Evaluation and Comparison of Three Types of Spray Dried Coprocessed Excipient Avicel® for Direct Compression
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články
PubMed
29850496
PubMed Central
PMC5933045
DOI
10.1155/2018/2739428
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- celulosa chemie MeSH
- diferenciální skenovací kalorimetrie MeSH
- fyzikální absorpce MeSH
- koncentrace vodíkových iontů MeSH
- pevnost v tahu MeSH
- pevnost v tlaku MeSH
- pomocné látky chemie MeSH
- poréznost MeSH
- prášky, zásypy, pudry MeSH
- reologie MeSH
- rozpustnost MeSH
- smáčivost MeSH
- statická elektřina MeSH
- tablety MeSH
- tlak MeSH
- velikost částic MeSH
- vlhkost MeSH
- voda chemie MeSH
- vysoušení * MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- celulosa MeSH
- pomocné látky MeSH
- prášky, zásypy, pudry MeSH
- tablety MeSH
- voda MeSH
As coprocessed excipients (CPE) gain a lot of focus recently, this article compares three commercially available CPE of Avicel brand, namely, CE 15, DG, and HFE 102. Comparison is based on measured physical properties of coprocessed mixtures, respectively, flow properties, pycnometric density, mean particle size, specific surface area, moisture content, hygroscopicity, solubility, pH leaching, electrostatic charge, SEM images, and DSC. Tablets were made employing three pressure sets. Viscoelastic properties and ejection force were assessed during compression, as well as pycnometric density, mass uniformity, height, tensile strength, friability, disintegration, and wetting times. Avicel CE 15 is of mid-range flow properties, contains mid-size and nonspherical particles, and has high hygroscopicity, growing negative charge, best lubricity, lowest tensile strength, and mid-long disintegration times. Avicel DG possesses the worst flow properties, small asymmetrical particles, lowest hygroscopicity, stable charge, intermediate lubricity, and tensile strength and exhibits fast disintegration of tablets. Finally, Avicel HFE 102 has the best flow properties, large symmetrical particles, and middle hygroscopicity and its charge fluctuates throughout blending. It also exhibits inferior lubricity, the highest tensile strength, and slow disintegration of tablets. Generally, it is impossible to select the best CPE, as their different properties fit versatile needs of countless manufacturers and final products.
Zobrazit více v PubMed
Wang S., Li J., Lin X., et al. Novel coprocessed excipients composed of lactose, HPMC, and PVPP for tableting and its application. International Journal of Pharmaceutics. 2015;486(1-2):370–379. doi: 10.1016/j.ijpharm.2015.03.069. PubMed DOI
Chauhan S. I., Nathwani S. V., Soniwala M. M., Chavda J. R. Development and characterization of multifunctional directly compressible co-processed excipient by spray drying method. AAPS PharmSciTech. 2017;18(4):1293–1301. doi: 10.1208/s12249-016-0598-8. PubMed DOI
Adeoye O., Alebiowu G. Flow, packing and compaction properties of novel coprocessed multifunctional directly compressible excipients prepared from tapioca starch and mannitol. Pharmaceutical Development and Technology. 2014;19(8):901–910. doi: 10.3109/10837450.2013.840843. PubMed DOI
Eraga S. O., Arhewoh M. I., Uhumwangho M. U., Iwuagwu M. A. Characterisation of a novel, multifunctional, co-processed excipient and its effect on release profile of paracetamol from tablets prepared by direct compression. Asian Pacific Journal of Tropical Biomedicine. 2015;5(9):768–772. doi: 10.1016/j.apjtb.2015.07.008. DOI
Goyanes A., Souto C., Martínez-Pacheco R. Co-processed MCC-Eudragit® e excipients for extrusion-spheronization. European Journal of Pharmaceutics and Biopharmaceutics. 2011;79(3):658–663. doi: 10.1016/j.ejpb.2011.07.013. PubMed DOI
Guidance for Industry: Orally Disintegrating Tablets. U.S. Department of Health and Human Services, FDA, Center for Drug Evaluation and Reseach; 2008.
