Exploration of Neusilin® US2 as an Acceptable Filler in HPMC Matrix Systems-Comparison of Pharmacopoeial and Dynamic Biorelevant Dissolution Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1574/2020
Masaryk University
PubMed
35057023
PubMed Central
PMC8780766
DOI
10.3390/pharmaceutics14010127
PII: pharmaceutics14010127
Knihovny.cz E-zdroje
- Klíčová slova
- HPMC, Neusilin® US2, USP apparatus 2 dissolution test, dynamic dissolution study, matrix tablets, microcrystalline cellulose,
- Publikační typ
- časopisecké články MeSH
Modern pharmaceutical technology still seeks new excipients and investigates the further use in already known ones. An example is magnesium aluminometasilicate Neusilin® US2 (NEU), a commonly used inert filler with unique properties that are usable in various pharmaceutical fields of interest. We aimed to explore its application in hypromellose matrix systems (HPMC content 10-30%) compared to the traditionally used microcrystalline cellulose (MCC) PH 102. The properties of powder mixtures and directly compressed tablets containing individual fillers NEU or MCC, or their blend with ratios of 1.5:1, 1:1, and 0.5:1 were investigated. Besides the routine pharmaceutical testing, we have enriched the matrices' evaluation with a biorelevant dynamic dissolution study and advanced statistical analysis. Under the USP apparatus 2 dissolution test, NEU, individually, did not provide advantages compared to MCC. The primary limitations were the burst effect increase followed by faster drug release at the 10-20% HPMC concentrations. However, the biorelevant dynamic dissolution study did not confirm these findings and showed similarities in dissolution profiles. It indicates the limitations of pharmacopoeial methods in matrix tablet development. Surprisingly, the NEU/MCC blend matrices at the same HPMC concentration showed technologically advantageous properties. Besides improved flowability, tablet hardness, and a positive impact on the in vitro drug dissolution profile toward zero-order kinetics, the USP 2 dissolution data of the samples N75M50 and N50M50 showed a similarity to those obtained from the dynamic biorelevant apparatus with multi-compartment structure. This finding demonstrates the more predictable in vivo behaviour of the developed matrix systems in human organisms.
Department of Chemistry Faculty of Pharmacy Masaryk University 61200 Brno Czech Republic
Department of Pharmacology and Toxicology Veterinary Research Institute 62100 Brno Czech Republic
Zobrazit více v PubMed
Ghori M.U., Conway B.R. Hydrophilic Matrices for Oral Control Drug Delivery. Am. J. Pharm. Sci. 2015;3:103–109. doi: 10.12691/ajps-3-5-1. DOI
Mašková E., Kubová K., Raimi-Abraham B.T., Vllasaliu D., Vohlidalova E., Turanek J., Mašek J. Hypromellose–A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J. Control. Release. 2020;324:695–727. doi: 10.1016/j.jconrel.2020.05.045. PubMed DOI
Ghimire M., Hodges L.A., Band J., Mullen A.B. In-vitro and in-vivo erosion profiles of hydroxypropylmethylcellulose (HPMC) matrix tablets. J. Control. Release. 2010;147:70–75. doi: 10.1016/j.jconrel.2010.06.015. PubMed DOI
Nokhodchi A., Raja S., Patel P., Asare-Addo K. The Role of Oral Controlled Release Matrix Tablets in Drug Delivery Systems. BioImpacts. 2012;2:175–187. doi: 10.5681/bi.2012.027. PubMed DOI PMC
Leskinen J.T.T., Hakulinen M.A., Kuosmannen M., Ketolainen J., Abrahmsén-Alami S., Lappalainen R. Monitoring of swelling of hydrophilic polymer matrix tablets by ultrasound techniques. Int. J. Pharm. 2011;404:142–147. doi: 10.1016/j.ijpharm.2010.11.026. PubMed DOI
Hentzschel C.M., Sakmann A., Leopold C.S. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Dev. Ind. Pharm. 2011;37:1200–1207. doi: 10.3109/03639045.2011.564184. PubMed DOI
Rowe R.C., Sheskey P.J., Weller P.J. Handbook of Pharmaceutical Excipients. The Pharmaceutical Press; London, UK: 2003.
