Technology of Processing Plant Extracts Using an Aluminometasilicate Porous Carrier into a Solid Dosage Form
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35213981
PubMed Central
PMC8878878
DOI
10.3390/pharmaceutics14020248
PII: pharmaceutics14020248
Knihovny.cz E-zdroje
- Klíčová slova
- adsorption, antioxidant activity, liquisolid systems, magnesium aluminometasilicates, plant extracts, porous carriers,
- Publikační typ
- časopisecké články MeSH
A method of preparing tablets called liquisolid technique is currently emerging. In these formulations, an important role is played by porous carriers, which are the basic building blocks of liquisolid systems (LSSs). The most common are microcrystalline cellulose (MCC), magnesium aluminometasilicates, silica aerogels, mesoporous silicates, clays, etc. In this study, magnesium aluminometasilicate is used to prepare modified LSS formulations with plant extracts as model drugs dissolved in water (W) or ethanol (E). The modification involves drying tablets in a microwave (MW) and hot air dryer (HA) for a specified period. Powder blends and tablets were evaluated for physical properties, and their antioxidant activity (AA) was measured in a modified dissolution by ferric reducing antioxidant power assay (FRAP). PLS and ANOVA were used to compare tablets properties depending on the composition and technology. The experiment is based on a previous one, in which the plant extracts were processed into tablets using a similar method. Therefore, extending the study to include more plants and the robust statistical evaluation and comparison of the products was a procedure to justify the suitability of the presented method for a wide range of liquid plant extracts. As a result, we obtained tablets with excellent physical properties, including a short disintegration and dissolution, which is problematic in tableted extracts.
Zobrazit více v PubMed
Kurhajec S., Kostelanská K., Pavloková S., Vetchý D., Wolaschka T., Gajdziok J., Franc A. Stabilized antioxidative plant extracts formulated by liquisolid technique. J. Drug Deliv. Sci. Technol. 2020;60:102022. doi: 10.1016/j.jddst.2020.102022. DOI
Vodáčková P., Vraníková B., Svačinová P., Franc A., Elbl J., Muselík J., Kubalák R., Solný T. Evaluation and Comparison of Three Types of Spray Dried Coprocessed Excipient Avicel® for Direct Compression. BioMed Res. Int. 2018;2018:1–15. doi: 10.1155/2018/2739428. PubMed DOI PMC
Olszewska M.A., Kwapisz A. Metabolite profiling and antioxidant activity of Prunus padus L. flowers and leaves. Nat. Prod. Res. 2011;25:1115–1131. doi: 10.1080/14786410903230359. PubMed DOI
Choi J.H., Cha D.S., Jeon H. Anti-inflammatory and anti-nociceptive properties of Prunus padus. J. Ethnopharmacol. 2012;144:379–386. doi: 10.1016/j.jep.2012.09.023. PubMed DOI
Irizar A.C., Fernandez M.F., González A.G., Ravelo A.G. Constituents of Prunus spinosa. J. Nat. Prod. 1992;55:450–454. doi: 10.1021/np50082a008. DOI
Kumarasamy Y., Cox P., Jaspars M., Nahar L., Sarker S. Comparative studies on biological activities of Prunus padus and P. spinosa. Fitoterapia. 2004;75:77–80. doi: 10.1016/j.fitote.2003.08.011. PubMed DOI
Fang J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition. 2015;31:1301–1306. doi: 10.1016/j.nut.2015.04.015. PubMed DOI
Calvo M., Cavero R.Y. Medicinal plants used for cardiovascular diseases in Navarra and their validation from Official sources. J. Ethnopharmacol. 2014;157:268–273. doi: 10.1016/j.jep.2014.09.047. PubMed DOI
Zia-Ul-Haq M., Riaz M., De Feo V., Jaafar H.Z.E., Moga M. Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses. Molecules. 2014;19:10998–11029. doi: 10.3390/molecules190810998. PubMed DOI PMC
Lee J., Dossett M., Finn C.E. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem. 2012;130:785–796. doi: 10.1016/j.foodchem.2011.08.022. DOI
Ahuja G., Pathak K. Porous carriers for controlled/modulated drug delivery. Indian J. Pharm. Sci. 2009;71:599–607. doi: 10.4103/0250-474X.59540. PubMed DOI PMC
Sher P., Ingavle G., Ponrathnam S., Pawar A.P. Low density porous carrier: Drug adsorption and release study by response surface methodology using different solvents. Int. J. Pharm. 2007;331:72–83. doi: 10.1016/j.ijpharm.2006.09.013. PubMed DOI
Shivanand P., Sprockel O.L. A controlled porosity drug delivery system. Int. J. Pharm. 1998;167:83–96. doi: 10.1016/S0378-5173(98)00047-7. DOI
Vraníková B., Gajdziok J., Vetchý D., Kratochvíl B., Seilerová L. Systémy kapalina v pevné fázi jako moderní trend zvyšování biologické dostupnosti léčiva. Chem. Listy. 2013;107:681–687.
