Utilization of Pharmaceutical Technology Methods for the Development of Innovative Porous Metasilicate Pellets with a Very High Specific Surface Area for Chemical Warfare Agents Detection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VI20192022172
Ministerstvo Vnitra České Republiky
PubMed
34834274
PubMed Central
PMC8622269
DOI
10.3390/pharmaceutics13111860
PII: pharmaceutics13111860
Knihovny.cz E-zdroje
- Klíčová slova
- BET method, chemical warfare agent, detection tube, extrusion, metasilicate, phosgene, porous pellets, spheronization, volatile substance,
- Publikační typ
- časopisecké články MeSH
Pharmaceutical technology offers various dosage forms that can be applied interdisciplinary. One of them are spherical pellets which could be utilized as a carrier in emerging second-generation detection tubes. This detection system requires carriers with high specific surface area (SSA), which should allow better adsorption of toxic substances and detection reagents. In this study, a magnesium aluminometasilicate with high SSA was utilized along with various concentrations of volatile substances (menthol, camphor and ammonium bicarbonate) to increase further the carrier SSA after their sublimation. The samples were evaluated in terms of physicochemical parameters, their morphology was assessed by scanning electron microscopy, and the Brunauer-Emmett-Teller (BET) method was utilized to measure SSA. The samples were then impregnated with a detection reagent o-phenylenediamine-pyronine and tested with diphosgene. Only samples prepared using menthol or camphor were found to show red fluorescence under the UV light in addition to the eye-visible red-violet color. This allowed the detection of diphosgene/phosgene at a concentration of only 0.1 mg/m3 in the air for samples M20.0 and C20.0 with their SSA higher than 115 m2/g, thus exceeding the sensitivity of the first-generation DT-12 detection tube.
Department of Chemistry Faculty of Science Masaryk University Kotlářská 2 611 37 Brno Czech Republic
Oritest Spol s r o Čerčanská 640 30 140 00 Prague Czech Republic
Zobrazit více v PubMed
Ghebre-Sellassie I., Martin C. Pharmaceutical Extrusion Technology. 1st ed. CRC Press; Boca Raton, FL, USA: 2003. DOI
Muley S., Nandgude T., Poddar S. Extrusion–spheronization a promising pelletization technique: In-depth review. Asian J. Pharm. Sci. 2016;11:684–699. doi: 10.1016/j.ajps.2016.08.001. DOI
Nesbitt R.U. Effect of formulation components on drug release from multiparticulates. Drug Dev. Ind. Pharm. 2008;20:3207–3236. doi: 10.3109/03639049409041974. DOI
Zeman J., Vetchý D., Franc A., Pavloková S., Pitschmann V., Matějovský L. The development of a butyrylcholinesterase porous pellet for innovative detection of cholinesterase inhibitors. Eur. J. Pharm. Sci. 2017;109:548–555. doi: 10.1016/j.ejps.2017.09.015. PubMed DOI
Vysloužil J., Vetchý D., Zeman J., Farsa O., Franc A., Gajdziok J., Vysloužil J., Ficeriová K., Kulich P., Kobliha Z., et al. Pellet patented technology for fast and distinct visual detection of cholinesterase inhibitors in liquids. J. Pharm. Biomed. Anal. 2018;161:206–213. doi: 10.1016/j.jpba.2018.08.050. PubMed DOI
Zeman J., Vetchý D., Pavloková S., Franc A., Pitschmann V. Unique coated neusilin pellets with a more distinct and fast visual detection of nerve agents and other cholinesterase inhibitors. J. Pharm. Biomed. Anal. 2020;179:e113004. doi: 10.1016/j.jpba.2019.113004. PubMed DOI
Pitschmann V. Overall view of chemical and biochemical weapons. Toxins. 2014;6:1761–1784. doi: 10.3390/toxins6061761. PubMed DOI PMC
Chauhan S., Chauhan S., D’Cruz R., Faruqi S., Singh K.K., Varma S., Singh M., Karthik V. Chemical warfare agents. Environ. Toxicol. Pharmacol. 2008;26:113–122. doi: 10.1016/j.etap.2008.03.003. PubMed DOI
Nepovimova E., Kuca K. Chemical warfare agent NOVICHOK—Mini-review of available data. Food Chem. Toxicol. 2018;121:343–350. doi: 10.1016/j.fct.2018.09.015. PubMed DOI
Halámek E., Kobliha Z. Potential chemical warfare agents. Chem. Listy. 2011;105:323–333.
