Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®

. 2021 Sep 16 ; 13 (9) : . [epub] 20210916

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34575562

Grantová podpora
MUNI/A/1574/2020 Masarykova Univerzita

Odkazy

PubMed 34575562
PubMed Central PMC8467879
DOI 10.3390/pharmaceutics13091486
PII: pharmaceutics13091486
Knihovny.cz E-zdroje

The utilization of co-processed excipients (CPEs) represents a novel approach to the preparation of orally disintegrating tablets by direct compression. Flow, consolidation, and compression properties of four lactose-based CPEs-Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®-were investigated using different methods, including granulometry, powder rheometry, and tablet compaction under three pressures. Due to the similar composition and the same preparation technique (spray drying), the properties of CPEs and their compacts were generally comparable. The most pronounced differences were observed in flowability, undissolved fraction after 3 min and 24 h, energy of plastic deformation (E2), ejection force, consolidation behavior, and compact friability. Cellactose® 80 exhibited the most pronounced consolidation behavior, the lowest values of ejection force, and high friability of compacts. CombiLac® showed excellent flow properties but insufficient friability, except for compacts prepared at the highest compression pressure (182 MPa). MicroceLac® 100 displayed the poorest flow properties, lower ejection forces, and the best mechanical resistance of compacts. StarLac® showed excellent flow properties, the lowest amounts of undissolved fraction, the highest ejection force values, and the worst compact mechanical resistance. The obtained results revealed that higher compression pressures need to be used or further excipients have to be added to all tested materials in order to improve the friability and tensile strength of formed tablets, except for MicroceLac® 100.

Zobrazit více v PubMed

Daraghmeh N., Rashid I., Al Omari M.M.H., Leharne S.A., Chowdhry B.Z., Badwan A. Preparation and characterization of a novel Co-processed excipient of chitin and crystalline mannitol. AAPS PharmSciTech. 2010;11:1558–1571. doi: 10.1208/s12249-010-9523-8. PubMed DOI PMC

Gohel M.C., Jogani P.D. A review of co-processed directly compressible excipients. J. Pharm. Pharm. Sci. 2005;8:76–93. PubMed

Miyamoto H. The Particle Design of Cellulose and the Other Excipients for a Directly Compressible Filler-Binder. KONA Powder Part. J. 2008;26:142–152. doi: 10.14356/kona.2008013. DOI

Li Z., Lin X., Shen L., Hong Y.L., Feng Y. Composite particles based on particle engineering for direct compaction. Int. J. Pharm. 2017;519:272–286. doi: 10.1016/j.ijpharm.2017.01.030. PubMed DOI

Razuc M., Grafia A., Gallo L., Ramírez-Rigo M.V., Romañach R.J. Near-infrared spectroscopic applications in pharmaceutical particle technology. Drug Dev. Ind. Pharm. 2019;45:1565–1589. doi: 10.1080/03639045.2019.1641510. PubMed DOI

Apeji Y.E., Oyi A.R., Isah A.B., Allagh T.S., Modi S.R., Bansal A.K. Development and Optimization of a Starch-Based Co-processed Excipient for Direct Compression Using Mixture Design. AAPS PharmSciTech. 2018;19:866–880. doi: 10.1208/s12249-017-0887-x. PubMed DOI

Peeters E., Vanhoorne V., Vervaet C., Remon J.P. Lubricant sensitivity in function of paddle movement in the forced feeder of a high-speed tablet press. Drug Dev. Ind. Pharm. 2016;42:2078–2085. doi: 10.1080/03639045.2016.1200067. PubMed DOI

Franc A., Vetchý D., Vodáčková P., Kubal’ák R., Jendryková L., Gonĕc R. Co-processed excipients for direct compression of tablets. Ces. A Slov. Farm. 2018;2018:175–181. PubMed

Rojas J., Buckner I., Kumar V. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev. Ind. Pharm. 2012;38:1159–1170. doi: 10.3109/03639045.2011.645833. PubMed DOI

Saha S., Shahiwala A.F. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin. Drug Deliv. 2009;6:197–208. doi: 10.1517/17425240802708978. PubMed DOI

Kaur L., Singh I. Microwave grafted, composite and coprocessed materials: Drug delivery applications. Ther. Deliv. 2016;7:827–842. doi: 10.4155/tde-2016-0055. PubMed DOI