Mužíková J., Hávová Š., Ondrejček P., Komersová A., Lochař V. A study of tablets with a co-processed dry binder containing hypromellose and α-lactose monohydrate. Journal of Drug Delivery Science and Technology. 2014;24(1):100–104. doi: 10.1016/S1773-2247(14)50014-7. DOI
Krupa A., Jachowicz R., Pȩdzich Z., Wodnicka K. The influence of the API properties on the ODTs manufacturing from co-processed excipient systems. AAPS PharmSciTech. 2012;13(4):1120–1129. doi: 10.1208/s12249-012-9831-2. PubMed DOI PMC
Tayel S. A., El Nabarawi M. A., Amin M. M., AbouGhaly M. H. H. Comparative study between different ready-made orally disintegrating platforms for the formulation of sumatriptan succinate sublingual tablets. AAPS PharmSciTech. 2017;18(2):410–423. doi: 10.1208/s12249-016-0517-z. PubMed DOI
Brouwers J., Anneveld B., Goudappel G.-J., et al. Food-dependent disintegration of immediate release fosamprenavir tablets: In vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system. European Journal of Pharmaceutics and Biopharmaceutics. 2011;77(2):313–319. doi: 10.1016/j.ejpb.2010.10.009. PubMed DOI
Inghelbrecht S., Remon J. P. Roller compaction and tableting of microcrystalline cellulose/drug mixtures. International Journal of Pharmaceutics. 1998;161(2):215–224. doi: 10.1016/S0378-5173(97)00356-6. DOI
Saha S., Shahiwala A. F. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opinion on Drug Delivery. 2009;6(2):197–208. doi: 10.1517/17425240802708978. PubMed DOI
Iyer R. M., Hegde S., DiNunzio J., Singhal D., Malick W. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Pharmaceutical Development and Technology. 2014;19(5):583–592. doi: 10.3109/10837450.2013.813541. PubMed DOI
FMC Health & Nutrition—Pharmaceutical > Products > Avicel for solid dose forms. FMC Health and Nutrition—Producer of carrageenan, alginate, microcrystalline cellulose, and konjac, http://www.fmcbiopolymer.com/Pharmaceutical/Products/Avicelforsoliddoseforms.aspx.
Vraníková B., Gajdziok J., Vetchý D. Modern evaluation of liquisolid systems with varying amounts of liquid phase prepared using two different methods. BioMed Research International. 2015;2015:12. doi: 10.1155/2015/608435.608435 PubMed DOI PMC
Brunauer S., Emmett P. H., Teller E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 1938;60(2):309–319. doi: 10.1021/ja01269a023. DOI
Hobbs D., Karagianis J. T., Treuer J., Raskin. An in vitro analysis of disintegration times of different formulations of olanzapine orodispersible tablet: a preliminary report. Drugs in R&D. 2013;13(4):281–288. doi: 10.1007/s40268-013-0030-8. PubMed DOI PMC
Voigt R., Fahr A. Pharmazeutische Technologie: Für Studium und Beruf. 10th. Stuttgart, Germany: Dt. Apotheker-Verl; 2006.
Stamm A., Mathis C. Verpressbarkeit von Festen Hilfsstoffen für Direkttablettierung. Acta Pharmaceutica Technologica. 1976;22:7–16.
Fell J. T., Newton J. M. Determination of tablet strength by the diametral‐compression test. Journal of Pharmaceutical Sciences. 1970;59(5):688–691. doi: 10.1002/jps.2600590523. PubMed DOI
Kawashima Y., Imai M., Takeuchi H., Yamamoto H., Kamiya K., Hino T. Improved flowability and compactibility of spherically agglomerated crystals of ascorbic acid for direct tableting designed by spherical crystallization process. Powder Technology. 2003;130(1–3):283–289. doi: 10.1016/S0032-5910(02)00206-1. DOI
Wu C.-Y., Dihoru L., Cocks A. C. F. The flow of powder into simple and stepped dies. Powder Technology. 2003;134(1-2):24–39. doi: 10.1016/S0032-5910(03)00130-X. DOI
Vraníková B., Gajdziok J. Evaluation of sorptive properties of various carriers and coating materials for liquisolid systems. Acta Poloniae Pharmaceutica. 2015;72(3):539–549. PubMed
Vraníková B., Gajdziok J. Liquisolid systems and aspects influencing their research and development. Acta Pharmaceutica. 2013;63(4):447–465. doi: 10.2478/acph-2013-0034. PubMed DOI
Shah R. B., Tawakkul M. A., Khan M. A. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech. 2008;9(1):250–258. doi: 10.1208/s12249-008-9046-8. PubMed DOI PMC
Stanescu A., Ochiuz L., Cojocaru I., Popovici I., Lupuleasa D. The influence of different polymers on the pharmaco-technological characteristics of propiconazole nitrate bioadhesive oromucosal tablets. Farmacia. 2010;58(3):279–289.
