Auxin Does the SAMba: Auxin Signaling in the Shoot Apical Meristem
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33903154
PubMed Central
PMC8634999
DOI
10.1101/cshperspect.a039925
PII: cshperspect.a039925
Knihovny.cz E-zdroje
- MeSH
- kyseliny indoloctové * metabolismus MeSH
- meristém * fyziologie MeSH
- regulace genové exprese u rostlin MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyseliny indoloctové * MeSH
Plants, in contrast to animals, are unique in their capacity to postembryonically develop new organs due to the activity of stem cell populations, located in specialized tissues called meristems. Above ground, the shoot apical meristem generates aerial organs and tissues throughout plant life. It is well established that auxin plays a central role in the functioning of the shoot apical meristem. Auxin distribution in the meristem is not uniform and depends on the interplay between biosynthesis, transport, and degradation. Auxin maxima and minima are created, and result in transcriptional outputs that drive the development of new organs and contribute to meristem maintenance. To uncover and understand complex signaling networks such as the one regulating auxin responses in the shoot apical meristem remains a challenge. Here, we will discuss our current understanding and point to important research directions for the future.
Zobrazit více v PubMed
Bainbridge K, Guyomarc'h S, Bayer E, Swarup R, Bennett M, Mandel T, Kuhlemeier C. 2008. Auxin influx carriers stabilize phyllotactic patterning. Genes Dev 22: 810–823. 10.1101/gad.462608 PubMed DOI PMC
Banno H, Ikeda Y, Niu QW, Chua NH. 2001. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13: 2609–2618. 10.1105/tpc.010234 PubMed DOI PMC
Banwarth-Kuhn M, Nematbakhsh A, Rodriguez KW, Snipes S, Rasmussen CG, Reddy GV, Alber M. 2019. Cell-based model of the generation and maintenance of the shape and structure of the multilayered shoot apical meristem of Arabidopsis thaliana. Bull Mathematical Biol 81: 3245–3281. 10.1007/s11538-018-00547-z PubMed DOI
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602. 10.1016/S0092-8674(03)00924-3 PubMed DOI
Besnard F, Refahi Y, Morin V, Marteaux B, Brunoud G, Chambrier P, Rozier F, Mirabet V, Legrand J, Lainé S, et al. 2014. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505: 417–421. 10.1038/nature12791 PubMed DOI
Bhatia N, Heisler MG. 2018. Self-organizing periodicity in development: organ positioning in plants. Development 145: dev149336. 10.1242/dev.149336 PubMed DOI
Bhatia N, Bozorg B, Larsson A, Ohno C, Jönsson H, Heisler MG. 2016. Auxin acts through MONOPTEROS to regulate plant cell polarity and pattern phyllotaxis. Curr Biol 26: 3202–3208. 10.1016/j.cub.2016.09.044 PubMed DOI PMC
Blázquez MA, Weigel D. 2000. Integration of floral inductive signals in Arabidopsis. Nature 404: 889–892. 10.1038/35009125 PubMed DOI
Blázquez MA, Soowal LN, Lee I, Weigel D. 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124: 3835–3844. PubMed
Boer DR, Freire-Rios A, van den Berg WAM, Saaki T, Manfield IW, Kepinski S, López-Vidrieo I, Franco-Zorrilla JM, de Vries SC, Solano R, et al. 2014. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156: 577–589. 10.1016/j.cell.2013.12.027 PubMed DOI
Bolduc N, Yilmaz A, Mejia-Guerra MK, Morohashi K, O'Connor D, Grotewold E, Hake S. 2012. Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev 26: 1685–1690. 10.1101/gad.193433.112 PubMed DOI PMC
Brand U. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289: 617–619. 10.1126/science.289.5479.617 PubMed DOI
Busch W, Miotk A, Ariel FD, Zhao Z, Forner J, Daum G, Suzaki T, Schuster C, Schultheiss SJ, Leibfried A, et al. 2010. Transcriptional control of a plant stem cell niche. Dev Cell 18: 841–853. 10.1016/j.devcel.2010.03.012 PubMed DOI
