Modern evaluation of liquisolid systems with varying amounts of liquid phase prepared using two different methods
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26075249
PubMed Central
PMC4449885
DOI
10.1155/2015/608435
Knihovny.cz E-zdroje
- MeSH
- kyseliny stearové chemie MeSH
- laktosa chemie MeSH
- lidé MeSH
- polyethylenglykoly chemie MeSH
- rosuvastatin kalcium chemie MeSH
- silikáty chemie MeSH
- sloučeniny hliníku chemie MeSH
- sloučeniny hořčíku chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aluminum magnesium silicate MeSH Prohlížeč
- kyseliny stearové MeSH
- laktosa MeSH
- polyethylene glycol 400 MeSH Prohlížeč
- polyethylenglykoly MeSH
- rosuvastatin kalcium MeSH
- silikáty MeSH
- sloučeniny hliníku MeSH
- sloučeniny hořčíku MeSH
- stearic acid MeSH Prohlížeč
Liquisolid systems are an innovative dosage form used for enhancing dissolution rate and improving in vivo bioavailability of poorly soluble drugs. These formulations require specific evaluation methods for their quality assurance (e.g., evaluation of angle of slide, contact angle, or water absorption ratio). The presented study is focused on the preparation, modern in vitro testing, and evaluation of differences of liquisolid systems containing varying amounts of a drug in liquid state (polyethylene glycol 400 solution of rosuvastatin) in relation to an aluminometasilicate carrier (Neusilin US2). Liquisolid powders used for the formulation of final tablets were prepared using two different methods: simple blending and spraying of drug solution onto a carrier in fluid bed equipment. The obtained results imply that the amount of liquid phase in relation to carrier material had an effect on the hardness, friability, and disintegration of tablets, as well as their height. The use of spraying technique enhanced flow properties of the prepared mixtures, increased hardness values, decreased friability, and improved homogeneity of the final dosage form.
Zobrazit více v PubMed
Savjani K. T., Gajjar A. K., Savjani J. K. Drug solubility: importance and enhancement techniques. ISRN Pharmaceutics. 2012;2012:10. doi: 10.5402/2012/195727.195727 PubMed DOI PMC
Hiendrawan S., Veriansyah B., Tjandrawinata R. R. Micronization of fenofibrate by rapid expansion of supercritical solution. Journal of Industrial and Engineering Chemistry. 2014;20(1):54–60. doi: 10.1016/j.jiec.2013.04.027. DOI
Nighute A. B., Bhise S. B. Enhancement of dissolution rate of rifabutin by preparation of microcrystals using solvent change method. International Journal of PharmTech Research. 2009;1(2):142–148.
Burra M., Jukanti R., Janga K. Y., et al. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles. Advanced Powder Technology. 2013;24(1):393–402. doi: 10.1016/j.apt.2012.09.002. DOI
Qi X., Qin J., Ma N., Chou X., Wu Z. Solid self-microemulsifying dispersible tablets of celastrol: formulation development, charaterization and bioavailability evaluation. International Journal of Pharmaceutics. 2014;472(1-2):40–47. doi: 10.1016/j.ijpharm.2014.06.019. PubMed DOI
Kavitha K., Lova Raju K. N. S., Ganesh N. S., Ramesh B. Effect of dissolution rate by liquisolid compact approach: an overview. Der Pharmacia Lettre. 2011;3(1):71–83.
Nagabandi V. K., Ramarao T., Jayaveera K. N. Liquisolid compacts: a novel approach to enhance bioavailability of poorly soluble drugs. International Journal of Pharma and Bio Sciences. 2011;1:89–102.
Gubbi S. R., Jarag R. Formulation and characterization of atorvastatin calcium liquisolid compacts. Asian Journal of Pharmaceutical Sciences. 2010;5(2):50–60.