Patel H., Patel K., Tiwari S., Pandey S., Shah S., Gohel M. Quality by Design (QbD) Approach for Development of Co-Processed Excipient Pellets (MOMLETS) By Extrusion-Spheronization Technique. Recent Pat. Drug Deliv. Formul. 2016;10:192–206. doi: 10.2174/1872211310666160709193540. PubMed DOI

MEGGLE. [(accessed on 8 March 2021)]. Available online: https://www.pharmaceutical-networking.com/meggle-excipients-technology-direct-compression-expertise/

Hebbink G.A., Dickhoff B.H.J. Lactose. Elsevier; Amsterdam, The Netherlands: 2019. Application of lactose in the pharmaceutical industry; pp. 175–229.

Zeman J., Pavloková S., Vetchý D., Pitschmann V. The effect of different types of lactose monohydrate on the stability of acetylcholinesterase immobilized on carriers designed to detect nerve agents. J. Chem. Technol. Biotechnol. 2021;96:1758–1769. doi: 10.1002/jctb.6700. DOI

Hurychová H., Kuentz M., Šklubalová Z. Fractal Aspects of Static and Dynamic Flow Properties of Pharmaceutical Excipients. J. Pharm. Innov. 2018;13:15–26. doi: 10.1007/s12247-017-9302-0. DOI

Trpělková Ž., Hurychová H., Ondrejček P., Svěrák T., Kuentz M., Šklubalová Z. Predicting the Angle of Internal Friction from Simple Dynamic Consolidation Using Lactose Grades as Model. J. Pharm. Innov. 2019;15:380–391. doi: 10.1007/s12247-019-09387-3. DOI

Mužíková J., Neprašová M., Faschingbauer H. Agglomerated Alpha-Lactose Monohydrate and Anhydrous ß-Lactose in Direct Compression of Tablets. Chem. List. 2012;106:36–40.

Okáčová L., Vetchý D., Franc A., Rabišková M., Kratochvíl B. Increasing Bioavailability of Poorly Water-Soluble Drugs by Their Modification. Chem. List. 2010;104:21–26.

Sheskey P.J., Cook W.G. Handbook of Pharmaceutical Excipients. Pharmaceutical Press; London, UK: American Pharmaceutical Association; Washington, DC, USA: 2017.

Dey P., Maiti S. Orodispersible tablets: A new trend in drug delivery. J. Nat. Sci. Biol. Med. 2010;1:2–5. doi: 10.4103/0976-9668.71663. PubMed DOI PMC

Vodáčková P., Vraníková B., Svačinová P., Franc A., Elbl J., Muselík J., Kubalák R., Solný T. Evaluation and Comparison of Three Types of Spray Dried Coprocessed Excipient Avicel® for Direct Compression. BioMed Res. Int. 2018;2018 doi: 10.1155/2018/2739428. PubMed DOI PMC

Svačinová P., Vraníková B., Dominik M., Elbl J., Pavloková S., Kubalák R., Kopecká P., Franc A. Comprehensive study of co-processed excipients F- Melts®: Flow, viscoelastic and compacts properties. Powder Technol. 2019;355:675–687. doi: 10.1016/j.powtec.2019.07.048. DOI

The European Pharmacopoeia European Pharmacopoeia 9th Edition|EDQM—European Directorate for the Quality of Medicines. [(accessed on 7 March 2021)]. Available online: https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-10th-edition.

Fell J.T., Newton J.M. Determination of tablet strength by the diametral-compression test. J. Pharm. Sci. 1970;59:688–691. doi: 10.1002/jps.2600590523. PubMed DOI

Amidon G.E., Secreast P.J., Mudie D. Developing Solid Oral Dosage Forms. Elsevier Inc.; Amsterdam, The Netherlands: 2009. Particle, Powder, and Compact Characterization; pp. 163–186.

Shangraw R.F. Compressed tablets by direct compression. Pharm. Dos. FORMS Tablets Second Ed. Revis. Expand. 1989;1:195–246.

Celik M. Pharmaceutical Powder Compaction Technology. CRC Press; Boca Raton, FL, USA: 2016. pp. 152–180.