Mutalik S., Naha A., Usha A.N., Ranjith A.K., Musmade P., Manoj K., Prasanna S. Preparation, in vitro, preclinical and clinical evaluations of once-daily sustained release tablets of aceclofenac. Arch. Pharm. Res. 2007;30:222–234. doi: 10.1007/BF02977698. PubMed DOI
Algin E.Y., Kilicarslan M., Yuksel N., Baykara T. Effects of direct tableting agents on drug release kinetics and swelling behavior of hydrophilic matrix tablets. Turk. J. Med. Sci. 2006;36:177–184.
Vaidya M.P., Avachat A.M. Investigation of the impact of insoluble diluents on the compression and release properties of matrix based sustained release tablets. Powder Technol. 2011;214:375–381. doi: 10.1016/j.powtec.2011.08.035. DOI
Kostelanská K., Gajdziok J., Vetchý D. Porous Carriers Used in Pharmaceutical Technology. Chem. Listy. 2018;112:840–847.
Nikolakakis I., Partheniadis I. Self-Emulsifying Granules and Pellets: Composition and Formation Mechanisms for Instant or Controlled Release. Pharmaceutics. 2017;9:50. doi: 10.3390/pharmaceutics9040050. PubMed DOI PMC
Shete A., Salunkhe A., Yadav A., Sakhare S., Doijad R. Neusilin based liquisolid compacts of albendazole: Design, development, characterization and in vitro anthelmintic activity. J. Res. Pharm. 2019;23:441–456. doi: 10.12991/jrp.2019.151. DOI
Karmarkar A., Gonjari I., Hosman A., Dhabal P., Bhis S. Liquisolid tablets: A novel approach for drug delivery. Int. J. Health Res. 2010;2:93–98. doi: 10.4314/ijhr.v2i1.55386. DOI
Fuji Chemical Industries Co., Ltd. Pharmaceuticals. 2019. [(accessed on 29 July 2019)]. Available online: http://www.fujichemical.co.jp/english/medical/medicine/neusilin/index.html.
Khanfar M., Fares M.M., Salem M.S., Qandil A.M. Mesoporous silica based macromolecules for dissolution enhancement of irbesartan drug using pre-adjusted pH method. Micropor. Mesopor. Mater. 2013;173:22–28. doi: 10.1016/j.micromeso.2013.02.007. DOI
Vraníková B., Gajdziok J., Doležel P. The effect of superdisintegrants on the properties and dissolution profiles of liquisolid tablets containing rosuvastatin. Pharm. Dev. Technol. 2017;22:138–147. doi: 10.3109/10837450.2015.1089900. PubMed DOI
Krupa A., Jachowicz R., Kurek M., Figiel W., Kwiecień M. Preparation of solid self-emulsifying drug delivery systems using magnesium aluminometasilicates and fluid-bed coating process. Powder Technol. 2014;266:329–339. doi: 10.1016/j.powtec.2014.06.043. DOI
Kamel R., Basha M. Preparation and in vitro evaluation of rutin nanostructured liquisolid delivery systém. Bull. Fac. Pharm. Cairo Univ. 2013;51:261–272. doi: 10.1016/j.bfopcu.2013.08.002. DOI
Gajdziok J., Vranikova B. Enhancing of drug bioavailability using liquisolid system formulation. Ces. Slov. Farm. 2015;64:55–66. PubMed
Zeman J., Vetchý D., Franc A., Pavloková S., Pitschmann V., Matějovský L. The development of a butyrylcholinesterase porous pellet for innovative detection of cholinesterase inhibitors. Eur. J. Pharm. Sci. 2017;109:548–555. doi: 10.1016/j.ejps.2017.09.015. PubMed DOI
Lou H., Liu M., Wang L., Mishra S.R., Qu W., Johnson J., Almoazen H. Development of a mini-tablet of co-grinded prednisone–neusilin complex for pediatric use. AAPS PharmSciTech. 2013;14:950–958. doi: 10.1208/s12249-013-9981-x. PubMed DOI PMC
Naiserová M., Kubová K., Vysloužil J., Pavloková S., Vetchý D., Urbanová M., Brus J., Vysloužil J., Kulich P. Investigation of Dissolution Behavior HPMC/Eudragit®/Magnesium Aluminometasilicate Oral Matrices Based on NMR Solid-State Spectroscopy and Dynamic Characteristics of Gel Layer. AAPS PharmSciTech. 2018;19:681–692. doi: 10.1208/s12249-017-0870-6. PubMed DOI
Pongjanyakul T., Rojtanatanya S. Use of Propranolol–Magnesium Aluminium Silicate Intercalated Complexes as Drug Reservoirs in Polymeric Matrix Tablets. Ind. J. Pharm. Sci. 2012;74:292–301. doi: 10.4103/0250-474X.107048. PubMed DOI PMC
Franc A., et Sova P.U.S. U.S. Patent and Trademark Office. Patent No. 7,655,697. 2010 February 2;
Stupák I., Pavloková S., Vysloužil J., Dohnal J., Čulen M. Optimization of dissolution compartments in a biorelevant dissolution apparatus golem v2, supported by multivariate analysis. Molecules. 2017;22:2042. doi: 10.3390/molecules22122042. PubMed DOI PMC
Hussain R., Nazeer T., Aziz N.K., Ali M. Effects of fasting intervals on gastric volume and pH. Pak. J. Med. Health Sci. 2011;5:582–586.