Javadzadeh Y., Jafari-Navimipour B., Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine) International Journal of Pharmaceutics. 2007;341(1-2):26–34. doi: 10.1016/j.ijpharm.2007.03.034. PubMed DOI
Akinlade B., Elkordy A. A., Essa E. A., Elhagar S. Liquisolid systems to improve the dissolution of Furosemide. Scientia Pharmaceutica. 2010;78(2):325–344. doi: 10.3797/scipharm.0912-23. PubMed DOI PMC
Saeedi M., Akbari J., Morteza-Semnani K., Enayati-Fard R., Sar-Reshteh-dar S., Soleymani A. Enhancement of dissolution rate of indomethacin using liquisolid compacts. Iranian Journal of Pharmaceutical Research. 2011;10(1):25–34. PubMed PMC
Nokhodchi A., Hentzschel C. M., Leopold C. S. Drug release from liquisolid systems: speed it up, slow it down. Expert Opinion on Drug Delivery. 2011;8(2):191–205. doi: 10.1517/17425247.2011.548801. PubMed DOI
Fahmy R. H., Kassem M. A. Enhancement of famotidine dissolution rate through liquisolid tablets formulation: in vitro and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics. 2008;69(3):993–1003. doi: 10.1016/j.ejpb.2008.02.017. PubMed DOI
Gavali S. M., Pacharane S. S., Sankpal S. V., Jadhav K. R., Kadam V. J. Liquisolid compact: a new technique for enhancement of drug dissolution. International Journal of Research in Pharmacy and Chemistry. 2011;1:2231–2781.
Yadav V. B., Yadav A. V. Improvement of solubility and dissolution of indomethacin by liquisolid and compaction granulation technique. Journal of Pharmaceutical Sciences and Research. 2009;1(3):44–51.
Karmarkar A. B., Gonjari I. D., Hosmani A. H. Liquisolid technology for dissolution rate enhancement or sustained release. Expert Opinion on Drug Delivery. 2010;7(10):1227–1234. doi: 10.1517/17425247.2010.511173. PubMed DOI
Tiong N., Elkordy A. A. Effects of liquisolid formulations on dissolution of naproxen. European Journal of Pharmaceutics and Biopharmaceutics. 2009;73(3):373–384. doi: 10.1016/j.ejpb.2009.08.002. PubMed DOI
Kaur M., Bala R., Arora S. Formulation and evaluation of liquisolid compacts of amlodipine besylate. International Research Journal of Pharma. 2013;4:156–160.
Jones P. H., Davidson M. H., Goldberg A. C., et al. Efficacy and safety of fenofibric acid in combination with a statin in patients with mixed dyslipidemia: pooled analysis of three phase 3, 12-week randomized, controlled studies. Journal of Clinical Lipidology. 2009;3(2):125–137. doi: 10.1016/j.jacl.2009.02.007. PubMed DOI
Toth P. P., Zarotsky V., Sullivan J. M., Laitinen D. Lipid therapy utilization rates in a managed-care mixed dyslipidemia population. Journal of Clinical Lipidology. 2008;2(5):365–374. doi: 10.1016/j.jacl.2008.08.443. PubMed DOI
Anfossi G., Massucco P., Bonomo K., Trovati M. Prescription of statins to dyslipidemic patients affected by liver diseases: a subtle balance between risks and benefits. Nutrition, Metabolism and Cardiovascular Diseases. 2004;14(4):215–224. doi: 10.1016/S0939-4753(04)80008-5. PubMed DOI
McTaggart F. Comparative pharmacology of rosuvastatin. Atherosclerosis Supplements. 2003;4(1):9–14. doi: 10.1016/S1567-5688(03)00004-7. PubMed DOI
Chapman M. J., McTaggart F. Optimizing the pharmacology of statins: characteristics of rosuvastatin. Atherosclerosis Supplements. 2002;2(4):33–37. doi: 10.1016/S1567-5688(01)00016-2. PubMed DOI
Martin P. D., Warwick M. J., Dane A. L., et al. Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clinical Therapeutics. 2003;25(11):2822–2835. doi: 10.1016/S0149-2918(03)80336-3. PubMed DOI
Spireas S., Bolton S. M. Liquisolid systems and methods of preparing same. US6423339; 2002.
Spireas S., Bolton S. M. Liquisolid systems and methods of preparing same. 2000;(US8096337)
Vraníková B., Gajdziok J., Vetchý D. Determination of flowable liquid retention potential of aluminometasilicate carrier for liquisolid systems preparation. Pharmaceutical Development and Technology. 2014 doi: 10.3109/10837450.2014.926921. PubMed DOI
The European Directorate for the Quality of Medicines & HealthCare: European Pharmacopoeia 8.2. 2014, http://online6.edqm.eu/ep802.
