Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis

. 2017 Nov 23 ; 22 (12) : . [epub] 20171123

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29168747

Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus-Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium), we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.

Zobrazit více v PubMed

Amidon G.L., Lennernäs H., Shah V.P., Crison J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 1995;12:413–420. doi: 10.1023/A:1016212804288. PubMed DOI

Benet L.Z. The role of bcs (biopharmaceutics classification system) and bddcs (biopharmaceutics drug disposition classification system) in drug development. J. Pharm. Sci. 2013;102:34–42. doi: 10.1002/jps.23359. PubMed DOI PMC

U.S. Food and Drug Administration/Center for Drug Evaluation and Research . Guidance for Industry: Extended Release oral Dosage Forms: Development, Evaluation, and Application of in Vitro/In Vivo Correlations. Food and Drug Administration; Rockville, MD, USA: 1997.

Kaur P., Jiang X., Duan J., Stier E. Applications of in vitro-in vivo correlations in generic drug development: Case studies. AAPS J. 2015;17:1035–1039. doi: 10.1208/s12248-015-9765-1. PubMed DOI PMC

Davit B.M., Kanfer I., Tsang Y.C., Cardot J.M. BCS biowaivers: Similarities and differences among EMA, FDA, and WHO requirements. AAPS J. 2016;18:612–618. doi: 10.1208/s12248-016-9877-2. PubMed DOI PMC

Culen M., Rezacova A., Jampilek J., Dohnal J. Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small intestine. J. Pharm. Sci. 2013;102:2995–3017. doi: 10.1002/jps.23494. PubMed DOI

McAllister M. Dynamic dissolution: A step closer to predictive dissolution testing? Mol. Pharm. 2010;7:1374–1387. doi: 10.1021/mp1001203. PubMed DOI

Kostewicz E.S., Abrahamsson B., Brewster M., Brouwers J., Butler J., Carlert S., Dickinson P.A., Dressman J., Holm R., Klein S., et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur. J. Pharm. Sci. 2014;57:342–366. doi: 10.1016/j.ejps.2013.08.024. PubMed DOI

Vardakou M., Mercuri A., Naylor T.A., Rizzo D., Butler J.M., Connolly P.C., Wickham M.S., Faulks R.M. Predicting the human in vivo performance of different oral capsule shell types using a novel in vitro dynamic gastric model. Int. J. Pharm. 2011;419:192–199. doi: 10.1016/j.ijpharm.2011.07.046. PubMed DOI

Wickham M.J.S., Faulks R.M., Mann J., Mandalari G. The design, operation, and application of a dynamic gastric model. Dissolut. Technol. 2012;19:15–22. doi: 10.14227/DT190312P15. DOI

Kong F., Singh R.P. A human gastric simulator (HGS) to study food digestion in human stomach. J. Food Sci. 2010;75:E627–E635. doi: 10.1111/j.1750-3841.2010.01856.x. PubMed DOI

Bellmann S., Lelieveld J., Gorissen T., Minekus M., Havenaar R. Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Res. Int. 2016;88:191–198. doi: 10.1016/j.foodres.2016.01.030. DOI

Minekus M., Marteau P., Havenaar R. Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Altern. Lab. Anim. ATLA. 1995;23:197–209.

Minekus M., Smeets-Peeters M., Bernalier A., Marol-Bonnin S., Havenaar R., Marteau P., Alric M., Fonty G. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microbiol. Biotechnol. 1999;53:108–114. doi: 10.1007/s002530051622. PubMed DOI

Guerra A., Denis S., le Goff O., Sicardi V., Francois O., Yao A.F., Garrait G., Manzi A.P., Beyssac E., Alric M., et al. Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine. Biotechnol. Bioeng. 2016;113:1325–1335. doi: 10.1002/bit.25890. PubMed DOI

Hribar M., Trontelj J., Klancar U., Markun B., Celigoj Dujc T., Legen I. A novel intestine model apparatus for drug dissolution capable of simulating the peristaltic action. AAPS PharmSciTech. 2017;18:1646–1656. doi: 10.1208/s12249-016-0629-5. PubMed DOI

Culen M., Tuszynski P.K., Polak S., Jachowicz R., Mendyk A., Dohnal J. Development of in vitro-in vivo correlation/relationship modeling approaches for immediate release formulations using compartmental dynamic dissolution data from “golem”: A novel apparatus. Biomed. Res. Int. 2015;2015:328628. doi: 10.1155/2015/328628. PubMed DOI PMC

Reimann C., Filzmoser P., Garrett R.G., Dutter R. Statistical Data Analysis Explained: Applied Environmental Statistics with R. 1st ed. John Wiley & Sons; Chichester, UK: 2008. pp. 218–219.

Franek F., Holm P., Larsen F., Steffansen B. Interaction between fed gastric media (ensure plus®) and different hypromellose based caffeine controlled release tablets: Comparison and mechanistic study of caffeine release in fed and fasted media versus water using the usp dissolution apparatus 3. Int. J. Pharm. 2014;461:419–426. doi: 10.1016/j.ijpharm.2013.12.003. PubMed DOI

Mudie D.M., Murray K., Hoad C.L., Pritchard S.E., Garnett M.C., Amidon G.L., Gowland P.A., Spiller R.C., Amidon G.E., Marciani L. Quantification of gastrointestinal liquid volumes and distribution following a 240 ml dose of water in the fasted state. Mol. Pharm. 2014;11:3039–3047. doi: 10.1021/mp500210c. PubMed DOI

European Directorate for the Quality of Medicines & Healthcare . European Pharmacopoeia. 8th ed. Volume 1. Council of Europe; Strasbourg, France: 2013. p. 542. Chapter 4.1.3.

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2015.

Costa P., Sousa Lobo J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001;13:123–133. doi: 10.1016/S0928-0987(01)00095-1. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...