Ali J. Chemical weapons and the Iran-Iraq war: A case study in noncompliance. Nonprolif. Rev. 2001;8:43–58. doi: 10.1080/10736700108436837. DOI
Tu A.T. Aum Shinrikyo’s chemical and biological weapons: More than sarin. Forensic Sci. Rev. 2014;26:115–120. PubMed
Rosman Y., Eisenkraft A., Milk N., Shiyovich A., Ophir N., Shrot S., Kreiss Y., Kassirer M. Lessons learned from the Syrian sarin attack: Evaluation of a clinical syndrome through social media. Ann. Intern. Med. 2014;160:644–648. doi: 10.7326/M13-2799. PubMed DOI
Rodriguez-Llanes J.M., Guha-Sapir D., Schlüter B.S., Hicks M.H.R. Epidemiological findings of major chemical attacks in the Syrian war are consistent with civilian targeting: A short report. Confl. Health. 2018;12:1–6. doi: 10.1186/s13031-018-0150-4. PubMed DOI PMC
Ananthalakshmi A., Lee L. VX Used in Airport Murder of Kim Jong Nam Kills in Minutes. [(accessed on 12 January 2021)]. Available online: https://www.reuters.com/article/uk-northkorea-malaysia-kim-nerveagent-idUKKBN1630FG.
Vale J.A., Marrs T.C., Maynard R.L. Novichok: A murderous nerve agent attack in the UK. Clin. Toxicol. 2018;56:1093–1097. doi: 10.1080/15563650.2018.1469759. PubMed DOI
Oxford Analytica Navalny attack will cause serious German-Russian rift. Expert Brief. 2020 doi: 10.1108/oxan-es255014. DOI
Bajgar J., Fusek J., Kassa J., Kuca K., Jun D. Global impact of chemical warfare agents used before and after 1945. In: Gupta R.C., editor. Handbook of Toxicology of Chemical Warfare Agents. Academic Press; Cambridge, UK: 2020. pp. 27–36.
Sferopoulos R. A Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-off-the-Shelf Items. [(accessed on 12 January 2021)]. Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a502856.pdf.
Zeman J., Vetchý D., Franc A., Pitschmann V. Methods of enzymes immobilization and their use for optical (Colorimetric) detection of cholinesterase inhibitors. Chem. Listy. 2018;112:434–439.
Pitschmann V., Halámek E., Kobliha Z., Tušarová I. Development of detection tubes for chemical warfare agents in the Czech Republic. Chem. Listy. 2011;105:334–345.
Tušarová I., Halámek E., Orel J. Detection Tube of Choline Esterases Inhibitors in Air and Water. 285242. CZ Patent. 1999
Pohanka M., Vlček V., Žďárová-Karasová J., Kuča K., Cabal J. Colorimetric detectors based on acetylcholinesterase and its construction. Vojen. Zdrav. Listy. 2010;79:9–14.