Sanka K., Poienti S., Mohd A.B., Diwan P.V. Improved oral delivery of clonazepam through liquisolid powder compact formulations: In-vitro and ex-vivo characterization. Powder Technol. 2014;256:336–344. doi: 10.1016/j.powtec.2014.02.026. DOI
Chella N., Shastri N.R., Tadikonda R.R. Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan. Acta Pharm. Sin. B. 2012;2:502–508. doi: 10.1016/j.apsb.2012.07.005. DOI
Bajerová M., Gajdziok J., Dvořáčková K., Masteiková R., Kollár P. Polosyntetické deriváty celulosy jako základ hy-drofilních gelových systémů. Čes. Slov. Farm. 2008;57:63–69. PubMed
Siepmann J., Peppas N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC) Adv. Drug Deliv. Rev. 2012;64:163–174. doi: 10.1016/j.addr.2012.09.028. PubMed DOI
Yi T., Wan J., Xu H., Yang X. Controlled poorly soluble drug release from solid self-microemulsifying formulations with high viscosity hydroxypropylmethylcellulose. Eur. J. Pharm. Sci. 2008;34:274–280. doi: 10.1016/j.ejps.2008.04.010. PubMed DOI
Sipernat® 33. [(accessed on 13 September 2021)]. Available online: http://www.sipernat.com/product/sipernat/en/Pages/default.aspx.
Bhagwat D.A., D’Souza J.I. Formulation and evaluation of solid self micro emulsifying drug delivery system using aerosil 200 as solid carrier. Int. Curr. Pharm. J. 2012;1:414–419. doi: 10.3329/icpj.v1i12.12451. DOI
Krupa A., Antosik A., Kurek M., Jachowicz R. Methods of Pharmaceutical Availability Enhancement. [(accessed on 13 September 2021)]. Available online: http://www.science24.com/paper/28128.
Hentzschel C., Alnaief M., Smirnova I., Sakmann A., Leopold C. Tableting properties of silica aerogel and other silicates. Drug Dev. Ind. Pharm. 2011;38:462–467. doi: 10.3109/03639045.2011.611806. PubMed DOI
Smirnova I., Suttiruengwong S., Arlt W. Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J. Non-Cryst. Solids. 2004;350:54–60. doi: 10.1016/j.jnoncrysol.2004.06.031. DOI
Javadzadeh Y., Jafari-Navimipour B., Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine) Int. J. Pharm. 2007;341:26–34. doi: 10.1016/j.ijpharm.2007.03.034. PubMed DOI
Zheng J., Luan L., Wang H., Xi L., Yao K. Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl. Clay Sci. 2007;36:297–301. doi: 10.1016/j.clay.2007.01.012. DOI
Kevadiya B.D., Joshi G.V., Mody H.M., Bajaj H.C. Biopolymer–clay hydrogel composites as drug carrier: Host–guest intercalation and in vitro release study of lidocaine hydrochloride. Appl. Clay Sci. 2011;52:364–367. doi: 10.1016/j.clay.2011.03.017. DOI
Neusilin®. [(accessed on 13 September 2021)]. Available online: http://www.neusilin.com/product/index.php.
The Specialty Excipient Neusilin®. [(accessed on 13 September 2021)]. Available online: http://www.harke.com/fileadmin/images/pharma/Broschueren/Fuji_Neusilin.pdf.
Zeman J., Vetchý D., Franc A., Pavloková S., Pitschmann V., Matějovský L. The development of a butyrylcholinesterase porous pellet for innovative detection of cholinesterase inhibitors. Eur. J. Pharm. Sci. 2017;109:548–555. doi: 10.1016/j.ejps.2017.09.015. PubMed DOI
Hentzschel C.M., Sakmann A., Leopold C.S. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Dev. Ind. Pharm. 2011;37:1200–1207. doi: 10.3109/03639045.2011.564184. PubMed DOI
Jadhav N., Irny P., Patil U. Solid state behavior of progesterone and its release from Neusilin US2 based liquisolid compacts. J. Drug Deliv. Sci. Technol. 2017;38:97–106. doi: 10.1016/j.jddst.2017.01.009. DOI
Kamel R., Basha M. Preparation and in vitro evaluation of rutin nanostructured liquisolid delivery system. Bull. Fac. Pharm. Cairo Univ. 2013;51:261–272. doi: 10.1016/j.bfopcu.2013.08.002. DOI
Kostelanská K., Gajdziok J., Vetchý D. Porézní nosiče ve farmaceutické technologii. Chem. Listy. 2018;112:840–847.