Kuentz M., Leuenberger H. A new theoretical approach to tablet strength of a binary mixture consisting of a well and a poorly compactable substance. European Journal of Pharmaceutics and Biopharmaceutics. 2000;49(2):151–159. doi: 10.1016/S0939-6411(99)00078-8. PubMed DOI
Klevan I., Nordström J., Tho I., Alderborn G. A statistical approach to evaluate the potential use of compression parameters for classification of pharmaceutical powder materials. European Journal of Pharmaceutics and Biopharmaceutics. 2010;75(3):425–435. doi: 10.1016/j.ejpb.2010.04.006. PubMed DOI
Rowe R. C., Sheskey P. J., Owen S. C. Handbook of Pharmaceutical Excipients—7th Edition. Pharmaceutical Development and Technology. 2013;18(2):544–544. doi: 10.3109/10837450.2012.751408. DOI
Herting M. G., Kleinebudde P. Roll compaction/dry granulation: Effect of raw material particle size on granule and tablet properties. International Journal of Pharmaceutics. 2007;338(1-2):110–118. doi: 10.1016/j.ijpharm.2007.01.035. PubMed DOI
Komárek P., Rabišková M. Technologie Léků: Galenika. 3rd. Praha, Czech Republic: Galén; 2006.
Muselík J., Franc A., Doležel P., Goněc R., Krondlová A., Lukášová I. Influence of process parameters on content uniformity of a low dose active pharmaceutical ingredient in a tablet formulation according to GMP. Acta Pharmaceutica. 2014;64(3):355–367. doi: 10.2478/acph-2014-0022. PubMed DOI
Konert M., Vandenberghe J. Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology. 1997;44(3):523–535. doi: 10.1046/j.1365-3091.1997.d01-38.x. DOI
Debord B., Lefebvre C., Guyot-Hermann A. M., Hubert J., Bouché R., Cuyot J. C. Study of different crystalline forms of mannitol: comparative behaviour under compression. Drug Development and Industrial Pharmacy. 1987;13(9–11):1533–1546. doi: 10.3109/03639048709068679. DOI
Torres M. D., Moreira R., Chenlo F., Vázquez M. J. Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums. Carbohydrate Polymers. 2012;89(2):592–598. doi: 10.1016/j.carbpol.2012.03.055. PubMed DOI
George M., Abraham T. E. pH sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs. International Journal of Pharmaceutics. 2007;335(1-2):123–129. doi: 10.1016/j.ijpharm.2006.11.009. PubMed DOI
Pu Y., Mazumder M., Cooney C. Effects of electrostatic charging on pharmaceutical powder blending homogeneity. Journal of Pharmaceutical Sciences. 2009;98(7):2412–2421. doi: 10.1002/jps.21595. PubMed DOI
Gonnissen Y., Remon J. P., Vervaet C. Development of directly compressible powders via co-spray drying. European Journal of Pharmaceutics and Biopharmaceutics. 2007;67(1):220–226. doi: 10.1016/j.ejpb.2006.12.021. PubMed DOI
Jani G. K., Shah D. P., Prajapati V. D., Jain V. C. Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian Journal of Pharmaceutical Sciences. 2009;4(5):309–323.
ROWE R. C. The adhesion of film coatings to tablet surfaces—the effect of some direct compression excipients and lubricants. Journal of Pharmacy and Pharmacology. 1977;29(1):723–726. doi: 10.1111/j.2042-7158.1977.tb11449.x. PubMed DOI
Westermarck S., Juppo A. M., Kervinen L., Yliruusi J. Microcrystalline cellulose and its microstructure in pharmaceutical processing. European Journal of Pharmaceutics and Biopharmaceutics. 1999;48(3):199–206. doi: 10.1016/S0939-6411(99)00051-X. PubMed DOI
Durr M., Hanssen D., Harwali H. Kennzahlen zur Beurteilung der Verpreßbarkeit von Pulvern und Granulaten. Pharmazeutische Industrie. 1972;34:905–911.
