The gnathostome pharyngeal cavity functions in food transport and respiration. In amniotes the mouth and nares are the only channels allowing direct contact between internal and external epithelia. In teleost fish, gill slits arise through opening of endodermal pouches and connect the pharynx to the exterior. Using transgenic zebrafish lines, cell tracing, live imaging and different markers, we investigated if pharyngeal openings enable epithelial invasion and how this modifies the pharyngeal epithelium. We conclude that in zebrafish the pharyngeal endoderm becomes overlain by cells with a peridermal phenotype. In a wave starting from pouch 2, peridermal cells from the outer skin layer invade the successive pouches until halfway their depth. Here the peridermal cells connect to a population of cells inside the pharyngeal cavity that express periderm markers, yet do not invade from outside. The latter population expands along the midline from anterior to posterior until the esophagus-gut boundary. Together, our results show a novel role for the periderm as an internal epithelium becomes adapted to function as an external surface.
- MeSH
- dánio pruhované anatomie a histologie embryologie MeSH
- endoderm embryologie MeSH
- farynx anatomie a histologie embryologie MeSH
- geneticky modifikovaná zvířata MeSH
- žábry anatomie a histologie embryologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The potential clinical applications of hematopoietic stem cells (HSCs) derived from human pluripotent stem cells (hPSCs) are limited by the difficulty of recapitulating embryoid hematopoiesis and by the unknown differentiation potential of hPSC lines. To evaluate their hematopoietic developmental potential, available hPSC lines were differentiated by an embryoid body (EB) suspension culture in serum-free medium supplemented with three different cytokine mixes (CMs). The hPSC differentiation status was investigated by the flow cytometry expression profiles of cell surface molecules, and the gene expression of pluripotency and differentiation markers over time was evaluated by real-time reverse transcription polymerase chain reaction (qRT-PCR). hPSC lines differed in several aspects of the differentiation process, including the absolute yield of hematopoietic progenitors, the proportion of hematopoietic progenitor populations, and the effect of various CMs. The ability to generate hematopoietic progenitors was then associated with the morphology of the developing EBs, the expression of the endodermal markers AFP and SOX17, and the hematopoietic transcription factor RUNX1. These findings deepen the knowledge about the hematopoietic propensity of hPSCs and identify its variability as an aspect that must be taken into account before the usage of hPSC-derived HSCs in downstream applications.
- MeSH
- buněčné linie MeSH
- diferenciační antigeny biosyntéza MeSH
- embryoidní tělíska cytologie metabolismus MeSH
- endoderm cytologie metabolismus MeSH
- hematopoéza * MeSH
- lidé MeSH
- lidské embryonální kmenové buňky cytologie metabolismus MeSH
- regulace genové exprese * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During mouse preimplantation embryo development, the classically described second cell-fate decision involves the specification and segregation, in blastocyst inner cell mass (ICM), of primitive endoderm (PrE) from pluripotent epiblast (EPI). The active role of fibroblast growth factor (Fgf) signalling during PrE differentiation, particularly in the context of Erk1/2 pathway activation, is well described. However, we report that p38 family mitogen-activated protein kinases (namely p38α/Mapk14 and p38β/Mapk11; referred to as p38-Mapk14/11) also participate in PrE formation. Specifically, functional p38-Mapk14/11 are required, during early-blastocyst maturation, to assist uncommitted ICM cells, expressing both EPI and earlier PrE markers, to fully commit to PrE differentiation. Moreover, functional activation of p38-Mapk14/11 is, as reported for Erk1/2, under the control of Fgf-receptor signalling, plus active Tak1 kinase (involved in non-canonical bone morphogenetic protein (Bmp)-receptor-mediated PrE differentiation). However, we demonstrate that the critical window of p38-Mapk14/11 activation precedes the E3.75 timepoint (defined by the initiation of the classical 'salt and pepper' expression pattern of mutually exclusive EPI and PrE markers), whereas appropriate lineage maturation is still achievable when Erk1/2 activity (via Mek1/2 inhibition) is limited to a period after E3.75. We propose that active p38-Mapk14/11 act as enablers, and Erk1/2 as drivers, of PrE differentiation during ICM lineage specification and segregation.
