How to interpret methylation sensitive amplified polymorphism (MSAP) profiles?
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24393618
PubMed Central
PMC3890580
DOI
10.1186/1471-2156-15-2
PII: 1471-2156-15-2
Knihovny.cz E-zdroje
- MeSH
- 5-methylcytosin chemie MeSH
- DNA rostlinná genetika MeSH
- epigeneze genetická MeSH
- metylace DNA * MeSH
- obratlovci genetika MeSH
- polymorfismus genetický * MeSH
- restrikční mapování MeSH
- tabák genetika MeSH
- techniky amplifikace nukleových kyselin metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5-methylcytosin MeSH
- DNA rostlinná MeSH
BACKGROUND: DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is particularly useful in studies of epigenetic variation. However, electrophoretic patterns produced by the method are rather difficult to interpret, particularly when MspI and HpaII isoschizomers are used because these enzymes are methylation-sensitive, and any C within the CCGG recognition motif can be methylated in plant DNA. RESULTS: Here, we evaluate MSAP patterns with respect to current knowledge of the enzyme activities and the level and distribution of 5-methylcytosine in plant and vertebrate genomes. We discuss potential caveats related to complex MSAP patterns and provide clues regarding how to interpret them. We further show that addition of combined HpaII + MspI digestion would assist in the interpretation of the most controversial MSAP pattern represented by the signal in the HpaII but not in the MspI profile. CONCLUSIONS: We recommend modification of the MSAP protocol that definitely discerns between putative hemimethylated mCCGG and internal CmCGG sites. We believe that our view and the simple improvement will assist in correct MSAP data interpretation.
Zobrazit více v PubMed
Rai K, Jafri IF, Chidester S, James SR, Karpf AR, Cairns BR, Jones DA. Dnmt3 and G9a cooperate for tissue-specific development in zebrafish. J Biol Chem. 2010;285(6):4110–4121. doi: 10.1074/jbc.M109.073676. PubMed DOI PMC
Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci. 2013;368(1609):20120151. PubMed PMC
Sharp AJ, Stathaki E, Migliavacca E, Brahmachary M, Montgomery SB, Dupre Y, Antonarakis SE. DNA methylation profiles of human active and inactive X chromosomes. Genome Res. 2011;21(10):1592–1600. doi: 10.1101/gr.112680.110. PubMed DOI PMC
Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13(8):335–340. doi: 10.1016/S0168-9525(97)01181-5. PubMed DOI
Lim U, Song MA. Dietary and lifestyle factors of DNA methylation. Methods Mol Biol. 2012;863:359–376. doi: 10.1007/978-1-61779-612-8_23. PubMed DOI
Solis MT, Rodriguez-Serrano M, Meijon M, Canal MJ, Cifuentes A, Risueno MC, Testillano PS. DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J Exp Bot. 2012;63(18):6431–6444. doi: 10.1093/jxb/ers298. PubMed DOI PMC
Durand S, Bouche N, Perez Strand E, Loudet O, Camilleri C. Rapid establishment of genetic incompatibility through natural epigenetic variation. Curr Biol. 2012;22(4):326–331. doi: 10.1016/j.cub.2011.12.054. PubMed DOI
Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature rev. 2010;11(3):204–220. doi: 10.1038/nrg2719. PubMed DOI PMC
Saze H, Kakutani T. Differentiation of epigenetic modifications between transposons and genes. Curr Opin Plant Biol. 2011;14(1):81–87. doi: 10.1016/j.pbi.2010.08.017. PubMed DOI
Lunerova-Bedrichova J, Bleys A, Fojtova M, Khaitova L, Depicker A, Kovarik A. Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. Plant J. 2008;54(6):1049–1062. doi: 10.1111/j.1365-313X.2008.03475.x. PubMed DOI
Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–919. doi: 10.1126/science.1186366. PubMed DOI
Su Z, Han L, Zhao Z. Conservation and divergence of DNA methylation in eukaryotes: new insights from single base-resolution DNA methylomes. Epigenetics. 2011;6(2):134–140. doi: 10.4161/epi.6.2.13875. PubMed DOI PMC
Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA. 2000;97(10):5237–5242. doi: 10.1073/pnas.97.10.5237. PubMed DOI PMC
Ichiyanagi T, Ichiyanagi K, Miyake M, Sasaki H. Accumulation and loss of asymmetric non-CpG methylation during male germ-cell development. Nucleic Acids Res. 2013;41(2):738–745. doi: 10.1093/nar/gks1117. PubMed DOI PMC
Fulnecek J, Matyasek R, Kovarik A, Bezdek M. Mapping of 5-methylcytosine residues in Nicotiana tabacum 5S rRNA genes by genomic sequencing. Mol Gen Genet. 1998;259(2):133–141. doi: 10.1007/s004380050798. PubMed DOI
Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452(7184):215–219. doi: 10.1038/nature06745. PubMed DOI PMC
Lister R, Ecker JR. Finding the fifth base: Genome-wide sequencing of cytosine methylation. Genome Res. 2009;19(6):959–966. doi: 10.1101/gr.083451.108. PubMed DOI PMC
Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Graf S, Johnson N, Herrero J, Tomazou EM. et al.A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008;26(7):779–785. doi: 10.1038/nbt1414. PubMed DOI PMC
Paun O, Bateman RM, Fay MF, Hedren M, Civeyrel L, Chase MW. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae) Mol Biol Evol. 2010;27(11):2465–2473. doi: 10.1093/molbev/msq150. PubMed DOI PMC
Xu Y, Zhao Q, Mei S, Wang J. Genomic and transcriptomic alterations following hybridisation and genome doubling in trigenomic allohexaploid Brassica carinata x Brassica rapa. Plant biol (Stuttg) 2012;14(5):734–744. doi: 10.1111/j.1438-8677.2011.00553.x. PubMed DOI
Yang C, Zhang M, Niu W, Yang R, Zhang Y, Qiu Z, Sun B, Zhao Z. Analysis of DNA methylation in various swine tissues. PLoS One. 2011;6(1):e16229. doi: 10.1371/journal.pone.0016229. PubMed DOI PMC
Reyna-Lopez GE, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet. 1997;253(6):703–710. doi: 10.1007/s004380050374. PubMed DOI
Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M. et al.AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. PubMed DOI PMC
Walder RY, Langtimm CJ, Chatterjee R, Walder JA. Cloning of the MspI modification enzyme. The site of modification and its effects on cleavage by MspI and HpaII. J Biol Chem. 1983;258(2):1235–1241. PubMed
Mann MB, Smith HO. Specificity of Hpa II and Hae III DNA methylases. Nucleic Acids Res. 1977;4(12):4211–4221. doi: 10.1093/nar/4.12.4211. PubMed DOI PMC
Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2010;38(Database issue):D234–D236. PubMed PMC
Lin PM, Lee CH, Roberts RJ. Cloning and characterization of the genes encoding the MspI restriction modification system. Nucleic Acids Res. 1989;17(8):3001–3011. doi: 10.1093/nar/17.8.3001. PubMed DOI PMC
Card CO, Wilson GG, Weule K, Hasapes J, Kiss A, Roberts RJ. Cloning and characterization of the HpaII methylase gene. Nucleic Acids Res. 1990;18(6):1377–1383. doi: 10.1093/nar/18.6.1377. PubMed DOI PMC
Waalwijk C, Flavell RA. MspI, an isoschizomer of hpaII which cleaves both unmethylated and methylated hpaII sites. Nucleic Acids Res. 1978;5(9):3231–3236. doi: 10.1093/nar/5.9.3231. PubMed DOI PMC
Ben-Hattar J, Jiricny J. Effect of cytosine methylation on the cleavage of oligonucleotide duplexes with restriction endonucleases HpaII and MspI. Nucleic Acids Res. 1988;16(9):4160. doi: 10.1093/nar/16.9.4160. PubMed DOI PMC
Tardy-Planechaud S, Fujimoto J, Lin SS, Sowers LC. Solid phase synthesis and restriction endonuclease cleavage of oligodeoxynucleotides containing 5-(hydroxymethyl)-cytosine. Nucleic Acids Res. 1997;25(3):553–559. doi: 10.1093/nar/25.3.553. PubMed DOI PMC
Korch C, Hagblom P. In-vivo-modified gonococcal plasmid pJD1. A model system for analysis of restriction enzyme sensitivity to DNA modifications. Eur J Biochem. 1986;161(3):519–524. doi: 10.1111/j.1432-1033.1986.tb10473.x. PubMed DOI
