains. J. Dairy Sci. 2020;103:3066–3075. doi: 10.3168/jds.2019-17685. PubMed DOI

Kanmani P., Satish Kumar R., Yuvaraj N., Paari K.A., Pattukumar V., Arul V. Effect of Cryopreservation and Microencapsulation of Lactic Acid Bacterium Enterococcus Faecium MC13 for Long-Term Storage. Biochem. Eng. J. 2011;58:140–147. doi: 10.1016/j.bej.2011.09.006. DOI

Kanmani P., Kumar R.S., Yuvaraj N., Paari K.A., Pattukumar V., Arul V. Cryopreservation and Microencapsulation of a Probiotic in Alginate-Chitosan Capsules Improves Survival in Simulated Gastrointestinal Conditions. Biotechnol. Bioprocess Eng. 2011;16:1106–1114. doi: 10.1007/s12257-011-0068-9. DOI

Qin T., Ma Q., Chen H., Shu G.W. Effect of Four Materials Including Trehalose, Soluble Starch, Raffinose and Galactose on Survival of Lactobacillus Acidophilus during Freeze-Drying. Adv. Mater. Res. 2013;700:259–262. doi: 10.4028/www.scientific.net/AMR.700.259. DOI

Pereira A.P.A., Lauretti L.B.C., Alvarenga V.O., Paulino B.N., Angolini C.F.F., Neri-Numa I.A., Orlando E.A., Pallone J.A.L., Sant’Ana A.S., Pastore G.M. Evaluation of Fruta-Do-Lobo (Solanum Lycocarpum St. Hill) Starch on the Growth of Probiotic Strains. Food Res. Int. 2020;133:109187. doi: 10.1016/j.foodres.2020.109187. PubMed DOI

Nikoskelainen S. Effect of Environmental Temperature on Rainbow Trout (Oncorhynchus Mykiss) Innate Immunity. Dev. Comp. Immunol. 2004;28:581–592. doi: 10.1016/j.dci.2003.10.003. PubMed DOI

Allame S.K. Isolation, Identification and Characterization of Leuconostoc Mesenteroides as a New Probiotic from Intestine of Snakehead Fish (Channa Striatus) Afr. J. Biotechnol. 2012;11:3810–3816. doi: 10.5897/AJB11.1871. DOI

Giraud E., Lelong B., Raimbault M. Influence of PH and Initial Lactate Concentration on the Growth of Lactobacillus Plantarum. Appl. Microbiol. Biotechnol. 1991;36:96–99. doi: 10.1007/BF00164706. DOI

Gupta A., Mishra A.K., Gupta V., Bansal P., Singh R., Singh A.K. Recent Trends of Fast Dissolving Tablet—An Overview of Formulation Technology. [(accessed on 9 December 2022)];Int. J. Pharm. Biol. Arch. 2010 1:1–10. Available online: https://www.researchgate.net/profile/Parveen-Bansal/publication/259466262_Recent_Trends_of_Fast_Dissolving_Tablet_-_An_Overview_of_Formulation_Technology/links/58b6a04492851c471d448183/Recent-Trends-of-Fast-Dissolving-Tablet-An-Overview-of-Formulation-Technology.pdf.

Parker M.D., York P., Rowe R.C. Binder-Substrate Interactions in Wet Granulation. 3: The Effect of Excipient Source Variation. Int. J. Pharm. 1992;80:179–190. doi: 10.1016/0378-5173(92)90276-8. DOI

Van Bokhorst-Van de Veen H., Abee T., Tempelaars M., Bron P.A., Kleerebezem M., Marco M.L. Short- and Long-Term Adaptation to Ethanol Stress and Its Cross-Protective Consequences in Lactobacillus Plantarum. Appl. Environ. Microbiol. 2011;77:5247–5256. doi: 10.1128/AEM.00515-11. PubMed DOI PMC

Corsetti A., Valmorri S. Lactic Acid Bacteria, Lactobacillus Spp.: Lactobacillus Plantarum. In: Fuquay J.W., Fox P.F., McSweeney P.L.H., editors. Encyclopedia of Dairy Sciences. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2011. pp. 111–118.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...