Korpela A., Orelma H. Manufacture of fine cellulose powder from chemically crosslinked kraft pulp sheets using dry milling. Powder Technol. 2020;361:642–650. doi: 10.1016/j.powtec.2019.11.064. DOI

Vraníková B., Gajdziok J., Vetchý D. Modern evaluation of liquisolid systems with varying amounts of liquid phase prepared using two different methods. BioMed Res. Int. 2015;2015 doi: 10.1155/2015/608435. PubMed DOI PMC

Vraníkova B., Gajdziok J. Evaluation of sorptive properties of various carriers and coating materials for liquisolid systems. Acta Pol. Pharm. 2015;72:539–549. PubMed

Wu L., Miao X., Shan Z., Huang Y., Li L., Pan X., Yao Q., Li G., Wu C. Studies on the spray dried lactose as carrier for dry powder inhalation. Asian J. Pharm. Sci. 2014;9:336–341. doi: 10.1016/j.ajps.2014.07.006. DOI

Walton D.E. The morphology of spray-dried particles a qualitative view. Dry. Technol. 2000;18:1943–1986. doi: 10.1080/07373930008917822. DOI

Faqih A.M.N., Alexander A.W., Muzzio F.J., Tomassone M.S. A method for predicting hopper flow characteristics of pharmaceutical powders. Chem. Eng. Sci. 2007;62:1536–1542. doi: 10.1016/j.ces.2006.06.027. DOI

Rashid I., Al Omari M.M.H., Badwan A.A. From native to multifunctional starch-based excipients designed for direct compression formulation. Starch-Stärke. 2013;65:552–571. doi: 10.1002/star.201200297. DOI

Ketterhagen W.R., Curtis J.S., Wassgren C.R., Hancock B.C. Predicting the flow mode from hoppers using the discrete element method. Powder Technol. 2009;195:1–10. doi: 10.1016/j.powtec.2009.05.002. DOI

Hamzah M. Beakawi Al-Hashemi, Omar S. Baghabra Al-Amoudi. A review on the angle of repose of granular materials. Powder Technol. 2018;330:397–417. doi: 10.1016/j.powtec.2018.02.003. DOI

Macho O., Demková K., Gabrišová Ľ., Čierny M., Mužíková J., Galbavá P., Nižnanská Ž., Blaško J., Peciar P., Fekete R., et al. Analysis of Static Angle of Repose with Respect to Powder Material Properties. Acta Pol. Pharm. 2019:1–8. doi: 10.14311/AP.2020.60.0073. DOI

Stanescu A., Ochiuz L., Cojocaru I., Popovici I., Lupuleasa D. The influence of different polymers on the pharmaco-technological characteristics of propiconazole nitrate bioadhesive oromucosal tablets. Farmacia. 2010;58:279–289.

Freeman FT4 Powder Rheometer|Shear Testing|Shear Cell. [(accessed on 7 March 2021)]. Available online: https://www.freemantech.co.uk/powder-testing/ft4-powder-rheometer-powder-flow-tester/shear-testing.

Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders—A comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007;174:25–33. doi: 10.1016/j.powtec.2006.10.016. DOI

Klevan I., Nordström J., Tho I., Alderborn G. A statistical approach to evaluate the potential use of compression parameters for classification of pharmaceutical powder materials. Eur. J. Pharm. Biopharm. 2010;75:425–435. doi: 10.1016/j.ejpb.2010.04.006. PubMed DOI

Wurster D.E., Peck G.E., Kildsig D.O. A comparison of the moisture adsorption-desorption properties of corn starch, U.S.P., and directly compressible starch. Drug Dev. Ind. Pharm. 1982;8:343–354. doi: 10.3109/03639048209022104. DOI

Casian T., Bogdan C., Tarta D., Moldovan M., Tomuta I., Iurian S. Assessment of oral formulation-dependent characteristics of orodispersible tablets using texture profiles and multivariate data analysis. J. Pharm. Biomed. Anal. 2018;152:47–56. doi: 10.1016/j.jpba.2018.01.040. PubMed DOI

Dziemidowicz K., Lopez F.L., Bowles B.J., Edwards A.J., Ernest T.B., Orlu M., Tuleu C. Co-Processed Excipients for Dispersible Tablets—Part 2: Patient Acceptability. AAPS PharmSciTech. 2018;19:2646–2657. doi: 10.1208/s12249-018-1104-2. PubMed DOI

Voight R., Fahr A. Pharmazeutische Technologie: Für Studium und Beruf; Mit 109 Tabellen. 10., Überarb. und Erw. Aufl. Dt. Apotheker-Verl; Stuttgart, Germany: 2006. pp. 182–185.