Butkus V, Petrauskiene L, Maneliene Z, Klimasauskas S, Laucys V, Janulaitis A. Cleavage of methylated CCCGGG sequences containing either N4-methylcytosine or 5-methylcytosine with MspI, HpaII, SmaI, XmaI and Cfr9I restriction endonucleases. Nucleic Acids Res. 1987;15(17):7091–7102. doi: 10.1093/nar/15.17.7091. PubMed DOI PMC
Huang LH, Farnet CM, Ehrlich KC, Ehrlich M. Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nucleic Acids Res. 1982;10(5):1579–1591. doi: 10.1093/nar/10.5.1579. PubMed DOI PMC
Brennan CA, Van Cleve MD, Gumport RI. The effects of base analogue substitutions on the cleavage by the EcoRI restriction endonuclease of octadeoxyribonucleotides containing modified EcoRI recognition sequences. J Biol Chem. 1986;261(16):7270–7278. PubMed
Jeddeloh JA, Richards EJ. mCCG methylation in angiosperms. Plant J. 1996;9(5):579–586. doi: 10.1046/j.1365-313X.1996.9050579.x. PubMed DOI
Fulnecek J, Matyasek R, Kovarik A. Distribution of 5-methylcytosine residues in 5S rRNA genes in Arabidopsis thaliana and Secale cereale. Mol Gen Genomics. 2002;268(4):510–517. doi: 10.1007/s00438-002-0761-7. PubMed DOI
Meyer P. DNA methylation systems and targets in plants. FEBS Lett. 2011;585(13):2008–2015. doi: 10.1016/j.febslet.2010.08.017. PubMed DOI
Mathieu O, Reinders J, Caikovski M, Smathajitt C, Paszkowski J. Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell. 2007;130(5):851–862. doi: 10.1016/j.cell.2007.07.007. PubMed DOI
Sasaki T, Fujimoto R, Kishitani S, Nishio T. Analysis of target sequences of DDM1s in Brassica rapa by MSAP. Plant Cell Rep. 2011;30(1):81–88. doi: 10.1007/s00299-010-0946-1. PubMed DOI
Xu M, Li X, Korban SS. DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.) Theor Appl Genet. 2004;109(5):899–910. doi: 10.1007/s00122-004-1717-6. PubMed DOI
Takamiya T, Hosobuchi S, Asai K, Nakamura E, Tomioka K, Kawase M, Kakutani T, Paterson AH, Murakami Y, Okuizumi H. Restriction landmark genome scanning method using isoschizomers (MspI/HpaII) for DNA methylation analysis. Electrophoresis. 2006;27(14):2846–2856. doi: 10.1002/elps.200500776. PubMed DOI
Takamiya T, Hosobuchi S, Noguchi T, Asai K, Nakamura E, Habu Y, Paterson AH, Iijima H, Murakami Y, Okuizumi H. Inheritance and alteration of genome methylation in F1 hybrid rice. Electrophoresis. 2008;29(19):4088–4095. doi: 10.1002/elps.200700784. PubMed DOI
Koroma AP, Jones R, Michalak P. Snapshot of DNA methylation changes associated with hybridization in Xenopus. Physiol genomics. 2011;43(22):1276–1280. doi: 10.1152/physiolgenomics.00110.2011. PubMed DOI
Xiao J, Song C, Liu S, Tao M, Hu J, Wang J, Liu W, Zeng M, Liu Y. DNA methylation analysis of allotetraploid hybrids of red crucian carp (Carassius auratus red var.) and common carp (Cyprinus carpio L.) PLoS One. 2013;8(2):e56409. doi: 10.1371/journal.pone.0056409. PubMed DOI PMC
Zakrzewski F, Weisshaar B, Fuchs J, Bannack E, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T. Epigenetic profiling of heterochromatic satellite DNA. Chromosoma. 2011;120(4):409–422. doi: 10.1007/s00412-011-0325-x. PubMed DOI
You W, Tyczewska A, Spencer M, Daxinger L, Schmid MW, Grossniklaus U, Simon SA, Meyers BC, Matzke AJ, Matzke M. Atypical DNA methylation of genes encoding cysteine-rich peptides in Arabidopsis thaliana. BMC Plant Biol. 2012;12:51. doi: 10.1186/1471-2229-12-51. PubMed DOI PMC
Fulnecek J, Matyasek R, Votruba I, Holy A, Krizova K, Kovarik A. Inhibition of SAH-hydrolase activity during seed germination leads to deregulation of flowering genes and altered flower morphology in tobacco. Mol Genet Genomics. 2011;285(3):225–236. doi: 10.1007/s00438-011-0601-8. PubMed DOI
Fojtova M, Kovarik A, Votruba I, Holy A. Evaluation of the impact of S-adenosylhomocysteine metabolic pools on cytosine methylation of the tobacco genome. Eur J Biochem. 1998;252(3):347–352. doi: 10.1046/j.1432-1327.1998.2520347.x. PubMed DOI
Exploring the crop epigenome: a comparison of DNA methylation profiling techniques