Periderm invasion contributes to epithelial formation in the teleost pharynx
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 GM124043
NIGMS NIH HHS - United States
PubMed
31300674
PubMed Central
PMC6626026
DOI
10.1038/s41598-019-46040-y
PII: 10.1038/s41598-019-46040-y
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované anatomie a histologie embryologie MeSH
- endoderm embryologie MeSH
- farynx anatomie a histologie embryologie MeSH
- geneticky modifikovaná zvířata MeSH
- žábry anatomie a histologie embryologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The gnathostome pharyngeal cavity functions in food transport and respiration. In amniotes the mouth and nares are the only channels allowing direct contact between internal and external epithelia. In teleost fish, gill slits arise through opening of endodermal pouches and connect the pharynx to the exterior. Using transgenic zebrafish lines, cell tracing, live imaging and different markers, we investigated if pharyngeal openings enable epithelial invasion and how this modifies the pharyngeal epithelium. We conclude that in zebrafish the pharyngeal endoderm becomes overlain by cells with a peridermal phenotype. In a wave starting from pouch 2, peridermal cells from the outer skin layer invade the successive pouches until halfway their depth. Here the peridermal cells connect to a population of cells inside the pharyngeal cavity that express periderm markers, yet do not invade from outside. The latter population expands along the midline from anterior to posterior until the esophagus-gut boundary. Together, our results show a novel role for the periderm as an internal epithelium becomes adapted to function as an external surface.
Zobrazit více v PubMed
Hildebrand, M. Analysis of vertebrate structure. 4th Ed. 657 pp, John Wiley & Sons, New York (1995).
Gilbert, S. F. & Barresi, M. J. F. Developmental Biology, 11th Ed. 810 pp. Sinauer Associates (2016).
Grevellec A, Tucker AS. The pharyngeal pouches and clefts: development, evolution, structure and derivatives. Semin. Cell Dev. Biol. 2010;21:325–332. doi: 10.1016/j.semcdb.2010.01.022. PubMed DOI
Adams A, Mankad K, Offiah C, Childs L. Branchial cleft anomalies: a pictorial review of embryological development and spectrum of imaging findings. Insights Imaging. 2016;7:69–76. doi: 10.1007/s13244-015-0454-5. PubMed DOI PMC
David NB, Saint-Etienne L, Tsang M, Schilling TF, Rosa FM. Requirement for endoderm and FGF3 in ventral head skeleton formation. Development. 2002;129:4457–4468. PubMed
Crump JG, Maves L, Lawson ND, Weinstein BM, Kimmel CB. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning. Development. 2004;131:5703–5716. doi: 10.1242/dev.01444. PubMed DOI
Graham A, Richardson J. Developmental and evolutionary origins of the pharyngeal apparatus. EvoDevo. 2012;3:24. doi: 10.1186/2041-9139-3-24. PubMed DOI PMC
Frisdal A, Trainor PA. Development and evolution of the pharyngeal apparatus. Wiley Interdiscip. Rev. Dev. Biol. 2014;3:403–418. doi: 10.1002/wdev.147. PubMed DOI PMC
Rothova M, Thompson H, Lickert H, Tucker AS. Lineage tracing of the endoderm during oral development. Dev. Dyn. 2012;241:1183–1191. doi: 10.1002/dvdy.23804. PubMed DOI
Soukup V, Horacek I, Cerny R. Development and evolution of the vertebrate primary mouth. J. Anat. 2013;222:79–99. doi: 10.1111/j.1469-7580.2012.01540.x. PubMed DOI PMC
Goette A. Über die Kiemen der Fische. Z. Wissenschaftl. Zool. 1901;69:533–577.
Janvier, P. Homologies and evolutionary transitions in early vertebrate history. In Major Transitions in Vertebrate Evolution (Anderson, J. S. & Sues, H.-D. eds) pp. 57–121, Indiana University Press, Bloomington (2007).