Jiang Y., Lin M., Fan G., Chen Y., Li Z., Zhao W., Hu J. Rapid determination of granisetron in human plasma by liquid chromatography coupled to tandem mass spectrometry and its application to bioequivalence study. J. Pharm. Biomed. Anal. 2006;42:464–473. doi: 10.1016/j.jpba.2006.05.001. PubMed DOI
Lydon A., Murray C., McGinley J., Plant R., Duggan F., Shorten G. Cisapride does not alter gastric volume or pH in patients undergoing ambulatory surgery. Can. J. Anesth. 1999;46:1181. doi: 10.1007/BF03015530. PubMed DOI
Lindahl A., Ungell A.L., Knutson L., Lennernäs H. Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm. Res. 1997;14:497–502. doi: 10.1023/A:1012107801889. PubMed DOI
Youngberg C.A., Berardi R.R., Howatt W.F., Hyneck M.L., Amidon G.L., Meyer J.H., Dressman J.B. Comparison of gastrointestinal pH in cystic fibrosis and healthy subjects. Dig. Dis. Sci. 1987;32:472–480. doi: 10.1007/BF01296029. PubMed DOI
Aulton M.E., Taylor K.M. Aulton’s pharmaceutics. Des. Manuf. Med. 2007;3:176–178.
Ewe K., Press A.G., Bollen S., Schuhn I. Gastric emptying of indigestible tablets in relation to composition and time of ingestion of meals studied by metal detector. Dig. Dis. Sci. 1991;36:146–152. doi: 10.1007/BF01300748. PubMed DOI
Fadda H.M., McConnell E.L., Short M.D., Basit A.W. Meal-induced acceleration of tablet transit through the human small intestine. Pharm. Res. 2009;26:356–360. doi: 10.1007/s11095-008-9749-2. PubMed DOI
Costa P., Lobo J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001;13:123–133. doi: 10.1016/S0928-0987(01)00095-1. PubMed DOI
Li H., Hardy R.J., Gu X. Effect of drug solubility on polymer hydration and drug dissolution from polyethylene oxide (PEO) matrix tablets. AAPS PharmSciTech. 2008;9:437–443. doi: 10.1208/s12249-008-9060-x. PubMed DOI PMC
Pěček D., Štýbnarová M., Mašková E., Doležel P., Kejdušová M., Vetchý D. The Use of Texture Analysis in Development and Evaluation of Matrix Tablets with Prolonged Drug Release. Chem. Listy. 2014;108:483–487.
Thoorens G., Krier F., Leclercq B., Carlin B., Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment-A review. Int. J. Pharm. 2014;473:64–72. doi: 10.1016/j.ijpharm.2014.06.055. PubMed DOI
Liu L.X., Marziano I., Bentham A.C., Litster J.D., White E.T., Howes T. Effect of particle properties on the flowability of ibuprofen powders. Int. J. Pharm. 2008;362:109–117. doi: 10.1016/j.ijpharm.2008.06.023. PubMed DOI
Kanojia N., Kaur L., Nagpal M., Bala R. Modified excipients in novel drug delivery: Need of the day. J. Pharm. Technol. Res. Manag. 2013;1:81–107. doi: 10.15415/jptrm.2013.11006. DOI
Adebisi A.O., Conway B.R., Asare-Addo K. The Influence of Fillers on Theophylline Release from Clay Matrices. Am. J. Pharm. Sci. 2015;3:120–125.
