Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks

S. Liao, T. Vejchodský, R. Erban,

. 2015 ; 12 (108) : 20150233.

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010109
003      
CZ-PrNML
005      
20160415104601.0
007      
ta
008      
160408s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1098/rsif.2015.0233 $2 doi
024    7_
$a 10.1098/rsif.2015.0233 $2 doi
035    __
$a (PubMed)26063822
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Liao, Shuohao $u Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
245    10
$a Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks / $c S. Liao, T. Vejchodský, R. Erban,
520    9_
$a Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org.
650    12
$a teoretické modely $7 D008962
650    _2
$a stochastické procesy $7 D013269
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Vejchodský, Tomáš $u Institute of Mathematics, Czech Academy of Sciences, Zitna 25, 115 67 Praha 1, Czech Republic.
700    1_
$a Erban, Radek $u Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK erban@maths.ox.ac.uk.
773    0_
$w MED00180378 $t Journal of the Royal Society, Interface the Royal Society $x 1742-5662 $g Roč. 12, č. 108 (2015), s. 20150233
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26063822 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160415104645 $b ABA008
999    __
$a ok $b bmc $g 1113538 $s 934477
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 12 $c 108 $d 20150233 $i 1742-5662 $m Journal of the Royal Society, Interface $n J R Soc Interface $x MED00180378
LZP    __
$a Pubmed-20160408

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...