Development and Comparison of Various Coated Hard Capsules Suitable for Enteric Administration to Small Patient Cohorts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1574/2020
Masaryk University
PubMed
36015203
PubMed Central
PMC9414254
DOI
10.3390/pharmaceutics14081577
PII: pharmaceutics14081577
Knihovny.cz E-zdroje
- Klíčová slova
- DRcapsTM capsules, Eudragit® S, enteric coating, hard gelatin capsules, immersion method, principal component analysis,
- Publikační typ
- časopisecké články MeSH
Pharmaceutical technology offers several options for protecting substances from acidic environments, such as encapsulation in enteric capsules or dosage form with enteric coating. However, commercial enteric capsules do not always meet limits for pharmacopeial delayed release, and the coating process is generally challenging. Preparing small enteric batches suitable for clinical use is, therefore, an unsolved problem. This experiment offers a simple coating process of DRcapsTM capsules based on hypromellose (HPMC) and gellan gum to achieve small intestine administration. In addition, DRcapsTM capsules were compared to hard gelatin capsules to evaluate the suitability of the coating method. Both capsules were immersed in dispersions of Eudragit® S 100, Acryl-EZE®, and Cellacefate at concentrations of 10.0, 15.0, and 20.0% and dried. Coated capsules were evaluated by electron microscopy, disintegration, and dissolution test with a two-step pH change (from 1.2 to 6.8, then to 7.5) to simulate passage through the digestive tract. DRcapsTM capsules coated with Eudragit® S and Cellacefate achieved acid resistance. While samples coated with Eudragit® S released their contents within 360 min at pH 6.8 (small intestine), regardless of polymer concentration, capsules with 15.0 and 20.0% coatings of Cellacefate released content at pH 7.5 (colon) within 435 and 495 min, respectively.
Zobrazit více v PubMed
Murachanian D. Two-piece hard capsules for pharmaceutical formulation. J. GXP Compliance. 2010;14:31–42.
Tuleu C., Khela M.K., Evans D.F., Jones B.E., Nagata S., Basit A.W. A scintigraphic investigation of the disintegration behaviour of capsules in fasting subjects: A comparison of hypromellose capsules containing carrageenan as a gelling agent and standard gelatin capsules. Eur. J. Pharm. Sci. 2007;30:251–255. doi: 10.1016/j.ejps.2006.11.008. PubMed DOI
Lalani R., Samant R., Mistra A. Applications of polymers in small intestinal drug delivery. In: Mistra A., Shahiwala A., editors. Applications of Polymers in Drug Delivery. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2021. pp. 105–129. DOI
Nober C., Manini G., Carlier E., Raquez J.M., Benali S., Dubois P., Amighi K., Goole J. Feasibility study into the potential use of fused-deposition modeling to manufacture 3D-printed enteric capsules in compounding pharmacies. Int. J. Pharm. 2019;569:118581. doi: 10.1016/j.ijpharm.2019.118581. PubMed DOI
Grimm M., Ball K., Scholz E., Schneider F., Sivert A., Benameur H., Kromrey M.L., Kühn J.P., Weitschies W. Characterization of the gastrointestinal transit and disintegration behavior of floating and sinking acid-resistant capsules using a novel MRI labeling technique. Eur. J. Pharm. Sci. 2019;129:163–172. doi: 10.1016/j.ejps.2019.01.012. PubMed DOI
Dvořáčková K., Franc A., Kejdušová M. Drug delivery to the large intestine. [(accessed on 20 May 2022)];Chemické Listy. 2013 107:522–529. Available online: http://chemicke-listy.cz/ojs3/index.php/chemicke-listy/article/view/6455.
Dvořáčková K., Rabišková M., Gajdziok J., Vetchý D., Muselík J., Bernatoniene J., Bajerová M., Drottnerová P. Coated capsules for drug targeting to proximal and distal part of human intestine. Acta Pol. Pharm. 2010;67:191–199. PubMed
Amidon S., Brown J.E., Dave V.S. Colon-targeted oral drug delivery systems: Design trends and approaches. AAPS PharmSciTech. 2015;16:731–741. doi: 10.1208/s12249-015-0350-9. PubMed DOI PMC
Wang J.W., Kuo C.H., Kuo F.C., Wang Y.K., Hsu W.H., Yu F.J., Hu H.M., Hsu P.I., Wang J.Y., Wu D.C. Fecal microbiota transplantation: Review and update. J. Formos. Med. Assoc. 2019;118:23–31. doi: 10.1016/j.jfma.2018.08.011. PubMed DOI
Huyghebaert N., Vermeire A., Remon J.P. Alternative method for enteric coating of HPMC capsules resulting in ready-to-use enteric-coated capsules. Eur. J. Pharm. Sci. 2004;21:617–623. doi: 10.1016/j.ejps.2004.01.002. PubMed DOI
Wening K., Breitkreutz J. Oral drug delivery in personalized medicine: Unmet needs and novel approaches. Int. J. Pharm. 2011;404:1–9. doi: 10.1016/j.ijpharm.2010.11.001. PubMed DOI
Benameur H. Enteric Capsule Drug Delivery Technology–Achieving Protection without Coating. Drug Dev. Deliv. 2015;15:34–37.
