Imaging video plethysmography shows reduced signal amplitude in glaucoma patients in the area of the microvascular tissue of the optic nerve head
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
TO 115/3-1
Deutsche Forschungsgemeinschaft
PubMed
32960321
PubMed Central
PMC7843566
DOI
10.1007/s00417-020-04934-y
PII: 10.1007/s00417-020-04934-y
Knihovny.cz E-zdroje
- Klíčová slova
- Blood flow, Blood volume, Glaucoma, Perfusion, Retinal plethysmography,
- MeSH
- discus nervi optici * MeSH
- glaukom s otevřeným úhlem * MeSH
- glaukom * diagnóza MeSH
- lidé MeSH
- nitrooční tlak MeSH
- optická koherentní tomografie MeSH
- pletysmografie MeSH
- zraková pole MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: To measure parameters of the cardiac cycle-induced pulsatile light absorption signal (plethysmography signal) of the optic nerve head (ONH) and to compare parameters between normal subjects and patients with different stages of glaucoma. PATIENTS AND METHODS: A recently developed video ophthalmoscope was used to acquire short video sequences (10 s) of the ONH. After image registration and trend correction, the pulsatile changing light absorption at the ONH tissue (excluding large vessels) was calculated. The changing light absorption depends on the pulsatile changing blood volume. Various parameters, including peak amplitude, steepness, time-to-peak, full width at half maximum (FWHM), and pulse duration, were calculated for averaged individual pulses (heartbeats) of the plethysmography signal. This method was applied to 19 healthy control subjects and 91 subjects with ocular hypertension, as well as different stages of primary open-angle glaucoma (17 subjects with ocular hypertension, 24 with preperimetric glaucoma, and 50 with perimetric glaucoma). RESULTS: Compared to the normal subjects, significant reductions (p < 0.001) in peak amplitude and steepness were observed in the group of perimetric glaucoma patients, but no significant difference was found for time-to-peak, FWHM, and pulse duration. Peak amplitude and steepness showed high correlations with RNFL thickness (p < 0.001). CONCLUSIONS: The presented low-cost video-ophthalmoscope permits measurement of the plethysmographic signal of the ONH tissue and calculation of different blood flow-related parameters. The reduced values of the amplitude and steepness parameters in perimetric glaucoma patients suggest decreased ONH perfusion and blood volume. This outcome is in agreement with results from other studies using OCT angiography and laser speckle flowgraphy, which confirm reduced capillary density in these patients. Registration site: www.clinicaltrials.gov , Trial registration number: NCT00494923.
Zobrazit více v PubMed
Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359–393. doi: 10.1016/S1350-9462(02)00008-3. PubMed DOI
Schubert G. Untersuchung des Blutsauerstoffgehaltes und der Durchblutung des Auges auf lichtelektrischem Wege. Albrecht Von Graefes Arch Ophthalmol. 1936;135:558–560. doi: 10.1007/BF01853424. DOI
Trokel S. Measurement of ocular blood flow and volume by reflective densitometry. Arch Ophthalmol. 1964;71:88–92. doi: 10.1001/archopht.1964.00970010104017. PubMed DOI
Trokel S. Photometric study of ocular blood flow in man. Arch Ophthalmol. 1964;71:528–530. doi: 10.1001/archopht.1964.00970010544018. PubMed DOI
Beintema DK, Mook GA, Worst JGF. Recording of arm-to-retina circulation-time by means of fundus reflectometry. Ophthalmologica. 1964;148:163–168. doi: 10.1159/000304680. PubMed DOI
Matsuo H, Kogure F, Takahasi K (1966) Studies of the photoelectric plethysmogram of the eye. Procceedings XX Int Congr Ophthalmol 1966 178–182
Tornow RP, Kopp O, Schultheiss B (2003) Time course of fundus reflection changes according to the cardiac cycle. In: Invest. Ophthalmol. Vis. Sci. pp 1296-ARVO Abstract
Tornow RP, Kopp O (2006) Time course and frequency spectrum (0 to 12,5 Hz) of fundus reflection. In: Invest. Ophthalmol. Vis. Sci. pp 3753-ARVO Abstract
Lovasik JV, Gagnon M, Kergoat H. A novel noninvasive videographic method for quantifying changes in the chromaticity of the optic nerve head with changes in the intraocular pressure, pulsatile choroidal blood flow and visual neural function in humans. Surv Ophthalmol. 1994;38(Suppl):S35–S51. doi: 10.1016/0039-6257(94)90045-0. PubMed DOI
