Hirudin Alleviates Early Brain Injury After Subarachnoid Hemorrhage in Rats via Regulating NLRP3 Inflammasome-Mediated Pyroptosis

. 2025 Apr 30 ; 74 (2) : 301-312.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40432444

Subarachnoid hemorrhage (SAH) is a critical neurological emergency and one of the leading causes of stroke. Neuronal demise serves as the primary factor contributing to early brain injury (EBI) following SAH. This study aims to investigate the molecular mechanism underlying Hirudin's impact on EBI after SAH, with a particular focus on pyroptosis. The SAH rat model was established by performing intravascular puncture, followed by the administration of Hirudin and Nod-like receptor protein 3 (NLRP3) agonist Nigericin into the lateral ventricle. The SAH grading, neurological score, brain water content, blood-brain barrier (BBB) permeability, neuronal damage, inflammatory reaction, neuronal death, distribution of microglia marker Iba-1 and expression levels of NLRP3 inflammasomal-related proteins were evaluated at 72 h post-SAH. Hirudin treatment significantly ameliorated neurological scores and attenuated brain edema, BBB permeability, inflammatory response, microglia activation, and pyroptosis in SAH rats. Additionally, Hirudin treatment downregulated the expression levels of NLRP3 inflammasomal- related proteins, such as NLRP3, apoptosis- associated speck-like protein (ASC) and cleaved caspsase-1. However, Nigericin partially counteracted the aforementioned effects of Hirudin, indicating that Hirudin exerted its inhibitory effect on pyroptosis by modulating the NLRP3 inflammasome pathway. The neuroprotective effect of Hirudin on EBI following SAH is attributed its ability to inhibit pyroptosis mediated by NLRP3 inflammasome, suggesting its potential as a promising therapeutic approach for SAH. Keywords: Subarachnoid hemorrhage, Early brain injury, Hirudin, pyroptosis, Nod-like receptor protein 3 (NLRP3) inflammasome.

Zobrazit více v PubMed

Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8:355–369. doi: 10.1016/S1474-4422(09)70025-0. PubMed DOI

Rabinstein AA. Subarachnoid hemorrhage. Neurology. 2013;80:e56–59. doi: 10.1212/WNL.0b013e3182834b22. PubMed DOI

Dority JS, Oldham JS. Subarachnoid Hemorrhage: An Update. Anesthesiol Clin. 2016;34:577–600. doi: 10.1016/j.anclin.2016.04.009. PubMed DOI

Persson HC, Carlsson L, Sunnerhagen KS. Life situation 5 years after subarachnoid haemorrhage. Acta Neurol Scand. 2018;137:99–104. doi: 10.1111/ane.12815. PubMed DOI

Korja M, Lehto H, Juvela S, Kaprio J. Incidence of subarachnoid hemorrhage is decreasing together with decreasing smoking rates. Neurology. 2016;87:1118–1123. doi: 10.1212/WNL.0000000000003091. PubMed DOI PMC

Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014;10:44–58. doi: 10.1038/nrneurol.2013.246. PubMed DOI

Rass V, Helbok R. Early brain injury after poor-grade subarachnoid hemorrhage. Curr Neurol Neurosci Rep. 2019;19:78. doi: 10.1007/s11910-019-0990-3. PubMed DOI PMC

Lauzier DC, Jayaraman K. Early brain injury after subarachnoid hemorrhage: incidence and mechanisms. stroke. 2023;54:1426–1440. doi: 10.1161/STROKEAHA.122.040072. PubMed DOI PMC

Li R, Liu W, Yin J, Chen Y, Guo S, Fan H, Li X, Zhang X, He X, Duan C. TSG-6 attenuates inflammation-induced brain injury via modulation of microglial polarization in SAH rats through the SOCS3/STAT3 pathway. J Neuroinflammation. 2018;15:231. doi: 10.1186/s12974-018-1279-1. PubMed DOI PMC

Cao C, Ding J, Cao D, Li B, Wu J, Li X, Li H, Cui G, Shen H, Chen G. TREM2 modulates neuroinflammation with elevated IRAK3 expression and plays a neuroprotective role after experimental SAH in rats. Neurobiol Dis. 2022;171:105809. doi: 10.1016/j.nbd.2022.105809. PubMed DOI