Jančálková M. Master’s Thesis. Masaryk University; Brno, Czech Republic: 2021. Capsule Coating for Faecal Transplant Transport.
DRcapsTM Capsules. [(accessed on 11 March 2022)]. Available online: https://s3.amazonaws.com/cpsl-web/kc/library/c1a-32029_DRCaps-A4_FIN.PDF.
Youngster I., Russell G.H., Pindar C., Ziv-Baran T., Sauk J., Hohmann E.L. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA. 2014;312:1772–1778. doi: 10.1001/jama.2014.13875. PubMed DOI
Al-Tabakha M.M., Arida A.I., Fahelelbom K.M.S., Sadek B., Jarad R.A.A. Performances of New Generation of Delayed Release Capsules. J. Young Pharm. 2015;7:36–44. doi: 10.5530/jyp.2015.1.7. DOI
AR CAPS® Enteric Capsules. [(accessed on 10 March 2022)]. Available online: https://www.cphi-online.com/ar-caps-enteric-capsules-prod476709.html.
European Pharmacopoeia. 9th ed. European Pharmacopoeia Commission; Strasbourg, France: 2017. Ph. Eur. MMXVII.
EMBO CAPS® AP capsules. [(accessed on 10 February 2022)]. Available online: https://www.cphi-online.com/embo-capsap-prod907236.html.
Acid Resistant Hypromellose Capsules. EMBO CAPS® AP. [(accessed on 16 February 2022)]. Available online: https://www.capromax.com/wp-content/uploads/2016/04/EMBOCAPS_AP.pdf.
BioVXR®. [(accessed on 20 April 2022)]. Available online: https://www.dfc.com.tw/archive/product/item/files/BioVXR%20brochure%202022.pdf.
Chang R.J., Wu C.J., Lin Y.H. Acid Resistant Capsule Shell Composition, Acid Resistant Capsule Shell and Its Preparing Process. No. 9,452,141 B1. U.S. Patent. 2016 September 27;
Hussan S.D., Santanu R., Verma P., Bhandari V. A review on recent advances of enteric coating. IOSR J. Pharm. 2012;2:5–11. doi: 10.9790/3013-2610511. DOI
Cole E.T., Scott R.A., Connor A.L., Wilding I.R., Petereit H.U., Schminke C., Beckert T., Cadé D. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int. J. Pharm. 2002;231:83–95. doi: 10.1016/S0378-5173(01)00871-7. PubMed DOI
EUDRAGIT® L 100 and EUDRAGIT® S 100—Technical Information. [(accessed on 14 February 2022)]. Available online: https://studylib.net/doc/25298564/evonik-eudragit-l-100-and-eudragit-s-100-specification-sheet.
AcrylEZE®—Product Information. [(accessed on 13 November 2021)]. Available online: https://www.colorcon.com/products-formulation/all-products/film-coatings/enteric-release/acryl-eze/download/543/2025/34.
Saikh M.A.A. Aqueous film coating the current trend. J. Drug Deliv. Ther. 2021;11:221–224. doi: 10.22270/jddt.v11i4-S.4911. DOI
Thoma K., Bechtold K. Enteric Coated Hard Gelatin Capsules. 2018. [(accessed on 15 March 2022)]. Available online: https://cpsl-web.s3.amazonaws.com/kc/library/enteric-coated-hard-gelatin-capsules.pdf?mtime=20170701121845.