Cao M, Chen R, Li P, Yu Y, Zheng R, Ge D, Zheng W, Wang X, Gu Y, Gelová Z, et al. 2019. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568: 240–243. 10.1038/s41586-019-1069-7 PubMed DOI
Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM. 2012. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proc Natl Acad Sci 109: 4002–4007. 10.1073/pnas.1200636109 PubMed DOI PMC
Chung Y, Zhu Y, Wu MF, Simonini S, Kuhn A, Armenta-Medina A, Jin R, Østergaard L, Gillmor CS, Wagner D. 2019. Auxin response factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS. Nat Commun 10: 886. PubMed PMC
Cole M, Chandler J, Weijers D, Jacobs B, Comelli P, Werr W. 2009. DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development 136: 1643–1651. 10.1242/dev.032177 PubMed DOI
Dai N, Wang W, Patterson SE, Bleecker AB. 2013. The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS ONE 8: e60990. 10.1371/journal.pone.0060990 PubMed DOI PMC
Daum G, Medzihradszky A, Suzaki T, Lohmann JU. 2014. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci 111: 14619–14624. 10.1073/pnas.1406446111 PubMed DOI PMC
Douady S, Couder Y. 1992. Phyllotaxis as a physical self-organized growth process. Phys Rev Lett 68: 2098–2101. 10.1103/PhysRevLett.68.2098 PubMed DOI
Finet C, Berne-Dedieu A, Scutt CP, Marlétaz F. 2013. Evolution of the ARF gene family in land plants: old domains, new tricks. Mol Biol Evol 30: 45–56. 10.1093/molbev/mss220 PubMed DOI
Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283: 1911–1914. 10.1126/science.283.5409.1911 PubMed DOI
Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, et al. 2004. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306: 862–865. 10.1126/science.1100618 PubMed DOI
Gallei M, Luschnig C, Friml J. 2020. Auxin signalling in growth: Schrödinger's cat out of the bag. Curr Opin Plant Biol 53: 43–49. 10.1016/j.pbi.2019.10.003 PubMed DOI
Galli M, Liu Q, Moss BL, Malcomber S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser JL, et al. 2015. Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci 112: 13372–13377. 10.1073/pnas.1516473112 PubMed DOI PMC
Galvan-Ampudia CS, Chaumeret AM, Godin C, Vernoux T. 2016. Phyllotaxis: from patterns of organogenesis at the meristem to shoot architecture. Wiley Interdiscip Rev Dev Biol 5: 460–473. 10.1002/wdev.231 PubMed DOI
Galvan-Ampudia CS, Cerutti G, Legrand J, Brunoud G, Martin-Arevalillo R, Azais R, Bayle V, Moussu S, Wenzl C, Jaillais Y, et al. 2020. Temporal integration of auxin information for the regulation of patterning. eLife 9: e55832. 10.7554/eLife.55832 PubMed DOI PMC
Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226–2230. 10.1126/science.282.5397.2226 PubMed DOI
Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y. 2015. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci 112: 2275–2280. 10.1073/pnas.1500365112 PubMed DOI PMC
Gelová Z, Gallei M, Pernisová M, Brunoud G, Zhang X, Glanc M, Li L, Michalko J, Pavlovičová Z, Verstraeten I, et al. 2021. Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Sci 303: 110750. 10.1016/j.plantsci.2020.110750 PubMed DOI
Godin C, Golé C, Douady S. 2020. Phyllotaxis as geometric canalization during plant development. Development 147: dev165878. 10.1242/dev.165878 PubMed DOI
Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM. 2009. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci 106: 16529–16534. 10.1073/pnas.0908122106 PubMed DOI PMC
Han H, Liu X, Zhou Y. 2020. Transcriptional circuits in control of shoot stem cell homeostasis. Curr Opin Plant Biol 53: 50–56. 10.1016/j.pbi.2019.10.004 PubMed DOI
Hardtke CS, Berleth T. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17: 1405–1411. 10.1093/emboj/17.5.1405 PubMed DOI PMC
Hay A, Tsiantis M. 2010. KNOX genes: versatile regulators of plant development and diversity. Development 137: 3153–3165. 10.1242/dev.030049 PubMed DOI
Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM. 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15: 1899–1911. 10.1016/j.cub.2005.09.052 PubMed DOI
Herud-Sikimic O, Stiel AC, Ortega-Perez M, Shanmugaratnam S, Höcker B, Jürgens G. 2020. Design of a biosensor for direct visualisation of auxin. bioRxiv 10.1101/2020.01.19.911735 PubMed DOI PMC
Israeli A, Reed JW, Ori N. 2020. Genetic dissection of the auxin response network. Nat Plants 6: 1082–1090. 10.1038/s41477-020-0739-7 PubMed DOI
Jha P, Ochatt SJ, Kumar V. 2020. WUSCHEL: a master regulator in plant growth signaling. Plant Cell Rep 39: 431–444. 10.1007/s00299-020-02511-5 PubMed DOI
Jonsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E. 2006. An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci 103: 1633–1638. 10.1073/pnas.0509839103 PubMed DOI PMC
Kato H, Mutte SK, Suzuki H, Crespo I, Das S, Radoeva T, Fontana M, Yoshitake Y, Hainiwa E, van den Berg W, et al. 2020. Design principles of a minimal auxin response system. Nat Plants 6: 473–482. 10.1038/s41477-020-0662-y PubMed DOI
Kellogg EA. 2019. Different ways to be redundant. Nat Genet 51: 770–771. 10.1038/s41588-019-0406-y PubMed DOI
Kirch T, Simon R, Grünewald M, Werr W. 2003. The DORNRÖSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem cell fate and lateral organ development. Plant Cell 15: 694–705. 10.1105/tpc.009480 PubMed DOI PMC
Kitagawa M, Jackson D. 2019. Control of meristem size. Ann Rev Plant Biol 70: 269–291. 10.1146/annurev-arplant-042817-040549 PubMed DOI
Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, Pisch M, Javelle M, Timmermans MC, Tucker MR, Laux T. 2013. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24: 125–132. 10.1016/j.devcel.2012.12.009 PubMed DOI
Knauer S, Javelle M, Li L, Li X, Ma X, Wimalanathan K, Kumari S, Johnston R, Leiboff S, Meeley R, et al. 2019. A high-resolution gene expression atlas links dedicated meristem genes to key architectural traits. Genome Res 29: 1962–1973. 10.1101/gr.250878.119 PubMed DOI PMC
Kuhlemeier C. 2017. Phyllotaxis. Curr Biol 27: R882–R887. 10.1016/j.cub.2017.05.069 PubMed DOI
Kuhn A, Ramans Harborough S, McLaughlin HM, Natarajan B, Verstraeten I, Friml J, Kepinski S, Østergaard L. 2020. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. eLife 9: e51787. 10.7554/eLife.51787 PubMed DOI PMC
Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. 2009. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21: 3152–3169. 10.1105/tpc.109.068676 PubMed DOI PMC
Landberg K, Šimura J, Ljung K, Sundberg E, Thelander M. 2021. Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control. New Phytol 229: 845–860. 10.1111/nph.16914 PubMed DOI PMC
Lau S, Smet ID, Kolb M, Meinhardt H, Jürgens G. 2011. Auxin triggers a genetic switch. Nat Cell Biol 13: 611–615. 10.1038/ncb2212 PubMed DOI
Laux T, Mayer KF, Berger J, Jurgens G. 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122: 87–96. PubMed
Lee ZH, Hirakawa T, Yamaguchi N, Ito T. 2019. The roles of plant hormones and their interactions with regulatory genes in determining meristem activity. Int J Mol Sci 20: 4065. 10.3390/ijms20164065 PubMed DOI PMC
Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU. 2005. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438: 1172–1175. 10.1038/nature04270 PubMed DOI
Li W, Zhou Y, Liu X, Yu P, Cohen JD, Meyerowitz EM. 2013. LEAFY controls auxin response pathways in floral primordium formation. Sci Signal 6: ra23. PubMed PMC
Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. 2015. Reporters for sensitive and quantitative measurement of auxin response. Nat Methods 12: 207–210. 10.1038/nmeth.3279 PubMed DOI PMC
Long JA. 2006. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312: 1520–1523. 10.1126/science.1123841 PubMed DOI
Luo L, Zeng J, Wu H, Tian Z, Zhao Z. 2018. A molecular framework for auxin-controlled homeostasis of shoot stem cells in Arabidopsis. Mol Plant 11: 899–913. 10.1016/j.molp.2018.04.006 PubMed DOI