Gillis JA, Tidswell ORA. The origin of vertebrate gills. Curr. Biol. 2017;27:729–732. doi: 10.1016/j.cub.2017.01.022. PubMed DOI PMC
Barlow LA. Progress and renewal in gustation: new insights into taste bud development. Development. 2015;142:3620–3629. doi: 10.1242/dev.120394. PubMed DOI PMC
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995;203:253–310. doi: 10.1002/aja.1002030302. PubMed DOI
Crump JG, Swartz ME, Kimmel CB. An integrin-dependent role of pouch endoderm in hyoid cartilage development. PLoS Biol. 2004;2(9):e244. doi: 10.1371/journal.pbio.0020244. PubMed DOI PMC
Kopinke D, Sasine J, Swift J, Stephens WZ, Piotrowski T. Retinoic acid is required for endodermal pouch morphogenesis and not for pharyngeal endoderm specification. Dev. Dyn. 2006;235:2695–2709. doi: 10.1002/dvdy.20905. PubMed DOI
Choe CP, et al. Wnt-dependent epithelial transitions drive pharyngeal pouch formation. Dev. Cell. 2013;24:296–309. doi: 10.1016/j.devcel.2012.12.003. PubMed DOI PMC
Gong Z, et al. Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from Keratin8. Dev. Dyn. 2002;223:204–215. doi: 10.1002/dvdy.10051. PubMed DOI
Eisenhoffer GT, et al. A toolbox to study epidermal cell types in zebrafish. J. Cell Sci. 2017;130:269–277. doi: 10.1242/jcs.184341. PubMed DOI PMC
Rauch, G. J. et al. Submission and curation of gene expression data. ZFIN Direct Data Submission. (http://zfin.org) (2003).
Imboden M, Goblet C, Korn H, Vriz S. Cytokeratin 8 is a suitable epidermal marker during zebrafish development. C.R. Acad. Sci. Paris, Sciences de la vie/Life Sciences. 1997;320:689–700. PubMed
Chen C-F, et al. Establishment of a transgenic zebrafish line for superficial skin ablation and functional validation of apoptosis modulators in vivo. PLoS One. 2011;6(5):e20654. doi: 10.1371/journal.pone.0020654. PubMed DOI PMC
Waterman RE, Kao R. Formation of the mouth opening in the zebrafish embryo. Scanning Electron Microscopy. 1982;III:1249–1257.
Edwards LF. The origin of the pharyngeal teeth of the carp (Cyprinus carpio Linnaeus) Ohio J. Sci. 1929;29:93–130.
Miyake T, Von Herbing IH, Hall BK. Neural ectoderm, neural crest, and placodes: Contribution of the otic placode to the ectodermal lining of the embryonic opercular cavity in Atlantic Cod (Teleostei) J. Morphol. 1997;231:231–251. doi: 10.1002/(SICI)1097-4687(199703)231:3<231::AID-JMOR3>3.0.CO;2-E. PubMed DOI
Yamamoto M, Iuchi I, Yamagami K. Ultrastructural changes of the teleostean hatching gland cell during natural and electrically induced precocious secretion. Dev. Biol. 1979;68:162–174. doi: 10.1016/0012-1606(79)90251-3. PubMed DOI
Shone V, Graham A. Endodermal/ectodermal interfaces during pharyngeal segmentation in vertebrates. J. Anat. 2014;225:479–491. doi: 10.1111/joa.12234. PubMed DOI PMC
Lee RTH, Asharani PV, Carney TJ. Basal keratinocytes contribute to all strata of the adult zebrafish epidermis. PLoS One. 2014;9(1):e84858. doi: 10.1371/journal.pone.0084858. PubMed DOI PMC
Fukazawa C, et al. Poky/chuk/ikk1 is required for differentiation of the zebrafish embryonic epidermis. Dev. Biol. 2010;346:272–283. doi: 10.1016/j.ydbio.2010.07.037. PubMed DOI PMC
Fischer B, et al. p53 and TAp63 promote keratinocyte proliferation and differentiation in breeding tubercles of the zebrafish. PLoS Genet. 2014;10(1):e1004048. doi: 10.1371/journal.pgen.1004048. PubMed DOI PMC
Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat. 2009;214:516–559. doi: 10.1111/j.1469-7580.2009.01066.x. PubMed DOI PMC
True RJ, Carroll SB. Gene co-option in physiological and morphological evolution. Annu. Rev. Cell. Dev. Biol. 2002;18:53–80. doi: 10.1146/annurev.cellbio.18.020402.140619. PubMed DOI
Leduc C, Etienne-Manneville S. Intermediate filaments in cell migration and invasion: the unusual suspects. Curr. Opin. Cell Biol. 2015;32:102–112. doi: 10.1016/j.ceb.2015.01.005. PubMed DOI