Bolhuis G.K., Armstrong N.A. Excipients for direct compaction—An update. Pharm. Dev. Technol. 2006;11:111–124. doi: 10.1080/10837450500464255. PubMed DOI

Ragnarsson G. Force-Displacement and Network Measurements. Pharm. Powder Compact. Technol. 1996;71:77–97.

Arida A.I., Al-Tabakha M.M. Compaction Mechanism and Tablet Strength of Cellactose®. JJPS. 2008;1:71–82.

Govedarica B., Ilić I., Šibanc R., Dreu R., Srčič S. The use of single particle mechanical properties for predicting the compressibility of pharmaceutical materials. Powder Technol. 2012;225:43–51. doi: 10.1016/j.powtec.2012.03.030. DOI

Al-Ibraheemi Z.A.M., Anuar M.S., Taip F.S., Amin M.C.I., Tahir S.M., Mahdi A.B. Deformation and mechanical characteristics of compacted binary mixtures of plastic (microcrystalline cellulose), elastic (sodium starch glycolate), and brittle (lactose monohydrate) pharmaceutical excipients. Part. Sci. Technol. 2013;31:561–567. doi: 10.1080/02726351.2013.785451. DOI

Ilić I., Govedarica B., Šibanc R., Dreu R., Srčič S. Deformation properties of pharmaceutical excipients determined using an in-die and out-die method. Int. J. Pharm. 2013;446:6–15. doi: 10.1016/j.ijpharm.2013.02.001. PubMed DOI

Hauschild K., Picker-Freyer K.M. Evaluation of a new coprocessed compound based on lactose and maize starch for tablet formulation. AAPS J. 2004;6:27–38. doi: 10.1208/ps060216. PubMed DOI

Takeuchi H., Nagira S., Yamamoto H., Kawashima Y. Die wall pressure measurement for evaluation of compaction property of pharmaceutical materials. Int. J. Pharm. 2004;274:131–138. doi: 10.1016/j.ijpharm.2004.01.008. PubMed DOI

Anuar M.S., Briscoe B.J. The elastic relaxation of starch tablets during ejection. Powder Technol. 2009;195:96–104. doi: 10.1016/j.powtec.2009.05.019. DOI

Adolfsson Å., Olsson H., Nyström C. Effect of particle size and compaction load on interparticulate bonding structure for some pharmaceutical materials studied by compaction and strength characterisation in butanol. Eur. J. Pharm. Biopharm. 1997;44:243–251. doi: 10.1016/S0939-6411(97)00136-7. DOI

Sebhatu T., Alderborn G. Relationships between the effective interparticulate contact area and the tensile strength of tablets of amorphous and crystalline lactose of varying particle size. Eur. J. Pharm. Sci. 1999;8:235–242. doi: 10.1016/S0928-0987(99)00025-1. PubMed DOI

Zhang Y., Law Y., Chakrabarti S. Physical properties and compact analysis of commonly used direct compression binders. AAPS PharmSciTech. 2003;4:62. doi: 10.1208/pt040462. PubMed DOI PMC

Antikainen O., Yliruusi J. Determining the compression behavior of pharmaceutical powders from the force-distance compression profile. Int. J. Pharm. 2003;252:253–261. doi: 10.1016/S0378-5173(02)00665-8. PubMed DOI

Picker-Freyer K.M. Tablet production systems. In: Gad S.C., editor. Pharmaceutical Manufacturing handbook Production and Processes. John Wiley and Sons; Hoboken, NJ, USA: 2008.