Morgan WH, Hazelton ML, Betz-Stablein BD, et al. Photoplethysmographic measurement of various retinal vascular pulsation parameters and measurement of the venous phase delay. Investig Ophthalmol Vis Sci. 2014;55:5998–6006. doi: 10.1167/iovs.14-15104. PubMed DOI
Hassan H, Jaidka S, Dwyer VM, Hu S. Assessing blood vessel perfusion and vital signs through retinal imaging photoplethysmography. Biomed Opt Express. 2018;9:2351. doi: 10.1364/boe.9.002351. PubMed DOI PMC
Briers JD. Laser Doppler and time-varying speckle: a reconciliation. J Opt Soc Am A. 1996;13:345. doi: 10.1364/josaa.13.000345. DOI
Briers JD. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas. 2001;22:R35–R66. doi: 10.1088/0967-3334/22/4/201. PubMed DOI
Michelson G, Schmauss B. Two dimensional mapping of the perfusion of the retina and optic nerve head. Br J Ophthalmol. 1995;79:1126–1132. doi: 10.1136/bjo.79.12.1126. PubMed DOI PMC
Wang RK, Jacques SL, Ma Z, et al. Three dimensional optical angiography. Opt Express. 2007;15:4083. doi: 10.1364/oe.15.004083. PubMed DOI
Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3:3127. doi: 10.1364/boe.3.003127. PubMed DOI PMC
Zhang A, Zhang Q, Chen C-L, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20:100901. doi: 10.1117/1.jbo.20.10.100901. PubMed DOI PMC
Gao SS, Jia Y, Zhang M, et al. Optical coherence tomography angiography. Investig Ophthalmol Vis Sci. 2016;57:OCT27–OCT36. doi: 10.1167/iovs.15-19043. PubMed DOI PMC
Hagag AM, Gao SS, Jia Y, Huang D. Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol. 2017;7:115–129. doi: 10.4103/tjo.tjo_31_17. PubMed DOI PMC
Gräfe MGO, Gondre M, de Boer JF. Precision analysis and optimization in phase decorrelation OCT velocimetry. Biomed Opt Express. 2019;10:1297. doi: 10.1364/boe.10.001297. PubMed DOI PMC
Chen C-L, Bojikian KD, Gupta D, et al. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. Quant Imaging Med Surg. 2016;6:125. doi: 10.21037/QIMS.2016.03.05. PubMed DOI PMC
Wang X, Jiang C, Ko T, et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015;253:1557–1564. doi: 10.1007/s00417-015-3095-y. PubMed DOI
Rao HL, Kadambi SV, Weinreb RN et al (2017) Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol 101. 10.1136/bjophthalmol-2016-309377 PubMed
Chihara E, Dimitrova G, Amano H, Chihara T. Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Investig Ophthalmol Vis Sci. 2017;58:690–697. doi: 10.1167/iovs.16-20709. PubMed DOI
Lommatzsch C, Rothaus K, Koch JM, et al. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads. Int J Ophthalmol. 2018;11:835–843. doi: 10.18240/ijo.2018.05.20. PubMed DOI PMC
Konishi N, Tokimoto Y, Kohra K, Fujii H (2002) New laser speckle flowgraphy system using CCD camera. Opt Rev. 10.1007/s10043-002-0163-4
Luft N, Wozniak PA, Aschinger GC, et al. Ocular blood flow measurements in healthy white subjects using laser speckle flowgraphy. PLoS One. 2016;11:e0168190. doi: 10.1371/journal.pone.0168190. PubMed DOI PMC
Mursch-Edlmayr AS, Luft N, Podkowinski D, et al. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study. Sci Rep. 2018;8:5343. doi: 10.1038/s41598-018-23149-0. PubMed DOI PMC
Yokoyama Y, Aizawa N, Chiba N, et al. Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk. Clin Ophthalmol. 2011;5:1721–1727. doi: 10.2147/OPTH.S23204. PubMed DOI PMC
Shiga Y, Kunikata H, Aizawa N, et al. Optic nerve head blood flow, as measured by laser speckle flowgraphy, is significantly reduced in preperimetric glaucoma. Curr Eye Res. 2016;41:1447–1453. doi: 10.3109/02713683.2015.1127974. PubMed DOI
Shiga Y, Omodaka K, Kunikata H, et al. Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma. Investig Ophthalmol Vis Sci. 2013;54:7699–7706. doi: 10.1167/iovs.13-12930. PubMed DOI
Tornow R-P, Odstrcilik J, Kolar R. Time-resolved quantitative inter-eye comparison of cardiac cycle-induced blood volume changes in the human retina. Biomed Opt Express. 2018;9:6237. doi: 10.1364/boe.9.006237. PubMed DOI PMC
Tornow RP, Kolar R, Odstrcilik J (2015) Non-mydriatic video ophthalmoscope to measure fast temporal changes of the human retina. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. p 954006
Jonas JB, Gusek GC, Naumann GOH (1988) Optic disc morphometry in chronic primary open-angle glaucoma - I. Morphometric intrapapillary characteristics. Graefes Arch Clin Exp Ophthalmol. 10.1007/BF02169199 PubMed