Karmarkar A. B., Gonjari I. D., Hosmani A. H., Dhabale P. N., Bhise S. B. Liquisolid tablets: a novel approach for drug delivery. International Journal of Health Research. 2009;2(1):45–50. doi: 10.4314/ijhr.v2i1.55386. DOI
Spireas S. S., Jarowski C. I., Rohera B. D. Powdered solution technology: principles and mechanism. Pharmaceutical Research. 1992;9(10):1351–1358. doi: 10.1023/A:1015877905988. PubMed DOI
Gumaste S. G., Pawlak S. A., Dalrymple D. M., Nider C. J., Trombetta L. D., Serajuddin A. T. M. Development of solid SEDDS, IV: effect of adsorbed lipid and surfactant on tableting properties and surface structures of different silicates. Pharmaceutical Research. 2013;30(12):3170–3185. doi: 10.1007/s11095-013-1114-4. PubMed DOI PMC
Hentzschel C. M., Sakmann A., Leopold C. S. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Development and Industrial Pharmacy. 2011;37(10):1200–1207. doi: 10.3109/03639045.2011.564184. PubMed DOI
DMV Excipient Guide. [Internet] 2014, http://www.phexcom.cn/UploadFiles/20130217102234_5017.pdf.
Poutiainen S., Matero S., Hämäläinen T., Leskinen J., Ketolainen J., Järvinen K. Predicting granule size distribution of a fluidized bed spray granulation process by regime based PLS modeling of acoustic emission data. Powder Technology. 2012;228:149–157. doi: 10.1016/j.powtec.2012.05.010. DOI
Hentzschel C. M., Alnaief M., Smirnova I., Sakmann A., Leopold C. S. Enhancement of griseofulvin release from liquisolid compacts. European Journal of Pharmaceutics and Biopharmaceutics. 2012;80(1):130–135. doi: 10.1016/j.ejpb.2011.08.001. PubMed DOI
Prajapati S. T., Bulchandani H. H., Patel D. M., Dumaniya S. K., Patel C. N. Formulation and evaluation of liquisolid compacts for olmesartan medoxomil. Journal of Drug Delivery. 2013;2013:9. doi: 10.1155/2013/870579.870579 PubMed DOI PMC
Komárek P., Rabišková M. Technologie léků Třetí, přepracované a doplněné vydání. Praha, Czech Republic: Galén; 2006.
Gumaste S. G., Dalrymple D. M., Serajuddin A. T. M. Development of solid SEDDS, V: compaction and drug release properties of tablets prepared by adsorbing lipid-based formulations onto neusilin US2. Pharmaceutical Research. 2013;30(12):3186–3199. doi: 10.1007/s11095-013-1106-4. PubMed DOI PMC
Elkordy A. A., Tan X. N., Essa E. A. Spironolactone release from liquisolid formulations prepared with Capryol 90, Solutol HS-15 and Kollicoat SR 30 D as non-volatile liquid vehicles. European Journal of Pharmaceutics and Biopharmaceutics. 2013;83(2):203–223. doi: 10.1016/j.ejpb.2012.08.004. PubMed DOI
Gubbi S., Jarag R. Liquisolid technique for enhancement of dissolution properties of bromhexine hydrochloride. Research Journal of Pharmacy and Technology. 2009;2(2):382–386.
Kapure V. J., Pande V. V., Deshmukh P. K. Dissolution enhancement of rosuvastatin calcium by liquisolid compact technique. Journal of Pharmaceutics. 2013;2013:9. doi: 10.1155/2013/315902.315902 PubMed DOI PMC
Saigal N., Baboota S., Ahuja A., Ali J. Microcrystalline cellulose as a versatile excipient in drug research. Journal of Young Pharmacists. 2009;1:6–12. doi: 10.4103/0975-1483.51868. DOI
Sanka K., Poienti S., Mohd A. B., Diwan P. V. Improved oral delivery of clonazepam through liquisolid powder compact formulations: in-vitro and ex-vivo characterization. Powder Technology. 2014;256:336–344. doi: 10.1016/j.powtec.2014.02.026. DOI
Sayyad F. J., Tulsankar S. L., Kolap U. B. Design and development of liquisolid compact of candesartan cilexetil to enhance dissolution. Journal of Pharmacy Research. 2013;7(5):381–388. doi: 10.1016/j.jopr.2013.05.012. DOI
Comparative Study of Powder Carriers Physical and Structural Properties