- MeSH
- blastocysta fyziologie MeSH
- buněčná diferenciace MeSH
- embryonální vývoj * MeSH
- endoderm embryologie MeSH
- fibroblastové růstové faktory metabolismus MeSH
- messenger RNA metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 11 metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 14 metabolismus MeSH
- myši MeSH
- signální transdukce MeSH
- zárodečné listy fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events, including differentiation. In this study, we analyzed acetylated forms of histones H2A, H2B, and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-, di-, and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes, mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs, we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-, di-, and tri-acetylation of H4 were reduced, manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation, whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.
- MeSH
- acetylace MeSH
- buněčná diferenciace MeSH
- embryonální kmenové buňky cytologie metabolismus MeSH
- endoderm cytologie metabolismus MeSH
- enterocyty cytologie metabolismus MeSH
- epigeneze genetická MeSH
- histonacetyltransferasy metabolismus MeSH
- histony metabolismus MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- posttranslační úpravy proteinů * MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During embryogenesis, the Activin/Nodal pathway promotes the mesendodermal lineage and inhibits neural fate. The molecular mechanisms underlying this role of the Activin/Nodal pathway are not clear. In this study, we report a role for protein tyrosine phosphatase 1B (PTP1B) in Activin-mediated early fate decisions during ESC differentiation and show that PTP1B acts as an effector of the Activin pathway to specify mesendodermal or neural fate. We found that the Activin/ALK4 pathway directly recruits PTP1B and stimulates its release from the endoplasmic reticulum through ALK4-mediated cleavage. Subsequently, PTP1B suppresses p-ERK1/2 signaling to inhibit neural specification and promote mesendodermal commitment. These findings suggest that a noncanonical Activin signaling pathway functions in lineage specification of mouse and human embryonic stem cells.
- MeSH
- aktivinové receptory typu I chemie metabolismus MeSH
- aktiviny metabolismus MeSH
- benzamidy farmakologie MeSH
- buněčná diferenciace * účinky léků MeSH
- buněčný rodokmen účinky léků MeSH
- dioxoly farmakologie MeSH
- embryonální kmenové buňky cytologie účinky léků enzymologie MeSH
- endoderm cytologie účinky léků metabolismus MeSH
- extracelulárním signálem regulované MAP kinasy metabolismus MeSH
- fosforylace účinky léků MeSH
- lidé MeSH
- MAP kinasový signální systém účinky léků MeSH
- mezoderm cytologie účinky léků metabolismus MeSH
- molekulární sekvence - údaje MeSH
- myši MeSH
- neurony cytologie účinky léků metabolismus MeSH
- pluripotentní kmenové buňky cytologie účinky léků metabolismus MeSH
- protein Smad2 metabolismus MeSH
- sekvence aminokyselin MeSH
- signální transdukce * účinky léků MeSH
- tyrosinfosfatasa nereceptorového typu 1 metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The oral cavity of vertebrates is generally thought to arise as an ectodermal invagination. Consistent with this, oral teeth are proposed to arise exclusively from ectoderm, contributing to tooth enamel epithelium, and from neural crest derived mesenchyme, contributing to dentin and pulp. Yet in many vertebrate groups, teeth are not restricted only to the oral cavity, but extend posteriorly as pharyngeal teeth that could be derived either directly from the endodermal epithelium, or from the ectodermal epithelium that reached this location through the mouth or through the pharyngeal slits. However, when the oropharyngeal membrane, which forms a sharp ecto/endodermal border, is broken, the fate of these cells is poorly known. Here, using transgenic axolotls with a combination of fate-mapping approaches, we present reliable evidence of oral teeth derived from both the ectoderm and endoderm and, moreover, demonstrate teeth with a mixed ecto/endodermal origin. Despite the enamel epithelia having a different embryonic source, oral teeth in the axolotl display striking developmental uniformities and are otherwise identical. This suggests a dominant role for the neural crest mesenchyme over epithelia in tooth initiation and, from an evolutionary point of view, that an essential factor in teeth evolution was the odontogenic capacity of neural crest cells, regardless of possible 'outside-in' or 'inside-out' influx of the epithelium.