Jonas JB, Budde WM, Panda-Jonas S (1999) Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol. 10.1016/S0039-6257(98)00049-6 PubMed
Skuta GL. Automated static perimetry. Am J Ophthalmol. 1992;114:110–111. doi: 10.1016/s0002-9394(14)77431-8. DOI
Bendschneider D, Tornow RP, Horn FK et al (2010) Retinal nerve fiber layer thickness in normals measured by spectral domain oct. J Glaucoma 19. 10.1097/IJG.0b013e3181c4b0c7 PubMed
Kolar R, Tornow RP, Odstrcilik J, Liberdova I. Registration of retinal sequences from new video-ophthalmoscopic camera. Biomed Eng Online. 2016;15:57. doi: 10.1186/s12938-016-0191-0. PubMed DOI PMC
Odstrcilik J, Kolar R, Harabis V, Tornow RP (2015) Classification-based blood vessel segmentation in retinal images. In: Computational Vision and Medical Image Processing V. CRC Press, pp 95–100
Lévêque P-MM, Zéboulon P, Brasnu E, et al. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J Ophthalmol. 2016;2016:1–9. doi: 10.1155/2016/6956717. PubMed DOI PMC
Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I (2018) Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res. 10.1159/000488495 PubMed
Takeyama A, Ishida K, Anraku A, et al. Comparison of optical coherence tomography angiography and laser speckle flowgraphy for the diagnosis of normal-tension glaucoma. J Ophthalmol. 2018;2018:1–9. doi: 10.1155/2018/1751857. PubMed DOI PMC
Lawrence C, Schlegel WA. Ophthalmic pulse studies. I. Influence of intraocular pressure. Investig Ophthalmol. 1966;5:515–525. PubMed
Michelson G, Patzelt A, Harazny J (2002) Flickering light increases retinal blood flow. In: Retina, 2002/06/11. pp 336–343 PubMed
Crittin M, Riva CE. Functional imaging of the human papilla and peripapillary region based on flicker-induced reflectance changes. Neurosci Lett. 2004;360:141–144. doi: 10.1016/j.neulet.2004.02.063. PubMed DOI
Best M, Plechaty G, Harris L, Galin MA. Ophthalmodynamometry and ocular pulse studies in carotid occlusion. Arch Ophthalmol. 1971;85:334–338. doi: 10.1001/archopht.1971.00990050336019. PubMed DOI
Perkins ES. The ocular pulse and intraocular pressure as a screening test for carotid artery stenosis. Br J Ophthalmol. 1985;69:676–680. doi: 10.1136/bjo.69.9.676. PubMed DOI PMC
Kinsner W, Yan Y. A model of the carotid vascular system with stenosis at the carotid bifurcation. Math Comput Model. 1990;14:582–585. doi: 10.1016/0895-7177(90)90249-M. DOI
Rina M, Shiba T, Takahashi M et al (2015) Pulse waveform analysis of optic nerve head circulation for predicting carotid atherosclerotic changes. Graefes Arch Clin Exp Ophthalmol. 10.1007/s00417-015-3123-y PubMed
Knecht PB, Menghini M, Bachmann LM, et al. The ocular pulse amplitude as a noninvasive parameter for carotid artery stenosis screening: a test accuracy study. Ophthalmology. 2012;119:1244–1249. doi: 10.1016/j.ophtha.2011.12.040. PubMed DOI
Pinto LA, Vandewalle E, de Clerck E, et al. Ophthalmic artery Doppler waveform changes associated with increased damage in glaucoma patients. Investig Ophthalmol Vis Sci. 2012;53:2448–2453. doi: 10.1167/iovs.11-9388. PubMed DOI
Millasseau SC, Guigui FG, Kelly RP, et al. Noninvasive assessment of the digital volume pulse. Comparison with the peripheral pressure pulse. Hypertens (Dallas, Tex 1979) 2000;36:952–956. doi: 10.1161/01.hyp.36.6.952. PubMed DOI
Levine RA, Demirel S, Fan J, et al. Asymmetries and visual field summaries as predictors of glaucoma in the ocular hypertension treatment study. Invest Ophthalmol Vis Sci. 2006;47:3896–3903. doi: 10.1167/iovs.05-0469. PubMed DOI PMC
Sullivan-Mee M, Ruegg CC, Pensyl D, et al. Diagnostic precision of retinal nerve fiber layer and macular thickness asymmetry parameters for identifying early primary open-angle glaucoma. Am J Ophthalmol. 2013;156:567–577.e1. doi: 10.1016/j.ajo.2013.04.037. PubMed DOI
Hou H, Moghimi S, Zangwill LM, et al. Inter-eye asymmetry of optical coherence tomography angiography vessel density in bilateral glaucoma, glaucoma suspect, and healthy eyes. Am J Ophthalmol. 2018;190:69–77. doi: 10.1016/j.ajo.2018.03.026. PubMed DOI PMC
Heart rate and age modulate retinal pulsatile patterns
Photoplethysmographic analysis of retinal videodata based on the Fourier domain approach
ClinicalTrials.gov
NCT00494923