Sun C.C. Dependence of ejection force on tableting speed-A compaction simulation study. Powder Technol. 2015;279:123–126. doi: 10.1016/j.powtec.2015.04.004. DOI

Abdel-Hamid S., Betz G. A novel tool for the prediction of tablet sticking during high speed compaction. Pharm. Dev. Technol. 2012;17:747–754. doi: 10.3109/10837450.2011.580761. PubMed DOI

Seitavuopio P., Rantanen J., Yliruusi J. Tablet surface characterisation by various imaging techniques. Int. J. Pharm. 2003;254:281–286. doi: 10.1016/S0378-5173(03)00026-7. PubMed DOI

Narayan P., Hancock B.C. The relationship between the particle properties, mechanical behavior, and surface roughness of some pharmaceutical excipient compacts. Mater. Sci. Eng. A. 2003;355:24–36. doi: 10.1016/S0921-5093(03)00059-5. DOI

Sun C. True density of microcrystalline cellulose. J. Pharm. Sci. 2005;94:2132–2134. doi: 10.1002/jps.20459. PubMed DOI

De Boer A.H., Vromans H., Leur C.F., Bolhuis G.K., Kussendrager K.D., Bosch H. Studies on tableting properties of lactose—Part III. The consolidation behavior of sieve fractions of crystalline α-lactose monohydrate. Pharm. Weekbl. Sci. Ed. 1986;8:145–150. doi: 10.1007/BF02086149. PubMed DOI

Arida A.I., Al-Tabakha M.M. Cellactose® a co-processed excipient: A comparison study. Pharm. Dev. Technol. 2008;13:165–175. doi: 10.1080/10837450701831294. PubMed DOI

Bowles B.J., Dziemidowicz K., Lopez F.L., Orlu M., Tuleu C., Edwards A.J., Ernest T.B. Co-Processed Excipients for Dispersible Tablets–Part 1: Manufacturability. AAPS PharmSciTech. 2018;19:2598–2609. doi: 10.1208/s12249-018-1090-4. PubMed DOI

Belousov V.A. Choice of optimal pressure values in tableting medicinal powders. Khimiko-Farmatsevticheskii Zhurnal. 1976;10:105–111.

FDA U. Guidance for Industry Orally Disintegrating Tablets. [(accessed on 15 September 2021)];Fed. Regist. 2008 :1–3. Available online: https://www.fda.gov/media/70877/download.

Lowenthal W. Mechanism of Action of Starch as a Tablet Disintegrant V: Effect of Starch Grain Deformation. J. Pharm. Sci. 1972;61:455–459. doi: 10.1002/jps.2600610330. PubMed DOI

Hill P.M. Effect of Compression Force and Corn Starch on Tablet Disintegration Time. J. Pharm. Sci. 1976;65:1694–1697. doi: 10.1002/jps.2600651134. PubMed DOI

Yassin S., Goodwin D.J., Anderson A., Sibik J., Wilson D.I., Gladden L.F., Zeitler J.A. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants. J. Pharm. Sci. 2015;104:3440–3450. doi: 10.1002/jps.24544. PubMed DOI

Goto K., Sunada H., Danjo K., Yonezawa Y. Pharmaceutical evaluation of multipurpose excipients for direct compressed tablet manufacture: Comparisons of the capabilities of multipurpose excipients with those in general use. Drug Dev. Ind. Pharm. 1999;25:869–878. doi: 10.1081/DDC-100102247. PubMed DOI

Bolhuis G.K., Smallenbroek A.J., Lerk C.F. Interaction of Tablet Disintegrants and Magnesium Stearate during Mixing I: Effect on Tablet Disintegration. J. Pharm. Sci. 1981;70:1328–1330. doi: 10.1002/jps.2600701210. PubMed DOI

Emshanova S.V., Veselova N.I., Zuev A.P., Sadchikova N.P. Direct molding technology for the production of zolpidem tablets. Pharm. Chem. J. 2007;41:659–661. doi: 10.1007/s11094-008-0039-4. DOI

Masareddy R., Kokate A., Shah V. Development of orodispersible tizanidine HCl tablets using spray dried coprocessed exipient bases. Indian J. Pharm. Sci. 2011;73:392–396. doi: 10.4103/0250-474X.95616. PubMed DOI PMC

Kalia A., Khurana S., Bedi N. Formulation and evaluation of mouth dissolving tablets of oxcarbazepine. Int. J. Pharm. Pharm. Sci. 2009;1:12–23. doi: 10.20959/wjpr201710-9460. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...