Mudgil D., Barak S., Khatkar B. S. Guar gum: processing, properties and food applications—a review. Journal of Food Science and Technology. 2014;51(3):409–418. doi: 10.1007/s13197-011-0522-x. PubMed DOI PMC
Wu J., Ho H., Sheu M. A statistical design to evaluate the influence of manufacturing factors on the material properties and functionalities of microcrystalline cellulose. European Journal of Pharmaceutical Sciences. 2001;12(4):417–425. doi: 10.1016/S0928-0987(00)00196-2. PubMed DOI
Nyström C., Alderborn G., Duberg M., Karehill P.-G. Bonding surface area and bonding mechanism-two important factors fir the understanding of powder comparability. Drug Development and Industrial Pharmacy. 1993;19(17-18):2143–2196. doi: 10.3109/03639049309047189. DOI
Al-Khattawi A., Mohammed A. R. Compressed orally disintegrating tablets: Excipients evolution and formulation strategies. Expert Opinion on Drug Delivery. 2013;10(5):651–663. doi: 10.1517/17425247.2013.769955. PubMed DOI
Narayan P., Hancock B. C. The relationship between the particle properties, mechanical behavior, and surface roughness of some pharmaceutical excipient compacts. Materials Science and Engineering: A Structural Materials: Properties, Microstructure and Processing. 2003;355(1-2):24–36. doi: 10.1016/S0921-5093(03)00059-5. DOI
Fell J. Recent research into tabletting. Labo-Pharma, Problèmes et Techniques. 1983;31:353–358.
Vachon M. G., Chulia D. The use of energy indices in estimating powder compaction functionality of mixtures in pharmaceutical tableting. International Journal of Pharmaceutics. 1999;177(2):183–200. doi: 10.1016/S0378-5173(98)00347-0. PubMed DOI
Paronen P. Heckel plots as indicators of elastic properties of pharmaceuticals. Drug Development and Industrial Pharmacy. 1986;12(11–13):1903–1912. doi: 10.3109/03639048609042616. DOI
Abdel-Hamid S., Betz G. Study of radial die-wall pressure changes during pharmaceutical powder compaction. Drug Development and Industrial Pharmacy. 2011;37(4):387–395. doi: 10.3109/03639045.2010.513985. PubMed DOI
Sinka I. C., Motazedian F., Cocks A. C. F., Pitt K. G. The effect of processing parameters on pharmaceutical tablet properties. Powder Technology. 2009;189(2):276–284. doi: 10.1016/j.powtec.2008.04.020. DOI
Westerhuis J. A., De Haan P., Zwinkels J., Jansen W. T., Coenegracht P. J. M., Lerk C. F. Optimisation of the composition and production of mannitol/microcrystalline cellulose tablets. International Journal of Pharmaceutics. 1996;143(2):151–162. doi: 10.1016/S0378-5173(96)04699-6. DOI
Abdel-Hamid S., Betz G. A novel tool for the prediction of tablet sticking during high speed compaction. Pharmaceutical Development and Technology. 2012;17(6):747–754. doi: 10.3109/10837450.2011.580761. PubMed DOI
Burger A., Henck J. O., Hetz S., Rollinger J. M., Weissnicht A. A., Stottner H. Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. Journal of Pharmaceutical Sciences. 2000;89(4):457–468. PubMed
Badawy S. I. F., Shah K. R., Surapaneni M. S., Szemraj M. M., Hussain M. Effect of spray-dried mannitol on the performance of microcrystalline cellulose-based wet granulated tablet formulation. Pharmaceutical Development and Technology. 2010;15(4):339–345. doi: 10.3109/10837450903229065. PubMed DOI
Van Der Voort Maarschalk K., Zuurman K., Vromans H., Bolhuis G. K., Lerk C. F. Stress relaxation of compacts produced from viscoelastic materials. International Journal of Pharmaceutics. 1997;151(1):27–34. doi: 10.1016/S0378-5173(97)04889-8. DOI
The European Directorate for Quality of Medicines & HealthCare: European Pharmacopoeia 8.0., 2014.
Sun C. True density of microcrystalline cellulose. Journal of Pharmaceutical Sciences. 2005;94(10):2132–2134. doi: 10.1002/jps.20459. PubMed DOI
Mužíková J., Muchová S., Komersová A., Lochař V. Compressibility of tableting materials and properties of tablets with glyceryl behenate. Acta Pharmaceutica. 2015;65(1):91–98. doi: 10.1515/acph-2015-0006. PubMed DOI
Belousov V. A. Choice of optimal pressure values in tableting medicinal powders. Khimiko-Farmatsevticheskii Zhurnal. 1976;10:105–111.
