Comparative Study of Powder Carriers Physical and Structural Properties

. 2022 Apr 08 ; 14 (4) : . [epub] 20220408

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35456652
Odkazy

PubMed 35456652
PubMed Central PMC9032780
DOI 10.3390/pharmaceutics14040818
PII: pharmaceutics14040818
Knihovny.cz E-zdroje

High specific surface area (SSA), porous structure, and suitable technological characteristics (flow, compressibility) predetermine powder carriers to be used in pharmaceutical technology, especially in the formulation of liquisolid systems (LSS) and solid self-emulsifying delivery systems (s-SEDDS). Besides widely used microcrystalline cellulose, other promising materials include magnesium aluminometasilicates, mesoporous silicates, and silica aerogels. Clay minerals with laminar or fibrous internal structures also provide suitable properties for liquid drug incorporation. This work aimed at a comparison of 14 carriers' main properties. Cellulose derivatives, silica, silicates, and clay minerals were evaluated for flow properties, shear cell experiments, SSA, hygroscopicity, pH, particle size, and SEM. The most promising materials were magnesium aluminometasilicates, specifically Neusilin® US2, due to its proper flow, large SSA, etc. Innovative materials such as FujiSil® or Syloid® XDP 3050 were for their properties evaluated as suitable. The obtained data can help choose a suitable carrier for formulations where the liquid phase is incorporated into the solid dosage form. All measurements were conducted by the same methodology and under the same conditions, allowing a seamless comparison of property evaluation between carriers, for which available company or scientific sources do not qualify due to different measurements, conditions, instrumentation, etc.

Zobrazit více v PubMed

Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009;117:1–9. doi: 10.1016/j.micromeso.2008.07.002. DOI

Ahuja G., Pathak K. Porous carriers for controlled/modulated drug delivery. Indian J. Pharm. Sci. 2009;71:599. doi: 10.4103/0250-474X.59540. PubMed DOI PMC

Sher P., Ingavle G., Ponratham S., Pawar A.P. Low density porous carrier: Drug adsorption and release study by response surface methodology using different solvents. Int. J. Pharm. 2007;331:72–83. doi: 10.1016/j.ijpharm.2006.09.013. PubMed DOI

Shivanand P., Sprockel O.L. A controlled porosity drug delivery system. Int. J. Pharm. 1998;167:83–96. doi: 10.1016/S0378-5173(98)00047-7. DOI

Vraníková B., Gajdziok J., Vetchý D., Kratochvíl B., Seilerová L. Systémy kapalina v pevné fázi jako moderní trend zvyšování biologické dostupnosti léčiva. Chemické Listy. 2013;107:681–687.

Kostelanská K., Gajdziok J., Vetchý D. Porézní nosiče ve farmaceutické technologii. Chemické Listy. 2018;112:840–847.

Gurny R., Doelker E., Peppas N.A. Modeling sustained release of water-soluble drugs from porous hydrophobic polymers. Biomaterials. 1982;3:27–32. doi: 10.1016/0142-9612(82)90057-6. PubMed DOI

Civan F. Scale effect on porosity and permeability. AIChE J. 2001;47:271–287. doi: 10.1002/aic.690470206. DOI

El-Gizawy S.A. Effect of formulation additives in the dissolution of Meloxicam from Liquid solid tablets. Egypt. J. Biomed. Sci. 2007;25:143–158.

Jadhav N.R., Irny P.V., Patil U.S. Solid state behavior of progesterone and its release from Neusilin US2 based liquisolid compacts. J. Drug Deliv. Sci. Technol. 2017;38:97–106. doi: 10.1016/j.jddst.2017.01.009. DOI

Saeedi M., Akbari J., Morteza-Semnani K., Enayati-Fard R., Sar-Reshteh-dar S., Soleymani A. Enhancement of dissolution rate of indomethacin: Using liquisolid compacts. Iran. J. Pharm. Res. 2011;10:25. PubMed PMC

Schiermeier S., Schmidt P.C. Fast dispersible ibuprofen tablets. Eur. J. Pharm. Sci. 2002;15:295–305. doi: 10.1016/S0928-0987(02)00011-8. PubMed DOI

Chella N., Shastri N., Tadikonda R.R. Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan. Acta Pharm. Sin. B. 2012;2:502–508. doi: 10.1016/j.apsb.2012.07.005. DOI

Komala D.R., Janga K.Y., Jukanti R., Bandari S., Vijayagopal M. Competence of raloxifene hydrochloride loaded liquisolid compacts for improved dissolution and intestinal permeation. J. Drug Deliv. Sci. Technol. 2015;30:232–241. doi: 10.1016/j.jddst.2015.10.020. DOI