Moghimipour E., Rezaei M., Kouchak M., Fatahiasl J., Angali K.A., Ramezani Z., Amini M., Dorkoosh F.A., Handali S. Effects of coating layer and release medium on release profile from coated capsules with Eudragit FS 30D: An in vitro and in vivo study. Drug Dev. Ind. Pharm. 2018;44:861–867. doi: 10.1080/03639045.2017.1415927. PubMed DOI
Sonaje K., Chen Y.J., Chen H.L., Wey S.P., Juang J.H., Nguyen H.N., Hsu C.W., Lin K.J., Sung H.W. Enteric-coated capsules filled with freeze-dried chitosan/poly(γ-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials. 2010;31:3384–3394. doi: 10.1016/j.biomaterials.2010.01.042. PubMed DOI
Vattanagijying Y., Kulvanich P., Chatchawalsaisin J. Fabrication of delayed release hard capsule shells from zein/methacrylic acid copolymer blends. Eur. J. Pharm. Sci. 2022;171:106124. doi: 10.1016/j.ejps.2022.106124. PubMed DOI
Gullapalli R.P., Mazzitelli C.L. Gelatin and non-gelatin capsule dosage forms. J. Pharm. Sci. 2017;106:1453–1465. doi: 10.1016/j.xphs.2017.02.006. PubMed DOI
Bodmeier R., Paeratakul O. The distribution of plasticizers between aqueous and polymer phases in aqueous colloidal polymer dispersions. Int. J. Pharm. 1994;103:47–54. doi: 10.1016/0378-5173(94)90202-X. DOI
Rowe R.C., Sheskey P.J., Weller P.J. Handbook of Pharmaceutical Excipients. The Pharmaceutical Press; London, UK: 2003.
Brookfield DV-II+PRO Viscometer Manual. [(accessed on 20 January 2022)]. Available online: https://www.brookfieldengineering.com/-/media/ametekbrookfield/manuals/obsolete%20manuals/dviipro%20m03165f0612.pdf?la=en&fbclid=IwAR2sRzHX9LS4LzT6khm0enZi6cKau4k06x3lJVi6zP3NapN1u6Iap29dv9M.
Costa P., Lobo J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001;13:123–133. doi: 10.1016/S0928-0987(01)00095-1. PubMed DOI
Anderson N.H., Bauer M., Boussac N., Khan-Malek R., Munden P., Sardaro M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J. Pharm. Biomed. Anal. 1998;17:811–822. doi: 10.1016/S0731-7085(98)00011-9. PubMed DOI
Helmy S.A., Bedaiwy H.M.E. In vitro dissolution similarity as a surrogate for in vivo bioavailability and therapeutic equivalence. Dissolution Technol. 2016;23:32–39. doi: 10.14227/DT230316P32. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021.
Khalafvandi S.A., Pazokian M.A., Fathollahi E. The Investigation of Viscometric properties of the most reputable types of viscosity index improvers in different lubricant case oils: API groups I, II and III. Lubricants. 2022;10:6. doi: 10.3390/lubricants10010006. DOI
Felton L.A. Mechanisms of polymeric film formation. Int. J. Pharm. 2013;457:423–427. doi: 10.1016/j.ijpharm.2012.12.027. PubMed DOI
Bruce C.D., Fegely K.A., Rajabi-Siahboomi A.R., McGinity J.W. The influence of heterogeneous nucleation on the surface crystallization of guaifenesin from melt extrudates containing Eudragit® L10055 or Acryl-EZE®. Eur. J. Pharm. Biopharm. 2010;75:71–78. doi: 10.1016/j.ejpb.2009.12.001. PubMed DOI
Felton L.A., McGinity J.W. Adhesion of polymeric films to pharmaceutical solids. Eur. J. Pharm. Biopharm. 1999;47:3–14. doi: 10.1016/S0939-6411(98)00082-4. PubMed DOI
Dvořáčková K., Rabišková M., Muselík J., Gajdziok J., Bajerová M. Coated hard capsules as the pH-dependent drug transport systems to ileo-colonic compartment. Drug Dev. Ind. Pharm. 2011;37:1131–1140. doi: 10.3109/03639045.2011.561350. PubMed DOI
Acryl-EZE®. Aqueous Acrylic Enteric System, Colorcon. [(accessed on 23 March 2022)]. Available online: https://www.colorcon.com/search/item/2035-crs-2007-the-influence-of-plasticizer-type-and-concentration-on-acid-resistance-of-coated-tablets.
Fu M., Al-Gousous J., Blechar J.A., Langguth P. Enteric hard capsules for targeting the small intestine: Positive correlation between in vitro disintegration and dissolution times. Pharmaceutics. 2020;12:123. doi: 10.3390/pharmaceutics12020123. PubMed DOI PMC
Deasy P.B., O’Connell M.J.M. Correlation of surface characteristics with ease of production and in vitro release of sodium salicylate from various enteric coated microcapsules prepared by pan coating. J. Microencapsul. 1984;1:217–227. doi: 10.3109/02652048409049360. PubMed DOI
Commercially Available Enteric Empty Hard Capsules, Production Technology and Application