Khan S., Kataria P., Nakhat P., Yeole P. Taste masking of ondansetron hydrochloride by polymer carrier system and formulation of rapid-disintegrating tablets. AAPS PharmSciTech. 2007;8(2, article 46) PubMed PMC
Soulairol I., Chaheen M., Tarlier N., Aubert A., Bataille B., Sharkawi T. Evaluation of disintegrants functionality for orodispersible mini tablets. Drug Development and Industrial Pharmacy. 2017;43(11):1770–1779. doi: 10.1080/03639045.2017.1339081. PubMed DOI
Franc A., Kurhajec S., Pavloková S., Sabadková D., Muselík J. Influence of concentration and type of microcrystalline cellulose on the physical properties of tablets containing Cornelian cherry fruits. Acta Pharmaceutica. 2017;67(2):187–202. doi: 10.1515/acph-2017-0019. PubMed DOI
Late S. G., Yu Y.-Y., Banga A. K. Effects of disintegration-promoting agent, lubricants and moisture treatment on optimized fast disintegrating tablets. International Journal of Pharmaceutics. 2009;365(1-2):4–11. doi: 10.1016/j.ijpharm.2008.08.010. PubMed DOI
Daraghmeh N., Rashid I., Al Omari M. M. H., Leharne S. A., Chowdhry B. Z., Badwan A. Preparation and characterization of a novel Co-processed excipient of chitin and crystalline mannitol. AAPS PharmSciTech. 2010;11(4):1558–1571. doi: 10.1208/s12249-010-9523-8. PubMed DOI PMC
Jacob S., Shirwaikar A., Joseph A., Srinivasan K. Novel co-processed excipients of mannitol and microcrystalline cellulose for preparing fast dissolving tablets of glipizide. Indian Journal of Pharmaceutical Sciences. 2007;69(5):633–639. doi: 10.4103/0250-474X.38467. DOI
Thoorens G., Krier F., Leclercq B., Carlin B., Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. International Journal of Pharmaceutics. 2014;473(1-2):64–72. doi: 10.1016/j.ijpharm.2014.06.055. PubMed DOI
Gupta A., Hunt R. L., Shah R. B., Sayeed V. A., Khan M. A. Disintegration of highly soluble immediate release tablets: A surrogate for dissolution. AAPS PharmSciTech. 2009;10(2):495–499. doi: 10.1208/s12249-009-9227-0. PubMed DOI PMC
Yassin S., Goodwin D. J., Anderson A., et al. The disintegration process in microcrystalline cellulose based tablets, part 1: influence of temperature, porosity and superdisintegrants. Journal of Pharmaceutical Sciences. 2015;104(10):3440–3450. doi: 10.1002/jps.24544. PubMed DOI
Jivraj M., Martini L. G., Thomson C. M. An overview of the different excipients useful for the direct compression of tablets. Pharmaceutical Science & Technology Today. 2000;3(2):58–63. doi: 10.1016/S1461-5347(99)00237-0. PubMed DOI
Masareddy R., Kokate A., Shah V. Development of orodispersible tizanidine HCl tablets using spray dried coprocessed exipient bases. Indian Journal of Pharmaceutical Sciences. 2011;73(4):392–396. doi: 10.4103/0250-474X.95616. PubMed DOI PMC
Ali J., Saigal N., Baboota S., Ahuja A. Microcrystalline cellulose as a versatile excipient in drug research. Journal of Young Pharmacists. 2009;1:6–12. doi: 10.4103/0975-1483.51868. DOI
Dumitriu S. Polymeric Biomaterials. 2nd. New York, NY, USA: Marcel Dekker; 2002.
Patil C., Das S. Effect of various superdisintegrants on the drug release profile and disintegration time of lamotrigine orally disintegrating tablets. African Journal of Pharmacy and Pharmacology. 2011;5(1):76–82. doi: 10.5897/AJPP10.279. DOI
Kalia A., Khurana S., Bedi N. Formulation and evaluation of mouth dissolving tablets of oxcarbazepine. Cellulose. 2009;1(1):164–179.