Hentzschel C.M., Sakmann A., Leopold C.S. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Dev. Ind. Pharm. 2011;37:1200–1207. doi: 10.3109/03639045.2011.564184. PubMed DOI

Sheth A., Jarowski C.I. Use of powdered solutions to improve the dissolution rate of polythiazide tablets. Drug Dev. Ind. Pharm. 1990;16:769–777. doi: 10.3109/03639049009114908. DOI

Zheng J.P., Luan L., Wang H.Y., Xi L.F., Yao K.D. Study of ibuprofen/montmorillonite intercalation composites as drug release system. Appl. Clay Sci. 2007;36:297–301. doi: 10.1016/j.clay.2007.01.012. DOI

Shah N.H., Carvajal M.T., Patel C.I., Infeld M.H., Malick A.W. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int. J. Pharm. 1994;106:15–23. doi: 10.1016/0378-5173(94)90271-2. DOI

Patel S., Jani G., Patel M. Development of self-emulsifying formulation of ionizable water insoluble BCS class-II drug: Rosuvastatin calcium. Invent. Impact Pharm. Tech. 2013;3:711–713.

Yi T., Wan J., Xu H., Yang X. Controlled poorly soluble drug release from solid self-microemulsifying fomrulations with high viscosity hydroxypropylmethylcellulose. Eur. J. Pharm. Sci. 2008;34:274–280. doi: 10.1016/j.ejps.2008.04.010. PubMed DOI

Siepmann J., Peppas N.A.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC) Adv. Drug Deliv. Rev. 2012;64:163–174. doi: 10.1016/j.addr.2012.09.028. PubMed DOI

Kamel R., Basha M. Preparation and in vitro evaluation of rutin nanostructured liquisolid delivery system. Bull. Fac. Pharm. Cairo Univ. 2013;51:261–272. doi: 10.1016/j.bfopcu.2013.08.002. DOI

Bhagwat D.A., Souza J.I.D. Formulation and evaluation of solid self micro emulsifying drug delivery system using aerosol 200 as solid carrier. Int. Curr. Pharm. J. 2012;1:414–419. doi: 10.3329/icpj.v1i12.12451. DOI

Gumaste S.G., Pawlak S.A., Dalrymple D.M., Nider C.J., Trombetta L.D., Serajuddin A.T. Development of solid SEDDS, IV: Effect of adsorbed lipid and surfactant on tableting properties and surface structures of different silicates. Pharm. Res. 2013;30:3170–3185. doi: 10.1007/s11095-013-1114-4. PubMed DOI PMC

D90, D50, D10, and SPAN—For DLS? [(accessed on 22 May 2020)]. Available online: https://www.materials-talks.com/blog/2016/08/25/d90-d50-d10-and-span-for-dls/

Wang Y., Li W., Liu T., Xu L., Guo Y., Ke J., Li S., Li H. Desing and preparation of mesoporous silica carriers with chiral structures for drug release differentiation. Mater. Sci. Eng. C. 2019;103:109737. doi: 10.1016/j.msec.2019.109737. PubMed DOI

Palmer H.K., Rowe R.C. The application of mercury porosimetry to porous polymer powders. Powder Technol. 1974;9:181–186. doi: 10.1016/0032-5910(74)80030-6. DOI

European Pharmacopoeia (Ph. Eur. MMXVII) 9th ed. European Pharmacopoeia Commision; Strasbourg, France: 2017.

Vraníková B., Gajdziok J., Vetchý D. Modern evaluation of liquisolid systems with varying amounts of liquid phase prepared using two different methods. BioMed. Res. Int. 2015;2015:608435. doi: 10.1155/2015/608435. PubMed DOI PMC

FT4 Manual Shear Test. Technology Freeman; Worcesteshire, UK: 2011.

Jenike A.W. Storage and flow of solids. Bull. Utah Univ. 1964;53:207.

Ghazavi M., Hosseini M., Mollanouri M. A comparison between angle of repose and friction angle of sand; Proceedings of the IACMAG; Goa, India. 1–6 October 2008.

Peschl I.A.S.Z. New rotational shear-testing technique. J. Powder Bulk Solids Technol. 1977;1:55.

Komárek P., Rabišková M. Technologie Léků: Galenika, 3. Přeprac. a Dop. Vyd. 3rd ed. Galén; Praha, Czech Republic: 2006.