Vetchý D., Pitschmann V., Vetchá M., Kašparovský T., Matějovský L. Preparation and evaluation of carriers for detection of cholinesterase inhibitors. Neuroendocrinol. Lett. 2015;36:95–99. PubMed
Zeman J., Vetchý D., Pavloková S., Franc A., Pitschmann V., Dominik M., Urbanová M., Šeděnková I. Tubes for detection of cholinesterase inhibitors—Unique effects of Neusilin on the stability of butyrylcholinesterase-impregnated carriers. Enzyme Microb. Technol. 2019;128:26–33. doi: 10.1016/j.enzmictec.2019.05.002. PubMed DOI
Zeman J., Pavloková S., Vetchý D., Pitschmann V. Double-coated pellets with semipermeable ethylcellulose coating for detection of cholinesterase inhibitors. Ceska Slov. Farm. 2020;69:24–32. PubMed
Zhou X., Zeng Y., Liyan C., Wu X., Yoon J. A fluorescent sensor for dual-channel discrimination between phosgene and a nerve-gas mimic. Angew. Chem. Int. Ed. 2016;55:4729–4733. doi: 10.1002/anie.201601346. PubMed DOI
Kim T., Hwang B., Bouffard J., Kim Y. Instantaneous colorimetric and fluorogenic detection of phosgene with a meso-oxime-BODIPY. Anal. Chem. 2017;89:12837–12842. doi: 10.1021/acs.analchem.7b03316. PubMed DOI
Feng W., Gong S., Zhou E., Yin X., Feng G. Readily prepared iminocoumarin for rapid, colorimetric and ratiometric fluorescent detection of phosgene. Anal. Chim. Acta. 2018;1029:97–103. doi: 10.1016/j.aca.2018.04.048. PubMed DOI
Hu Y., Zhou X., Jung H., Nam S.J., Kim M.H., Yoon J. Colorimetric and fluorescent detecting phosgene by a second-generation chemosensor. Anal. Chem. 2018;90:3382–3386. doi: 10.1021/acs.analchem.7b05011. PubMed DOI
Zeng L., Zeng H., Wang S., Wang S., Hou J.T., Yoon J. A paper-based chemosensor for highly specific, ultrasensitive, and instantaneous visual detection of toxic phosgene. Chem. Commun. 2019;55:13753–13756. doi: 10.1039/C9CC07437F. PubMed DOI
Vraníková B., Gajdziok J. Evaluation of sorptive properties of various carriers and coating materials for liquisolid systems. Acta Pol. Pharm. 2015;72:539–549. PubMed
Williams H.D., Van Speybroeck M., Augustijns P., Porter C.J.H. Lipid-based formulations solidified via adsorption onto the mesoporous carrier Neusilin® US2: Effect of drug type and formulation composition on in vitro pharmaceutical performance. J. Pharm. Sci. 2014;103:1734–1746. doi: 10.1002/jps.23970. PubMed DOI
Parker M.D., York P., Rowe R.C. Binder-substrate interactions in wet granulation. 3: The effect of excipient source variation. Int. J. Pharm. 1992;80:179–190. doi: 10.1016/0378-5173(92)90276-8. DOI
Fagerlund G. Determination of specific surface by the BET method. Matériaux Constr. 1973;6:239–245. doi: 10.1007/BF02479039. DOI
Pitschmann V., Matějovský L., Zeman J., Vetchý D., Dymák M., Lobotka M., Pavloková S., Moravec Z. Second-generation phosgene and diphosgene detection tube. Chemosensors. 2020;8:107. doi: 10.3390/chemosensors8040107. DOI
Cosijns A., Nizet D., Nikolakakis I., Vervaet C., De Beer T., Siepmann F., Siepmann J., Evrard B., Remon J.P. Porous pellets as drug delivery system. Drug Dev. Ind. Pharm. 2009;35:655–662. doi: 10.1080/03639040802578103. PubMed DOI
Baradari H., Damia C., Dutreih-Colas M., Laborde E., Pécout N., Champion E., Chulia D., Viana M. Calcium phosphate porous pellets as drug delivery systems: Effect of drug carrier composition on drug loading and in vitro release. J. Eur. Ceram. Soc. 2012;32:2679–2690. doi: 10.1016/j.jeurceramsoc.2012.01.018. DOI
Vetchý D., Leštinová H., Tušarová I. Methods of pharmaceutical technology in preparation of pellets for detection of acetylcholinesterase inhibitors. Ceska Slov. Farm. 2012;61:234–239. PubMed
R Core Team R: A Language and Environment for Statistical Computing. [(accessed on 19 January 2021)]. Available online: https://www.r-project.org.
Vertomrnen J., Kinget R. The influence of five selected processing and formulation variables on the particle size, particle size distribution, and friability of pellets produced in a rotary processor. Drug Dev. Ind. Pharm. 1997;23:39–46. doi: 10.3109/03639049709148480. DOI
Deasy P.B., Law M.F.L. Use of extrusion-spheronization to develop an improved oral dosage form of indomethacin. Int. J. Pharm. 1997;148:201–209. doi: 10.1016/S0378-5173(96)04846-6. DOI
Reimann C., Filzmoser P., Garrett R., Dutter R. Statistical Data Analysis Explained: Applied Environmental Statistics with R. John Wiley & Sons, Inc.; Chichester, UK: 2008.
Oritest. [(accessed on 20 January 2021)]. Available online: https://www.oritest.cz/wp-content/uploads/2020/02/Tubes-CWA-brochure.pdf.