Council of Europe . European Pharmacopoeia 9th Edition: (Ph. Eur. MMXVII) 9th ed. EDQM; Strasbourg, France: 2017.
Yadav V.B., Yadav A.V. Improvement of solubility and dissolution of indomethacin by liquisolid and compaction granulation technique. J. Pharm. Sci. 2009;1:44–51.
Vraníková B., Gajdziok J., Vetchý D. Modern Evaluation of Liquisolid Systems with Varying Amounts of Liquid Phase Prepared Using Two Different Methods. BioMed Res. Int. 2015;2015:1–12. doi: 10.1155/2015/608435. PubMed DOI PMC
Core R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021.
Coelho M., Harnby N. The effect of humidity on the form of water retention in a powder. Powder Technol. 1978;20:197–200. doi: 10.1016/0032-5910(78)80048-5. DOI
Gumaste S.G., Pawlak S.A., Dalrymple D.M., Nider C.J., Trombetta L.D., Serajuddin A.T.M. Development of Solid SEDDS, IV: Effect of Adsorbed Lipid and Surfactant on Tableting Properties and Surface Structures of Different Silicates. Pharm. Res. 2013;30:3170–3185. doi: 10.1007/s11095-013-1114-4. PubMed DOI PMC
Schwedes J. Review on testers for measuring flow properties of bulk solids. Granul. Matter. 2003;5:1–43. doi: 10.1007/s10035-002-0124-4. DOI
Traina K., Cloots R., Bontempi S., Lumay G., Vandewalle N., Boschini F. Flow abilities of powders and granular materials evidenced from dynamical tap density measurement. Powder Technol. 2013;235:842–852. doi: 10.1016/j.powtec.2012.11.039. DOI
Deveswaran R., Madhavan V., Vittal G., Basavaraj B., Bharath S. Formulation and characterization of ketoprofen liquisolid compacts by Box-Behnken design. Int. J. Pharm. Investig. 2012;2:150–156. doi: 10.4103/2230-973X.104398. PubMed DOI PMC
Dutta A., Dullea L. A comparative evaluation of negatively and positively charged submicron particles as flow condi-tioners for a cohesive powder. AIChE Symp. Ser. 1990;86:26–40.
Spireas S. Enhancement of prednisolone dissolution properties using liquisolid compacts. Int. J. Pharm. 1998;166:177–188. doi: 10.1016/S0378-5173(98)00046-5. DOI
Jagia M., Trivedi M., Dave R.H. To Evaluate the Effect of Solvents and Different Relative Humidity Conditions on Thermal and Rheological Properties of Microcrystalline Cellulose 101 Using METHOCEL™ E15LV as a Binder. AAPS PharmSciTech. 2015;17:995–1006. doi: 10.1208/s12249-015-0424-8. PubMed DOI
Pabari R., Ramtoola Z. Effect of a Disintegration Mechanism on Wetting, Water Absorption, and Disintegration Time of Orodispersible Tablets. J. Young Pharm. 2012;4:157–163. doi: 10.4103/0975-1483.100021. PubMed DOI PMC
Tank D., Karan K., Gajera B.Y., Dave R.H. Investigate the effect of solvents on wet granulation of microcrystalline cellulose using hydroxypropyl methylcellulose as a binder and evaluation of rheological and thermal characteristics of granules. Saudi Pharm. J. 2018;26:593–602. doi: 10.1016/j.jsps.2018.02.007. PubMed DOI PMC
Sahil M.G., Sharad S.P., Shirish V.S., Kisan R.J., Vilasrao J.K. Liquisolid compact: A new technique for enhance-ment of drug dissolution. Int. J. Res. Pharm. Chem. 2011;1:302–306.