Muselík J., Franc A., Doležel P., Goněc R., Krondlová A., Lukášová I. Influence of process parameters on content uniformity of a low dose active pharmaceutical ingredient in a tablet formulation according to GMP. Acta Pharmaceut. 2014;64:355–367. doi: 10.2478/acph-2014-0022. PubMed DOI

Gorączko A., Topoliński S. Particle size distribution of natural clayey soils: A discussion on the use of laser diffraction analysis (LDA) Geosciences. 2020;10:55. doi: 10.3390/geosciences10020055. DOI

Material Safety Data Sheet-Avicel® PH Microcrystalline Cellulose. [(accessed on 24 October 2019)]. Available online: http://msdsviewer.fmc.com/private/document.aspx?prd=9004-34-6-B~~PDF~~MTR~~BPNA~~EN~~1/1/0001%2012:00:00%20AM~~AVICEL%C2%AE%20PH%20MICROCRYSTALLINE%20CELLULOSE~~.

Using Methocel Cellulose Ethers for Controlled Release of Drug in Hydrophilic Matrix Systems. [(accessed on 24 October 2019)]. Available online: https://www.colorcon.com/products-formulation/all-products/download/677/2063/34?method=view.

Aerosil®: Fumed Silica—Hydrophili and Hydrophobic. [(accessed on 24 October 2019)]. Available online: https://www.l-i.co.uk/products/aerosil-fumed-silica.

Eisenlauer J., Killmann E. Stability of colloidal silica (aerosil) hydrosols. I. Preparation and characterization of silica (aerosil) hydrosols. J. Colloid Interface Sci. 1980;74:108–119. doi: 10.1016/0021-9797(80)90175-7. DOI

FujisilTM the Next Generation of Porous Silica. [(accessed on 16 June 2020)]. Available online: http://fujihealthscience.com/products/excipients/

Sipernat® 22S. [(accessed on 13 October 2020)]. Available online: https://products-re.evonik.com/www2/uploads/productfinder/SIPERNAT-22-S-EN.pdf.

Technical Information: Syloid® FP and XDP Silica Pharmaceutical Excipients—Multifuncional Excipients for the Pharmaceutical Industry. [(accessed on 17 September 2020)]. Available online: https://grace.com/pharma-and-biotech/en-us/Documents/Syloid/DOC013%20SYLOID%20FP%20XDP_m309.pdf.

The Specialty Excipient Neusilin®. [(accessed on 14 November 2019)]. Available online: http://www.fujichemical.co.jp/english/medical/medicine/neusilin/neusilin_brochure.pdf.

Battista O.A., Smith P.A. Microcrystalline cellulose—The oldest polymer finds new industrial uses. Ind. Eng. Chem. 1962;54:20–29. doi: 10.1021/ie50633a003. DOI

Dolan T.F., Humphrey M.J., Nichols D.J. Pharmaceutical Formulations Containing Darifenacin. 6,106,864. U.S. Patent. 2000 August 22;

Reuzel P.G.J., Bruijntjes J.B., Feron V.J., Woutersen R.A. Subchronic inhalation toxicity of amorphous silicas and quarz dust in rats. Food Chem. Toxicol. 1991;29:341–354. doi: 10.1016/0278-6915(91)90205-L. PubMed DOI

Broms B.B., Bennermark H. Stability of clay at vertical openings. J. Soil. Mech. Found. Div. 1967;93:71–94. doi: 10.1061/JSFEAQ.0000946. DOI

Lu M., Xing H., Jiang J., Chen X., Yang T., Wang D., Ding P. Liquisolid technique and its applications in pharmaceutics. Asian J. Pharm. Sci. 2017;12:115–123. doi: 10.1016/j.ajps.2016.09.007. PubMed DOI PMC

Suliman A.S., Anderson R.J., Elkordy A.A. Narfloxacin as a model hydrophobic drug with unique release from liquisolid formulations prepared with PEG200 and Synperonic PE/L-61 non-volatile liquid vehicles. Powder Technol. 2014;257:156–167. doi: 10.1016/j.powtec.2014.02.048. DOI

Van Speybroeck M., Barillaro V., Do Thi T., Mellaerts R., Martens J., Van Humbeeck J., Vermant J., Annaert P., Van Den Mooter G., Augustijns P. Ordered mesoporous silica material SBA-15: A broad-spectrum formulation platform for poorly soluble drugs. J. Pharm. Sci. 2009;98:2648–2658. doi: 10.1002/jps.21638. PubMed DOI

Westermarck S., Juppo A.M., Kervinen L., Yliruusi J. Pore structure and surface area of mannitol powder, granules and tablets determined with mercury porosimetry and nitrogen adsorption. Eur. J. Pharm. Biopharm. 1998;46:61–68. doi: 10.1016/S0939-6411(97)00169-0. PubMed DOI