Weber GF, Bjerke MA, DeSimone DW. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev. Cell. 2012;22:104–115. doi: 10.1016/j.devcel.2011.10.013. PubMed DOI PMC
Lan Y, Xu J, Jiang R. Cellular and molecular mechanisms of palatogenesis. Curr. Top. Dev. Biol. 2015;115:59–84. doi: 10.1016/bs.ctdb.2015.07.002. PubMed DOI PMC
Alt B, et al. Analysis of origin and growth of the thyroid gland in zebrafish. Dev. Dyn. 2006;235:1872–1883. doi: 10.1002/dvdy.20831. PubMed DOI
Willett CE, Cherry JJ, Steiner LA. Expression of zebrafish rag genes during early development identifies the thymus. Dev. Biol. 1997;182:331–341. doi: 10.1006/dbio.1996.8446. PubMed DOI
Hogan BM, et al. Zebrafish gcm2 is required for gill filament budding from pharyngeal ectoderm. Dev. Biol. 2004;276:508–522. doi: 10.1016/j.ydbio.2004.09.018. PubMed DOI
Hall C, Flores MV, Murison G, Crosier K, Crosier P. An essential role for zebrafish Fgfrl1 during gill cartilage development. Mech. Dev. 2006;123:925–940. doi: 10.1016/j.mod.2006.08.006. PubMed DOI
Holzschuh J, et al. Requirements for endoderm and BMP signaling in sensory neurogenesis in zebrafish. Development. 2005;132:3731–3742. doi: 10.1242/dev.01936. PubMed DOI
McCarroll MN, Nechiporuk AV. Fgf3 and Fgf10a work in concert to promote maturation of the epibranchial placodes in zebrafish. PLoS One. 2013;8(12):e85087. doi: 10.1371/journal.pone.0085087. PubMed DOI PMC
Choe CP, Crump JG. Eph-Pak2a signaling regulates branching of the pharyngeal endoderm by inhibiting late-stage epithelial dynamics. Development. 2015;142:1089–1094. doi: 10.1242/dev.115774. PubMed DOI PMC
Choe CP, Crump JG. Dynamic epithelia of the developing vertebrate face. Curr. Opin. Genet. Devel. 2015;32:66–72. doi: 10.1016/j.gde.2015.02.003. PubMed DOI PMC
Barlow, L. A. Taste buds in ectoderm are induced by endoderm: implications for mechanisms governing taste bud development. In Regulatory processes in Development: The legacy of Sven Hörstadius. Proceedings of the Wenner-Gren International Symposium (Olsson, L., and Jacobson, C.-O., eds) pp. 185–190, Portland Press (2000).
Haworth KE, Healy C, Morgan P, Sharpe PT. Regionalisation of early head ectoderm is regulated by endoderm and prepatterns the orofacial epithelium. Development. 2004;131:4797–4806. doi: 10.1242/dev.01337. PubMed DOI
Cordier AC, Haumont SM. Development of thymus, parathyroids, and ultimo-branchial bodies in NMRI and Nude mice. Am. J. Anat. 1980;157:227–263. doi: 10.1002/aja.1001570303. PubMed DOI
Lacalli T. Interpreting amphioxus, and thoughts on ancestral chordate mouths and brains. Int. J. Dev. Biol. 2017;61:649–654. doi: 10.1387/ijdb.170105tl. PubMed DOI
Nielsen C. Evolution of deuterostomy – and origin of the chordates. Biol. Rev. 2017;92:316–325. doi: 10.1111/brv.12229. PubMed DOI
Huysseune A, Sire J-Y, Witten PE. Evolutionary and developmental origins of the vertebrate dentition. J. Anat. 2009;214:465–476. doi: 10.1111/j.1469-7580.2009.01053.x. PubMed DOI PMC
Mizoguchi T, Verkade H, Heath JK, Kuroiwa A, Kikuchi Y. Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development. 2008;135:2521–2529. doi: 10.1242/dev.020107. PubMed DOI
Richardson R, et al. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development. 2016;143:2077–2088. doi: 10.1242/dev.130492. PubMed DOI PMC
Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish Danio (Brachydanio rerio). University of Oregon Press, Oregon (2000)
Verduzco Daniel, Amatruda James F. Methods in Cell Biology. 2011. Analysis of Cell Proliferation, Senescence, and Cell Death in Zebrafish Embryos; pp. 19–38. PubMed PMC
Huysseune A, Sire J-Y. Development of cartilage and bone tissues of the anterior part of the mandible in cichlid fish: a light and TEM study. Anat. Rec. 1992;233:357–375. doi: 10.1002/ar.1092330304. PubMed DOI