Li T, Zhang Y, Lu Q, Lei L, Du J, Lu X. GPNMB Ameliorates Neuroinflammation Via the Modulation of AMPK/NFκB Signaling Pathway After SAH in Mice. J Neuroimmune Pharmacol. 2023;18:628–639. doi: 10.1007/s11481-023-10087-6. PubMed DOI PMC

Boise LH, Collins CM. Salmonella-induced cell death: apoptosis, necrosis or programmed cell death? Trends Microbiol. 2001;9:64–67. doi: 10.1016/S0966-842X(00)01937-5. PubMed DOI

Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9:113–114. doi: 10.1016/S0966-842X(00)01936-3. PubMed DOI

Xu P, Li F, Tang H. Pyroptosis and airway homeostasis regulation. Physiol Res. 2023;72:1–13. doi: 10.33549/physiolres.934971. PubMed DOI PMC

Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8:1812–1825. doi: 10.1111/j.1462-5822.2006.00751.x. PubMed DOI

Fink SL, Cookson BT. Pyroptosis and host cell death responses during Salmonella infection. Cell Microbiol. 2007;9:2562–2570. doi: 10.1111/j.1462-5822.2007.01036.x. PubMed DOI

Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A, Morita R. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun. 2015;6:7360. doi: 10.1038/ncomms8360. PubMed DOI PMC

An P, Xie J, Qiu S, Liu Y, Wang J, Xiu X, Li L, Tang M. Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci. 2019;232:116599. doi: 10.1016/j.lfs.2019.116599. PubMed DOI

Sun YB, Zhao H, Mu DL, Zhang W, Cui J, Wu L, Alam A, Wang DX, Ma D. Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis. Cell Death Dis. 2019;10:167. doi: 10.1038/s41419-019-1416-5. PubMed DOI PMC

Kuwar R, Rolfe A, Di L, Xu H, He L, Jiang Y, Zhang S, Sun D. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J Neuroinflammation. 2019;16:81. doi: 10.1186/s12974-019-1471-y. PubMed DOI PMC

Shi S, Zhang C, Liu J. TIMP2 facilitates CIRI through activating NLRP3-mediated pyroptosis. Aging (Albany NY) 2023;15:3635–3643. doi: 10.18632/aging.204696. PubMed DOI PMC

Lammerding L, Slowik A, Johann S, Beyer C, Zendedel A. Poststroke Inflammasome Expression and Regulation in the Peri-Infarct Area by Gonadal Steroids after Transient Focal Ischemia in the Rat Brain. Neuroendocrinology. 2016;103:460–475. doi: 10.1159/000439435. PubMed DOI

Díaz-García E, Nanwani-Nanwani K, García-Tovar S, Alfaro E, López-Collazo E, Quintana-Díaz M, García-Rio F, Cubillos-Zapata C. NLRP3 Inflammasome Overactivation in Patients with Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res. 2023;14:334–346. doi: 10.1007/s12975-022-01064-x. PubMed DOI PMC

Yan A, Pan X, Wen X, Nie X, Li Y. Activated protein C overexpression suppresses the pyroptosis of subarachnoid hemorrhage model cells by regulating the NLRP3 inflammasome pathway. Exp Ther Med. 2021;22:1391. doi: 10.3892/etm.2021.10827. PubMed DOI PMC

Liu C, Yao K, Tian Q, Guo Y, Wang G, He P, Wang J, Wang J, Zhang Z, Li M. CXCR4-BTK axis mediate pyroptosis and lipid peroxidation in early brain injury after subarachnoid hemorrhage via NLRP3 inflammasome and NF-κB pathway. Redox Biol. 2023;68:102960. doi: 10.1016/j.redox.2023.102960. PubMed DOI PMC

Junren C, Xiaofang X, Huiqiong Z, Gangmin L, Yanpeng Y, Xiaoyu C, Yuqing G, Yanan L, Yue Z, Fu P, Cheng P. Pharmacological activities and mechanisms of hirudin and its derivatives - a review. Front Pharmacol. 2021;12:660757. doi: 10.3389/fphar.2021.660757. PubMed DOI PMC

Li WQ, Qin ZS, Chen S, Cheng D, Yang SC, Choi YMM, Chu B, Zhou WH, Zhang ZJ. Hirudin alleviates acute ischemic stroke by inhibiting NLRP3 inflammasome-mediated neuroinflammation: In vivo and in vitro approaches. Int Immunopharmacol. 2022;110:108967. doi: 10.1016/j.intimp.2022.108967. PubMed DOI

Sun Z, Zhao Z, Zhao S, Sheng Y, Zhao Z, Gao C, Li J, Liu X. Recombinant hirudin treatment modulates aquaporin-4 and aquaporin-9 expression after intracerebral hemorrhage in vivo. Mol Biol Rep. 2009;36:1119–1127. doi: 10.1007/s11033-008-9287-3. PubMed DOI

Xia X, Li M, Wei R, Li J, Lei Y, Zhang M. Intracerebral hirudin injection alleviates cognitive impairment and oxidative stress and promotes hippocampal neurogenesis in rats subjected to cerebral ischemia. Neuropathology. 2023;43:362–372. doi: 10.1111/neup.12897. PubMed DOI

Luo G, Chen L, Chen M, Mao L, Zeng Q, Zou Y, Xue J, Liu P, Wu Q, Yang S, Liu M. Hirudin inhibit the formation of NLRP3 inflammasome in cardiomyocytes via suppressing oxidative stress and activating mitophagy. Heliyon. 2024;10:e23077. doi: 10.1016/j.heliyon.2023.e23077. PubMed DOI PMC

Bai Y, Bai J, Lu P, Jing YM, Zheng WC, Wang LY, Wang JH, Wang F. Hirudin ameliorates myocardial ischemia-reperfusion injury in a rat model of hemorrhagic shock and resuscitation: roles of NLRP3-signaling pathway. Mol Cell Biochem. 2024;479:63–72. doi: 10.1007/s11010-023-04717-z. PubMed DOI

Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–334. doi: 10.1016/j.jneumeth.2007.08.004. PubMed DOI PMC

Karabiyikoglu M, Hua Y, Keep RF, Ennis SR, Xi G. Intracerebral hirudin injection attenuates ischemic damage and neurologic deficits without altering local cerebral blood flow. J Cereb Blood Flow Metab. 2004;24:159–166. doi: 10.1097/01.WCB.0000100062.36077.84. PubMed DOI

Zhang D, Yan H, Li H, Hao S, Zhuang Z, Liu M, Sun Q, Yang Y, Zhou M, Li K, Hang C. TGFβ-activated Kinase 1 (TAK1) Inhibition by 5Z-7-oxozeaenol attenuates early brain injury after experimental subarachnoid hemorrhage. J Biol Chem. 2015;290:19900–19909. doi: 10.1074/jbc.M115.636795. PubMed DOI PMC

Cai W, Wu Z, Lai J, Yao J, Zeng Y, Fang Z, Lin W, Chen J, Xu C, Chen X. LDC7559 inhibits microglial activation and GSDMD-dependent pyroptosis after subarachnoid hemorrhage. Front Immunol. 2023;14:1117310. doi: 10.3389/fimmu.2023.1117310. PubMed DOI PMC

Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26:627–634. doi: 10.1161/01.STR.26.4.627. discussion 635. PubMed DOI

Pan P, Zhang X, Li Q, Zhao H, Qu J, Zhang JH, Liu X, Feng H, Chen Y. Cyclosporine A alleviated matrix metalloproteinase 9 associated blood-brain barrier disruption after subarachnoid hemorrhage in mice. Neurosci Lett. 2017;649:7–13. doi: 10.1016/j.neulet.2017.03.050. PubMed DOI

Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something else? Science. 2013;339:156–161. doi: 10.1126/science.1227901. PubMed DOI PMC

Almutairi MM, Gong C, Xu YG, Chang Y, Shi H. Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci. 2016;73:57–77. doi: 10.1007/s00018-015-2050-8. PubMed DOI PMC