Kuentz M., Leuenberger H. A new theoretical approach to tablet strength of binary mixture consisting of a well and a poorly compactable substance. Eur. J. Pharm. Biopharm. 2000;49:151–159. doi: 10.1016/S0939-6411(99)00078-8. PubMed DOI

Sun C.C. True density of microcrystalline cellulose. J. Pharm. Sci. 2005;94:2132–2134. doi: 10.1002/jps.20459. PubMed DOI

Kobayashi M., Juillerat F., Galleto P., Bowen P., Borkovec M. Aggregation and charging of colloidal silica particles: Effect of particle size. Langmuir. 2005;21:5761–5769. doi: 10.1021/la046829z. PubMed DOI

Hansen T., Holm P., Schultz K. Process characteristics and compaction of spray-dried emulsion containing a drug dissolved in lipid. Int. J. Pharm. 2004;287:55–66. doi: 10.1016/j.ijpharm.2004.08.014. PubMed DOI

Lowell S., Shields J.E. Powder Surface Area and Porosity. 2nd ed. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013.

Roškar R., Kmetec V. Evaluation of the moisture sorption behaviour of several excipients by BET, GAB and microcalorimetric approaches. Chem. Pharm. Bull. 2005;53:662–665. doi: 10.1248/cpb.53.662. PubMed DOI

Rowe R.C., Sheskey P.J., Owen S.C. Handbook of Pharmaceutical Excipients. 6th ed. American Pharmacists Association; Chicago, IL, USA: Pharmaceutical Press; London, UK: 2009.

Simchi A. The role of particle size on the laser sintering of iron powder. Metall. Mater. Trans. B. 2004;35:937–948. doi: 10.1007/s11663-004-0088-3. DOI

Callahan J.C., Cleary G.W., Elefant M., Kaplan G., Kensler T., Nash R.A. Equilibrium moisture content of pharmaceutical excipients. Drug Dev. Ind. Pharm. 1982;8:355–369. doi: 10.3109/03639048209022105. DOI

Chen C., Ren T., Hu K., Li B., Wang Y. Estimation of soil clay content using hygroscopic water content at an arbitrary humidity. Soil Sci. Soc. Am. J. 2014;78:119–124. doi: 10.2136/sssaj2013.06.0247. DOI

Gupta M.K., Vanwert A., Bogner R.H. Fomartion of physically stable amorphous drugs by milling with Neusilin. J. Pharm. Sci. 2003;92:536–551. doi: 10.1002/jps.10308. PubMed DOI

Kaufhold S., Dohrmann R., Koch D., Houben G. The pH of aqueous bentonite suspensions. Clays Clay Miner. 2008;56:338–343. doi: 10.1346/CCMN.2008.0560304. DOI

Hou H., Sun C.C. Quantifying effects of particulate properties on powder flow properties using a ring shear tester. J. Pharm. Sci. 2008;97:4030–4039. doi: 10.1002/jps.21288. PubMed DOI

Morin G., Briens L. The effect of lubricants on powder flowability for pharmaceutical application. AAPS Pharm. Sci. Tech. 2013;14:1158–1168. doi: 10.1208/s12249-013-0007-5. PubMed DOI PMC

Vajir S., Sahu V., Ghuge N., Bakde B.V. Liquisolid compact: A new technique for enhancement of drug dissolution. Int. J. Pharm. Chem. Sci. 2012;4:302–306.

Krupa A., Majda D., Jachowicz R., Mozgawa W. Solid-state interaction of ibuprofen and Neusilin US2. Thermochim. Acta. 2010;509:12–17. doi: 10.1016/j.tca.2010.05.009. DOI

Spireas S.S., Jarowski C.I., Rohera B.D. Powdered solution technology: Principles and mechanism. Pharm. Res. 1992;9:1351–1358. doi: 10.1023/A:1015877905988. PubMed DOI

Brei V.V. 29 Si solid-state NMR study of the surface structure of aerosol silica. J. Chem. Soc. Faraday Trans. 1994;90:2961–2964. doi: 10.1039/ft9949002961. DOI

Schulze D. Powders and Bulk Solids: Behaviour, Characterization, Storage and Flow. Springer; Berlin/Heidelberg, Germany: 2008.

Ruppel J., Müller A.K., Althaus G., Drexel C.P., Zimmermann I. The modified outflow funnel—A device to assess the flow characteristics of powders. Powder Technol. 2009;193:87–92. doi: 10.1016/j.powtec.2009.02.011. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace