Clonal origin and development of high hyperdiploidy in childhood acute lymphoblastic leukaemia

. 2023 Mar 25 ; 14 (1) : 1658. [epub] 20230325

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36966135
Odkazy

PubMed 36966135
PubMed Central PMC10039905
DOI 10.1038/s41467-023-37356-5
PII: 10.1038/s41467-023-37356-5
Knihovny.cz E-zdroje

High hyperdiploid acute lymphoblastic leukemia (HeH ALL), one of the most common childhood malignancies, is driven by nonrandom aneuploidy (abnormal chromosome numbers) mainly comprising chromosomal gains. In this study, we investigate how aneuploidy in HeH ALL arises. Single cell whole genome sequencing of 2847 cells from nine primary cases and one normal bone marrow reveals that HeH ALL generally display low chromosomal heterogeneity, indicating that they are not characterized by chromosomal instability and showing that aneuploidy-driven malignancies are not necessarily chromosomally heterogeneous. Furthermore, most chromosomal gains are present in all leukemic cells, suggesting that they arose early during leukemogenesis. Copy number data from 577 primary cases reveals selective pressures that were used for in silico modeling of aneuploidy development. This shows that the aneuploidy in HeH ALL likely arises by an initial tripolar mitosis in a diploid cell followed by clonal evolution, in line with a punctuated evolution model.

Zobrazit více v PubMed

Davis A, Gao R, Navin N. Tumor evolution: Linear, branching, neutral or punctuated? Biochim. Biophys. Acta Rev. Cancer. 2017;1867:151–161. doi: 10.1016/j.bbcan.2017.01.003. PubMed DOI PMC

Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8. doi: 10.1126/science.959840. PubMed DOI

Gao R, et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 2016;48:1119–30. doi: 10.1038/ng.3641. PubMed DOI PMC

Bollen Y, et al. Reconstructing single-cell karyotype alterations in colorectal cancer identifies punctuated and gradual diversification patterns. Nat. Genet. 2021;53:1187–1195. doi: 10.1038/s41588-021-00891-2. PubMed DOI PMC

Paulsson K, Johansson B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2009;48:637–60. doi: 10.1002/gcc.20671. PubMed DOI

Szczepanski T, et al. Precursor-B-ALL with DH-JH gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia. 2001;15:1415–23. doi: 10.1038/sj.leu.2402206. PubMed DOI

Bateman CM, et al. Evolutionary trajectories of hyperdiploid ALL in monozygotic twins. Leukemia. 2015;29:58–65. doi: 10.1038/leu.2014.177. PubMed DOI

Maia AT, et al. Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins. Leukemia. 2003;17:2202–6. doi: 10.1038/sj.leu.2403101. PubMed DOI

Maia AT, et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer. 2004;40:38–43. doi: 10.1002/gcc.20010. PubMed DOI

Paulsson K, et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat. Genet. 2015;47:672–676. doi: 10.1038/ng.3301. PubMed DOI

Paulsson K, et al. Formation of trisomies and their parental origin in hyperdiploid childhood acute lymphoblastic leukemia. Blood. 2003;102:3010–3015. doi: 10.1182/blood-2003-05-1444. PubMed DOI

Paulsson K, et al. Evidence for a single-step mechanism in the origin of hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2005;44:113–22. doi: 10.1002/gcc.20222. PubMed DOI

Onodera N, McCabe NR, Rubin CM. Formation of a hyperdiploid karyotype in childhood acute lymphoblastic leukemia. Blood. 1992;80:203–8. doi: 10.1182/blood.V80.1.203.203. PubMed DOI

Moura-Castro LH, et al. Sister chromatid cohesion defects are associated with chromosomal copy number heterogeneity in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2021;60:410–417. doi: 10.1002/gcc.22933. PubMed DOI PMC

Mullighan CG, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 2008;322:1377–80. doi: 10.1126/science.1164266. PubMed DOI PMC

Davidsson J, et al. Relapsed childhood high hyperdiploid acute lymphoblastic leukemia: presence of preleukemic ancestral clones and the secondary nature of microdeletions and RTK-RAS mutations. Leukemia. 2010;24:924–931. doi: 10.1038/leu.2010.39. PubMed DOI

Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol. 2009;10:478–87. doi: 10.1038/nrm2718. PubMed DOI PMC

Rahbari R, et al. Timing, rates and spectra of human germline mutation. Nat. Genet. 2016;48:126–133. doi: 10.1038/ng.3469. PubMed DOI PMC

Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21. doi: 10.1038/nature12477. PubMed DOI PMC

Alexandrov LB, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578:94–101. doi: 10.1038/s41586-020-1943-3. PubMed DOI PMC

Ma X, et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature. 2018;555:371–376. doi: 10.1038/nature25795. PubMed DOI PMC

Singh VK, Rastogi A, Hu X, Wang Y, De S. Mutational signature SBS8 predominantly arises due to late replication errors in cancer. Commun. Biol. 2020;3:421. doi: 10.1038/s42003-020-01119-5. PubMed DOI PMC

Kucab JE, et al. A compendium of mutational signatures of environmental agents. Cell. 2019;177:821–836.e16. doi: 10.1016/j.cell.2019.03.001. PubMed DOI PMC

Li B, et al. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood. 2020;135:41–55. doi: 10.1182/blood.2019002220. PubMed DOI PMC

Herou E, Biloglav A, Johansson B, Paulsson K. Partial 17q gain resulting from isochromosomes, unbalanced translocations and complex rearrangements is associated with gene overexpression, older age and shorter overall survival in high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia. 2013;27:493–496. doi: 10.1038/leu.2012.198. PubMed DOI

Paulsson K, et al. Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA. 2010;107:21719–21724. doi: 10.1073/pnas.1006981107. PubMed DOI PMC

Mullighan CG, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–64. doi: 10.1038/nature05690. PubMed DOI

Raimondi SC, et al. Heterogeneity of hyperdiploid (51-67) childhood acute lymphoblastic leukemia. Leukemia. 1996;10:213–24. PubMed

Molina O, et al. Impaired condensin complex and Aurora B kinase underlie mitotic and chromosomal defects in hyperdiploid B-cell ALL. Blood. 2020;136:313–327. PubMed PMC

Betts DR, Riesch M, Grotzer MA, Niggli FK. The investigation of karyotypic instability in the high-hyperdiploidy subgroup of acute lymphoblastic leukemia. Leuk. Lymphoma. 2001;42:187–93. doi: 10.3109/10428190109097690. PubMed DOI

Alpar D, et al. Sequential and hierarchical chromosomal changes and chromosome instability are distinct features of high hyperdiploid pediatric acute lymphoblastic leukemia. Pediatr. Blood Cancer. 2014;61:2208–14. doi: 10.1002/pbc.25217. PubMed DOI

Bakker B, et al. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies. Genome Biol. 2016;17:115. doi: 10.1186/s13059-016-0971-7. PubMed DOI PMC

Nicholson JM, et al. Chromosome mis-segregation and cytokinesis failure in trisomic human cells. Elife. 2015;4:e05068. doi: 10.7554/eLife.05068. PubMed DOI PMC

Valind A, Jin Y, Baldetorp B, Gisselsson D. Whole chromosome gain does not in itself confer cancer-like chromosomal instability. Proc. Natl. Acad. Sci. USA. 2013;110:21119–23. doi: 10.1073/pnas.1311163110. PubMed DOI PMC

Haas OA. Somatic sex: on the origin of neoplasms with chromosome counts in uneven ploidy ranges. Front Cell Dev. Biol. 2021;9:631946. doi: 10.3389/fcell.2021.631946. PubMed DOI PMC

Gisselsson D, et al. Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proc. Natl. Acad. Sci. USA. 2010;107:20489–93. doi: 10.1073/pnas.1006829107. PubMed DOI PMC

Heerema NA, et al. Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2007;46:684–93. doi: 10.1002/gcc.20451. PubMed DOI

Paulsson K, et al. High modal number and triple trisomies are highly correlated favorable factors in childhood B-cell precursor high hyperdiploid acute lymphoblastic leukemia treated according to the NOPHO ALL 1992/2000 protocols. Haematologica. 2013;98:1424–1432. doi: 10.3324/haematol.2013.085852. PubMed DOI PMC

Dastugue N, et al. Hyperdiploidy with 58-66 chromosomes in childhood B-acute lymphoblastic leukemia is highly curable: 58951 CLG-EORTC results. Blood. 2013;121:2415–23. doi: 10.1182/blood-2012-06-437681. PubMed DOI

van den Bos, H., et al. Quantification of aneuploidy in Mammalian Systems. in Cellular Senescence: Methods and Protocols (ed. Demaria, M.) 159-190 (Springer New York, New York, NY, 2019). PubMed

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Garvin T, et al. Interactive analysis and assessment of single-cell copy-number variations. Nat. Methods. 2015;12:1058–60. doi: 10.1038/nmeth.3578. PubMed DOI PMC

Kaufmann, T. L., et al. MEDICC2: whole-genome doubling aware copy-number phylogenies for cancer evolution. 2021. bioRxiv 10.1101/2021.02.28.433227 PubMed PMC

Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI

Van der Auwera GA, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 2013;43:11 10 1–11 10 33. PubMed PMC

Rasmussen M, et al. Allele-specific copy number analysis of tumor samples with aneuploidy and tumor heterogeneity. Genome Biol. 2011;12:R108. doi: 10.1186/gb-2011-12-10-r108. PubMed DOI PMC

Zaliova M, et al. Slower early response to treatment and distinct expression profile of childhood high hyperdiploid acute lymphoblastic leukaemia with DNA index <1.16. Genes Chromosomes Cancer. 2016;55:727–37. doi: 10.1002/gcc.22374. PubMed DOI

Duployez N, et al. Detection of a new heterozygous germline ETV6 mutation in a case with hyperdiploid acute lymphoblastic leukemia. Eur. J. Haematol. 2018;100:104–107. doi: 10.1111/ejh.12981. PubMed DOI

Lawrence MS, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8. doi: 10.1038/nature12213. PubMed DOI PMC

Shuai S, et al. Combined burden and functional impact tests for cancer driver discovery using DriverPower. Nat. Commun. 2020;11:734. doi: 10.1038/s41467-019-13929-1. PubMed DOI PMC

Blokzijl F, Janssen R, van Boxtel R, Cuppen E. Mutational patterns: comprehensive genome-wide analysis of mutational processes. Genome Med. 2018;10:33. doi: 10.1186/s13073-018-0539-0. PubMed DOI PMC

Valind A, Jin Y, Gisselsson D. Elevated tolerance to aneuploidy in cancer cells: estimating the fitness effects of chromosome number alterations by in silico modelling of somatic genome evolution. PLoS One. 2013;8:e70445. doi: 10.1371/journal.pone.0070445. PubMed DOI PMC

Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability. Nature. 2009;460:278–82. doi: 10.1038/nature08136. PubMed DOI PMC

Woodward, E. L., et al. Clonal origin and development of high hyperdiploidy in childhood acute lymphoblastic leukemia. HeH_simulation: Simulation of high hyperdiploidy development. Zenodo. 10.5281/zenodo.6340286. 2022.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...