-
Something wrong with this record ?
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
S. Liao, T. Vejchodský, R. Erban,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 2004
PubMed Central
from 2004 to 1 year ago
Europe PubMed Central
from 2004 to 1 year ago
Open Access Digital Library
from 2004-01-01
Open Access Digital Library
from 2004-11-22
- MeSH
- Stochastic Processes MeSH
- Models, Theoretical * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010109
- 003
- CZ-PrNML
- 005
- 20160415104601.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1098/rsif.2015.0233 $2 doi
- 024 7_
- $a 10.1098/rsif.2015.0233 $2 doi
- 035 __
- $a (PubMed)26063822
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Liao, Shuohao $u Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
- 245 10
- $a Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks / $c S. Liao, T. Vejchodský, R. Erban,
- 520 9_
- $a Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org.
- 650 12
- $a teoretické modely $7 D008962
- 650 _2
- $a stochastické procesy $7 D013269
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Vejchodský, Tomáš $u Institute of Mathematics, Czech Academy of Sciences, Zitna 25, 115 67 Praha 1, Czech Republic.
- 700 1_
- $a Erban, Radek $u Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK erban@maths.ox.ac.uk.
- 773 0_
- $w MED00180378 $t Journal of the Royal Society, Interface the Royal Society $x 1742-5662 $g Roč. 12, č. 108 (2015), s. 20150233
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26063822 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160415104645 $b ABA008
- 999 __
- $a ok $b bmc $g 1113538 $s 934477
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 12 $c 108 $d 20150233 $i 1742-5662 $m Journal of the Royal Society, Interface $n J R Soc Interface $x MED00180378
- LZP __
- $a Pubmed-20160408