Ivanidze J, Kallas ON. Application of blood-brain barrier permeability imaging in global cerebral edema. AJNR Am J Neuroradiol. 2016;37:1599–1603. doi: 10.3174/ajnr.A4784. PubMed DOI PMC

Mackman N, Bergmeier W, Stouffer GA. Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov. 2020;19:333–352. doi: 10.1038/s41573-020-0061-0. PubMed DOI

Gilroy D, De Maeyer R. New insights into the resolution of inflammation. Semin Immunol. 2015;27:161–168. doi: 10.1016/j.smim.2015.05.003. PubMed DOI

Patsouris V, Blecharz-Lang KG, Nieminen-Kelhä M, Schneider UC, Vajkoczy P. Resolution of Cerebral Inflammation Following Subarachnoid Hemorrhage. Neurocrit Care. 2023;39:218–228. doi: 10.1007/s12028-023-01770-w. PubMed DOI PMC

Geraghty JR, Davis JL, Testai FD. Neuroinflammation and microvascular dysfunction after experimental subarachnoid hemorrhage: emerging components of early brain injury related to outcome. Neurocrit Care. 2019;31:373–389. doi: 10.1007/s12028-019-00710-x. PubMed DOI PMC

Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol. 2020;35:623–636. PubMed

Zheng ZV, Lyu H, Lam SYE, Lam PK, Poon WS, Wong GKC. The Dynamics of Microglial Polarization Reveal the Resident Neuroinflammatory Responses After Subarachnoid Hemorrhage. Transl Stroke Res. 2020;11:433–449. doi: 10.1007/s12975-019-00728-5. PubMed DOI

Yamada H, Kase Y, Okano Y, Kim D, Goto M, Takahashi S, Okano H, Toda M. Subarachnoid hemorrhage triggers neuroinflammation of the entire cerebral cortex, leading to neuronal cell death. Inflamm Regen. 2022;42:61. doi: 10.1186/s41232-022-00236-4. PubMed DOI PMC

Chen J, Wang L, Wu C, Hu Q, Gu C, Yan F, Li J, Yan W, Chen G. Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J Pineal Res. 2014;56:12–19. doi: 10.1111/jpi.12086. PubMed DOI

Chen J, Li M, Liu Z, Wang Y, Xiong K. Molecular mechanisms of neuronal death in brain injury after subarachnoid hemorrhage. Front Cell Neurosci. 2022;16:1025708. doi: 10.3389/fncel.2022.1025708. PubMed DOI PMC

Vande Walle L, Lamkanfi M. Pyroptosis. Curr Biol. 2016;26:R568–r572. doi: 10.1016/j.cub.2016.02.019. PubMed DOI

Liu Y, Luo Y, Zhang A, Wang Z, Wang X, Yu Q, Zhang Z, Zhu Z, Wang K, Chen L, Nie X, Zhang JH, Zhang J, Fang Y, Su Z, Chen S. Long non-coding RNA H19 promotes NLRP3-mediated pyroptosis after subarachnoid hemorrhage in rats. Transl Stroke Res. 2023;14:987–1001. doi: 10.1007/s12975-022-01104-6. PubMed DOI

Xu P, Hong Y, Xie Y, Yuan K, Li J, Sun R, Zhang X, Shi X, Li R, Wu J, Liu X, Hu W, Sun W. TREM-1 Exacerbates Neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental subarachnoid hemorrhage. Transl Stroke Res. 2021;12:643–659. doi: 10.1007/s12975-020-00840-x. PubMed DOI

Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C. Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol. 2009;182:3173–3182. https://doi.org/10.4049/jimmunol.182.Supp.135.70 https://doi.org/10.4049/jimmunol.0802367 . PubMed DOI PMC

Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci. 2014;1319:82–95. doi: 10.1111/nyas.12458. PubMed DOI PMC

Swanson KV, Deng M. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–489. doi: 10.1038/s41577-019-0165-0. PubMed DOI PMC

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–665. doi: 10.1038/nature15514. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...