Ma Y, Miotk A, Šutiković Z, Ermakova O, Wenzl C, Medzihradszky A, Gaillochet C, Forner J, Utan G, Brackmann K, et al. 2019. WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis. Nat Commun 10: 5093. 10.1038/s41467-019-13074-9 PubMed DOI PMC
Matthes MS, Best NB, Robil JM, Malcomber S, Gallavotti A, McSteen P. 2019. Auxin EvoDevo: conservation and diversification of genes regulating auxin biosynthesis, transport, and signaling. Mol Plant 12: 298–320. 10.1016/j.molp.2018.12.012 PubMed DOI
Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95: 805–815. 10.1016/S0092-8674(00)81703-1 PubMed DOI
Mitchison GJ. 1977. Phyllotaxis and the Fibonacci series. Science 196: 270–275. 10.1126/science.196.4287.270 PubMed DOI
Mjolsness E. 2019. Prospects for declarative mathematical modeling of complex biological systems. Bull Math Biol 81: 3385–3420. 10.1007/s11538-019-00628-7 PubMed DOI PMC
Moyroud E, Kusters E, Monniaux M, Koes R, Parcy F. 2010. LEAFY blossoms. Trends Plant Sci 15: 346–352. 10.1016/j.tplants.2010.03.007 PubMed DOI
Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GK-S, Weijers D. 2018. Origin and evolution of the nuclear auxin response system. eLife 7: e33399.10.7554/eLife.33399 PubMed DOI PMC
Nagpal P. 2005. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132: 4107–4118. 10.1242/dev.01955 PubMed DOI
Nardmann J, Werr W. 2006. The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Mol Biol Evol 23: 2492–2504. 10.1093/molbev/msl125 PubMed DOI
Nardmann J, Werr W. 2007. The evolution of plant regulatory networks: what Arabidopsis cannot say for itself. Curr Opin Plant Biol 10: 653–659. 10.1016/j.pbi.2007.07.009 PubMed DOI
Okushima Y, Mitina I, Quach HL, Theologis A. 2005a. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator: ARF transcription factors. Plant J 43: 29–46. 10.1111/j.1365-313X.2005.02426.x PubMed DOI
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, et al. 2005b. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17: 444–463. 10.1105/tpc.104.028316 PubMed DOI PMC
Ori N. 2019. Dissecting the biological functions of ARF and Aux/IAA genes. Plant Cell 31: 1210–1211. 10.1105/tpc.19.00330 PubMed DOI PMC
Przemeck GH, Mattsson J, Hardtke C, Sung ZR, Berleth T. 1996. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200: 229–237. 10.1007/BF00208313 PubMed DOI
Rademacher EH, Möller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D. 2011. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family: a cellular expression map of ARF gene expression. Plant J 68: 597–606. 10.1111/j.1365-313X.2011.04710.x PubMed DOI
Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426: 255–260. 10.1038/nature02081 PubMed DOI
Rodriguez-Leal D, Xu C, Kwon C-T, Soyars C, Demesa-Arevalo E, Man J, Liu L, Lemmon ZH, Jones DS, Van Eck J, et al. 2019. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat Genet 51: 786–792. 10.1038/s41588-019-0389-8 PubMed DOI PMC
Schlereth A, Möller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jürgens G, Weijers D. 2010. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464: 913–916. 10.1038/nature08836 PubMed DOI
Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T. 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100: 635–644. 10.1016/S0092-8674(00)80700-X PubMed DOI
Shi B, Vernoux T. 2019. Patterning at the shoot apical meristem and phyllotaxis. Curr Topic Dev Biol 131: 81–107. 10.1016/bs.ctdb.2018.10.003 PubMed DOI
Simonini S, Deb J, Moubayidin L, Stephenson P, Valluru M, Freire-Rios A, Sorefan K, Weijers D, Friml J, Østergaard L. 2016. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev 30: 2286–2296. 10.1101/gad.285361.116 PubMed DOI PMC
Simonini S, Bencivenga S, Trick M, Østergaard L. 2017. Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. Plant Cell 29: 1864–1882. 10.1105/tpc.17.00389 PubMed DOI PMC