Chowhan Z.T. Moisture, Hardness, Disintegration and Dissolution Interrelationships in Compressed Tablets Prepared by the Wet Granulation Process. Drug Dev. Ind. Pharm. 1979;5:41–62. doi: 10.3109/03639047909055661. DOI
Nokhodchi A., Rubinstein M., Larhrib H., Guyot J. The effect of moisture on the properties of ibuprofen tablets. Int. J. Pharm. 1995;118:191–197. doi: 10.1016/0378-5173(94)00354-8. DOI
Garr J., Rubinstein M. The influence of moisture content on the consolidation and compaction properties of paracetamol. Int. J. Pharm. 1992;81:187–192. doi: 10.1016/0378-5173(92)90010-Y. DOI
Wada Y., Matsubara T. Pseudo-polymorphism and crystalline transition of magnesium stearate. Thermochim. Acta. 1992;196:63–84. doi: 10.1016/0040-6031(92)85007-I. DOI
Kucinskaite A., Sawicki W., Briedis V., Sznitowska M. Fast disintegrating tablets containing Rhodiola rosea L. extract. Acta Pol. Pharm. Drug Res. 2007;64:63–67. PubMed
De Lima A.G.B., Da Silva J.V., Pereira E.M.A., Dos Santos I.B., De Lima W.M.P.B. Drying of Bioproducts: Quality and Energy Aspects. Adv. Struct. Mater. 2015;2016:1–18. doi: 10.1007/978-3-319-19767-8_1. DOI
Varhegyi G., Szabó P., Mok W.S.-L., Antal M.J. Kinetics of the thermal decomposition of cellulose in sealed vessels at elevated pressures. Effects of the presence of water on the reaction mechanism. J. Anal. Appl. Pyrolysis. 1993;26:159–174. doi: 10.1016/0165-2370(93)80064-7. DOI
Jakab E. Recent Advances in Thermo-Chemical Conversion of Biomass. Elsevier BV; Amsterdam, The Netherlands: 2015. Analytical Techniques as a Tool to Understand the Reaction Mechanism; pp. 75–108.
Donno D., Mellano M.G., De Biaggi M., Riondato I., Rakotoniaina E.N., Beccaro G.L. New Findings in Prunus padus L. Fruits as a Source of Natural Compounds: Characterization of Metabolite Profiles and Preliminary Evaluation of Antioxidant Activity. Molecules. 2018;23:725. doi: 10.3390/molecules23040725. PubMed DOI PMC
Aliyazicioglu R., Yildiz O., Sahin H., Eyupoğlu O.E., Ozkan M.T., Kolayli S. Phenolic Components and Antioxidant Activity of Prunus spinosa from Gumushane, Turkey. Chem. Nat. Compd. 2015;51:346–349. doi: 10.1007/s10600-015-1278-8. DOI
Monforte M.T., Smeriglio A., Germanò M.P., Pergolizzi S., Circosta C., Galati E.M. Evaluation of antioxidant, antiinflammatory, and gastroprotective properties of Rubus fruticosus L. fruit juice. Phytother. Res. 2018;32:1404–1414. doi: 10.1002/ptr.6078. PubMed DOI
Baranauskaite J., Kopustinskiene D.M., Masteikova R., Gajdziok J., Baranauskas A., Bernatoniene J. Effect of liquid vehicles on the enhacement of rosmarinic acid and carvacrol release from oregano extract liquisolid compacts. Colloids Surf. 2018;539:280–290. doi: 10.1016/j.colsurfa.2017.12.034. DOI
da Silva R.M.L., Couto A.G., Bresolin T.M.B. Medicinal Plants and Pharmaceutical Technology. Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives. John Wiley & Sons; Hoboken, NJ, USA: 2012. pp. 359–394.
Hihat S., Remini H., Madani K. Effect of oven and microwave drying on phenolic compounds and antioxidant capacity of coriander leaves. Int. Food Res. J. 2017;24:503–509.
Lasano N.F., Rahmat A., Ramli N.S., Abu Bakar M.F. Effect of Oven and Microwave Drying on Polyphenols Content and Antioxidant Capacity of Herbal Tea from Strobilanthes Crispus Leaves. Asian J. Pharm. Clin. Res. 2018;11:363–368. doi: 10.22159/ajpcr.2018.v11i6.24660. DOI
Hayat K., Zhang X., Farooq U., Abbas S., Xia S., Jia C., Zhong F., Zhang J. Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem. 2010;123:423–429. doi: 10.1016/j.foodchem.2010.04.060. DOI
Volf I., Ignat I., Neamtu M., Popa V.I. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem. Pap. 2014;68:121–129. doi: 10.2478/s11696-013-0417-6. DOI
Egea M.I., Sánchez-Bel P., Romojaro F., Pretel M.T. Six Edible Wild Fruits as Potential Antioxidant Additives or Nutritional Supplements. Plant Foods Hum. Nutr. 2010;65:121–129. doi: 10.1007/s11130-010-0159-3. PubMed DOI