Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29168747
PubMed Central
PMC6149748
DOI
10.3390/molecules22122042
PII: molecules22122042
Knihovny.cz E-zdroje
- Klíčová slova
- Golem, biorelevant, caffeine, dissolution, multivariate data analysis,
- MeSH
- biologické modely * MeSH
- chemie farmaceutická * MeSH
- design vybavení MeSH
- farmakokinetika * MeSH
- gastrointestinální absorpce MeSH
- gastrointestinální trakt metabolismus MeSH
- multivariační analýza MeSH
- počítačová simulace MeSH
- rozpustnost * MeSH
- Publikační typ
- časopisecké články MeSH
Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus-Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium), we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.
Zobrazit více v PubMed
Amidon G.L., Lennernäs H., Shah V.P., Crison J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 1995;12:413–420. doi: 10.1023/A:1016212804288. PubMed DOI
Benet L.Z. The role of bcs (biopharmaceutics classification system) and bddcs (biopharmaceutics drug disposition classification system) in drug development. J. Pharm. Sci. 2013;102:34–42. doi: 10.1002/jps.23359. PubMed DOI PMC
U.S. Food and Drug Administration/Center for Drug Evaluation and Research . Guidance for Industry: Extended Release oral Dosage Forms: Development, Evaluation, and Application of in Vitro/In Vivo Correlations. Food and Drug Administration; Rockville, MD, USA: 1997.
Kaur P., Jiang X., Duan J., Stier E. Applications of in vitro-in vivo correlations in generic drug development: Case studies. AAPS J. 2015;17:1035–1039. doi: 10.1208/s12248-015-9765-1. PubMed DOI PMC
Davit B.M., Kanfer I., Tsang Y.C., Cardot J.M. BCS biowaivers: Similarities and differences among EMA, FDA, and WHO requirements. AAPS J. 2016;18:612–618. doi: 10.1208/s12248-016-9877-2. PubMed DOI PMC
Culen M., Rezacova A., Jampilek J., Dohnal J. Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small intestine. J. Pharm. Sci. 2013;102:2995–3017. doi: 10.1002/jps.23494. PubMed DOI
McAllister M. Dynamic dissolution: A step closer to predictive dissolution testing? Mol. Pharm. 2010;7:1374–1387. doi: 10.1021/mp1001203. PubMed DOI
Kostewicz E.S., Abrahamsson B., Brewster M., Brouwers J., Butler J., Carlert S., Dickinson P.A., Dressman J., Holm R., Klein S., et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur. J. Pharm. Sci. 2014;57:342–366. doi: 10.1016/j.ejps.2013.08.024. PubMed DOI
Vardakou M., Mercuri A., Naylor T.A., Rizzo D., Butler J.M., Connolly P.C., Wickham M.S., Faulks R.M. Predicting the human in vivo performance of different oral capsule shell types using a novel in vitro dynamic gastric model. Int. J. Pharm. 2011;419:192–199. doi: 10.1016/j.ijpharm.2011.07.046. PubMed DOI
Wickham M.J.S., Faulks R.M., Mann J., Mandalari G. The design, operation, and application of a dynamic gastric model. Dissolut. Technol. 2012;19:15–22. doi: 10.14227/DT190312P15. DOI
Kong F., Singh R.P. A human gastric simulator (HGS) to study food digestion in human stomach. J. Food Sci. 2010;75:E627–E635. doi: 10.1111/j.1750-3841.2010.01856.x. PubMed DOI
Bellmann S., Lelieveld J., Gorissen T., Minekus M., Havenaar R. Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Res. Int. 2016;88:191–198. doi: 10.1016/j.foodres.2016.01.030. DOI
Minekus M., Marteau P., Havenaar R. Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Altern. Lab. Anim. ATLA. 1995;23:197–209.
Minekus M., Smeets-Peeters M., Bernalier A., Marol-Bonnin S., Havenaar R., Marteau P., Alric M., Fonty G. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microbiol. Biotechnol. 1999;53:108–114. doi: 10.1007/s002530051622. PubMed DOI
Guerra A., Denis S., le Goff O., Sicardi V., Francois O., Yao A.F., Garrait G., Manzi A.P., Beyssac E., Alric M., et al. Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine. Biotechnol. Bioeng. 2016;113:1325–1335. doi: 10.1002/bit.25890. PubMed DOI
Hribar M., Trontelj J., Klancar U., Markun B., Celigoj Dujc T., Legen I. A novel intestine model apparatus for drug dissolution capable of simulating the peristaltic action. AAPS PharmSciTech. 2017;18:1646–1656. doi: 10.1208/s12249-016-0629-5. PubMed DOI
Culen M., Tuszynski P.K., Polak S., Jachowicz R., Mendyk A., Dohnal J. Development of in vitro-in vivo correlation/relationship modeling approaches for immediate release formulations using compartmental dynamic dissolution data from “golem”: A novel apparatus. Biomed. Res. Int. 2015;2015:328628. doi: 10.1155/2015/328628. PubMed DOI PMC
Reimann C., Filzmoser P., Garrett R.G., Dutter R. Statistical Data Analysis Explained: Applied Environmental Statistics with R. 1st ed. John Wiley & Sons; Chichester, UK: 2008. pp. 218–219.
Franek F., Holm P., Larsen F., Steffansen B. Interaction between fed gastric media (ensure plus®) and different hypromellose based caffeine controlled release tablets: Comparison and mechanistic study of caffeine release in fed and fasted media versus water using the usp dissolution apparatus 3. Int. J. Pharm. 2014;461:419–426. doi: 10.1016/j.ijpharm.2013.12.003. PubMed DOI
Mudie D.M., Murray K., Hoad C.L., Pritchard S.E., Garnett M.C., Amidon G.L., Gowland P.A., Spiller R.C., Amidon G.E., Marciani L. Quantification of gastrointestinal liquid volumes and distribution following a 240 ml dose of water in the fasted state. Mol. Pharm. 2014;11:3039–3047. doi: 10.1021/mp500210c. PubMed DOI
European Directorate for the Quality of Medicines & Healthcare . European Pharmacopoeia. 8th ed. Volume 1. Council of Europe; Strasbourg, France: 2013. p. 542. Chapter 4.1.3.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2015.
Costa P., Sousa Lobo J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001;13:123–133. doi: 10.1016/S0928-0987(01)00095-1. PubMed DOI