Siriwardana NS, Lamb RS. 2012. The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation. Int J Dev Biol 56: 207–221. 10.1387/ijdb.113450ns PubMed DOI
Smith RS, Guyomarc'h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P. 2006. A plausible model of phyllotaxis. Proc Natl Acad Sci 103: 1301–1306. 10.1073/pnas.0510457103 PubMed DOI PMC
Snipes SA, Rodriguez K, DeVries AE, Miyawaki KN, Perales M, Xie M, Reddy GV. 2018. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. PLoS Genet 14: e1007351. 10.1371/journal.pgen.1007351 PubMed DOI PMC
Somssich M, Je BI, Simon R, Jackson D. 2016. CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143: 3238–3248. 10.1242/dev.133645 PubMed DOI
Soyars CL, James SR, Nimchuk ZL. 2016. Ready, aim, shoot: stem cell regulation of the shoot apical meristem. Curr Opin Plant Biol 29: 163–168. 10.1016/j.pbi.2015.12.002 PubMed DOI
Stoma S, Lucas M, Chopard J, Schaedel M, Traas J, Godin C. 2008. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput Biol 4: e1000207. 10.1371/journal.pcbi.1000207 PubMed DOI PMC
Truskina J, Han J, Chrysanthou E, Galvan-Ampudia CS, Lainé S, Brunoud G, Macé J, Bellows S, Legrand J, Bågman AM, et al. 2020. A network of transcriptional repressors modulates auxin responses. Nature 589: 116.– . PubMed
Vernoux T, Kronenberger J, Grandjean O, Laufs P, Traas J. 2000. PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127: 5157–5165. PubMed
Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, et al. 2011. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7: 508. 10.1038/msb.2011.39 PubMed DOI PMC
Véron E, Vernoux T, Coudert Y. 2020. Phyllotaxis from a single apical cell. Trends Plant Sci 26: 124–131. 10.1016/j.tplants.2020.09.014 PubMed DOI
Vollbrecht E, Veit B, Sinha N, Hake S. 1991. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350: 241–243. 10.1038/350241a0 PubMed DOI
Wabnik K, Robert HS, Smith RS, Friml J. 2013. Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr Biol 23: 2513–2518. 10.1016/j.cub.2013.10.038 PubMed DOI
Wang B, Smith SM, Li J. 2018a. Genetic regulation of shoot architecture. Ann Rev Plant Biol 69: 437–468. 10.1146/annurev-arplant-042817-040422 PubMed DOI
Wang Y, Zhang T, Wang R, Zhao Y. 2018b. Recent advances in auxin research in rice and their implications for crop improvement. J Exp Botany 69: 255–263. 10.1093/jxb/erx228 PubMed DOI
Wu M-F, Yamaguchi N, Xiao J, Bargmann B, Estelle M, Sang Y, Wagner D. 2015. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. eLife 4: e09269. 10.7554/eLife.09269 PubMed DOI PMC
Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H, Zhou Z, Chen X, De Rycke R, Rakusova H, et al. 2014. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343: 1025–1028. 10.1126/science.1245125 PubMed DOI PMC
Yadav RK, Perales M, Gruel J, Girke T, Jonsson H, Reddy GV. 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25: 2025–2030. 10.1101/gad.17258511 PubMed DOI PMC
Yadav RK, Perales M, Gruel J, Ohno C, Heisler M, Girke T, Jönsson H, Reddy GV. 2013. Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol Syst Biol 9: 654. 10.1038/msb.2013.8 PubMed DOI PMC
Yamaguchi N, Wu MF, Winter CM, Berns MC, Nole-Wilson S, Yamaguchi A, Coupland G, Krizek BA, Wagner D. 2013. A molecular framework for auxin-mediated initiation of flower primordia. Dev Cell 24: 271–282. 10.1016/j.devcel.2012.12.017 PubMed DOI
Yamaguchi N, Jeong CW, Nole-Wilson S, Krizek BA, Wagner D. 2016. AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 induce LEAFY expression in response to auxin to promote the onset of flower formation in Arabidopsis. Plant Physiol 170: 283–293. 10.1104/pp.15.00969 PubMed DOI PMC
Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU. 2010. Hormonal control of the shoot stem-cell niche. Nature 465: 1089–1092. 10.1038/nature09126 PubMed DOI
Cytokinins - regulators of de novo shoot organogenesis