Patel V.F., Patel N.M. Statistical evaluation of influence of viscosity and content of polymer on dipyridamole release from floating matrix tablets: A technical note. AAPS PharmSciTech. 2007;8:140–144. doi: 10.1208/pt0803069. PubMed DOI PMC
Lotfipour F., Nokhodchi A., Saeedi M., Norouzi-Sani S., Sharbafi J., Siahi-Shadbad M.R. The effect of hydrophilic and lipophilic polymers and fillers on the release rate of atenolol from HPMC matrices. II Farmaco. 2004;59:819–825. doi: 10.1016/j.farmac.2004.06.006. PubMed DOI
Pygall P., Melia S.R., Timmins C.D. Hydrophilic matrix tablets for oral controlled release. In: Ford J.L., editor. Design and Evaluation of Hydroxypropyl Methylcellulose Matrix Tablets for Oral Controlled Release: A Historical Perspective. Volume 2. Springer; New York, NY, USA: 2014. pp. 17–51.
Zuleger S., Lippold B.C. Polymer particle erosion controlling drug release. I. Factors influencing drug release and characterization of the release mechanism. Int. J. Pharm. 2001;217:139–152. doi: 10.1016/S0378-5173(01)00596-8. PubMed DOI
Kawashima Y., Takecuchi H., Hino T., Niwa T., Lin T.L., Sekigawa F. Preparation of a Directly Tabletable Controlled-Release Matrix Filler with Microcrystalline Cellulose Modified with Hydroxypropymethylcellulose. Chem. Pharm. Bull. 1993;41:2156–2160. doi: 10.1248/cpb.41.2156. DOI
Gao P., Skoug J.W., Nixon P.R., Ju T.R., Stemm N.L., Sung K.C. Swelling of hydroxypropyl methylcellulose matrix tablets. 2. Mechanistic study of the influence of formulation variables on matrix performance and drug release. J. Pharm. Sci. 1996;85:732–740. doi: 10.1021/js9504595. PubMed DOI
Tukaram B.N., Rajagopalan I.V., Shartchandra P.S.I. The Effects of Lactose, Microcrystalline Cellulose and Dicalcium Phosphate on Swelling and Erosion of Compressed HPMC Matrix Tablets: Texture Analyzer. Iran. J. Pharm. Res. 2010;9:349–358. doi: 10.22037/ijpr.2010.900. PubMed DOI PMC
Colombo P., Bettini R., Santi P., Peppas N.A. Swellable matrices for controlled drug delivery: Gel-layer behaviour, mechanisms and optimal performance. Pharm. Sci. Technol. Today. 2000;3:198–204. doi: 10.1016/S1461-5347(00)00269-8. PubMed DOI
Scheubel E., Lindenberg M., Beyssac E., Cardot J.M. Small volume dissolution testing as a powerful method during pharmaceutical development. Pharmaceutics. 2010;2:351–363. doi: 10.3390/pharmaceutics2040351. PubMed DOI PMC
Ardelean M., Stoicescu S.M., Andrei C.L., Lupuliasa D., Viziteu H.M., Miron D.S., Mitu M.A. Comparison of the in vitro dissolution profiles for a high solubility drug from immediate-release formulations using USP apparatuses 3 and 4. Farmacia. 2018;66:477–482. doi: 10.31925/farmacia.2018.3.12. DOI
Čulen M., Tuszyński P.K., Polak S., Jachowicz R., Mendyk A., Dohnal J. Development of in vitro-in vivo correlation/relationship modeling approaches for immediate release formulations using compartmental dynamic dissolution data from “golem”: A novel apparatus. BioMed Res. Int. 2015;2015:328628. doi: 10.1155/2015/328628. PubMed DOI PMC
Pezzini B.R., Issa M.G., Duque M.D., Ferraz H.G. Applications of USP apparatus 3 in assessing the in vitro release of solid oral dosage forms. Braz. J. Pharm. Sci. 2015;51:265–272. doi: 10.1590/S1984-82502015000200003. DOI
Emara L.H., Taha N.F., Mursi N.M. Investigation of the effect of different flow-through cell designs on the release of diclofenac sodium SR tablets. Dissolution Technol. 2009;16:23–31. doi: 10.14227/DT160209P23. DOI