Hirudin Alleviates Early Brain Injury After Subarachnoid Hemorrhage in Rats via Regulating NLRP3 Inflammasome-Mediated Pyroptosis
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
40432444
PubMed Central
PMC12148156
DOI
10.33549/physiolres.935454
PII: 935454
Knihovny.cz E-zdroje
- MeSH
- hematoencefalická bariéra účinky léků metabolismus MeSH
- hirudiny * farmakologie MeSH
- inflamasomy * metabolismus MeSH
- krysa rodu Rattus MeSH
- poranění mozku * metabolismus farmakoterapie etiologie patologie MeSH
- potkani Sprague-Dawley MeSH
- protein NLRP3 * metabolismus MeSH
- pyroptóza * účinky léků fyziologie MeSH
- subarachnoidální krvácení * metabolismus farmakoterapie komplikace patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hirudiny * MeSH
- inflamasomy * MeSH
- Nlrp3 protein, rat MeSH Prohlížeč
- protein NLRP3 * MeSH
Subarachnoid hemorrhage (SAH) is a critical neurological emergency and one of the leading causes of stroke. Neuronal demise serves as the primary factor contributing to early brain injury (EBI) following SAH. This study aims to investigate the molecular mechanism underlying Hirudin's impact on EBI after SAH, with a particular focus on pyroptosis. The SAH rat model was established by performing intravascular puncture, followed by the administration of Hirudin and Nod-like receptor protein 3 (NLRP3) agonist Nigericin into the lateral ventricle. The SAH grading, neurological score, brain water content, blood-brain barrier (BBB) permeability, neuronal damage, inflammatory reaction, neuronal death, distribution of microglia marker Iba-1 and expression levels of NLRP3 inflammasomal-related proteins were evaluated at 72 h post-SAH. Hirudin treatment significantly ameliorated neurological scores and attenuated brain edema, BBB permeability, inflammatory response, microglia activation, and pyroptosis in SAH rats. Additionally, Hirudin treatment downregulated the expression levels of NLRP3 inflammasomal- related proteins, such as NLRP3, apoptosis- associated speck-like protein (ASC) and cleaved caspsase-1. However, Nigericin partially counteracted the aforementioned effects of Hirudin, indicating that Hirudin exerted its inhibitory effect on pyroptosis by modulating the NLRP3 inflammasome pathway. The neuroprotective effect of Hirudin on EBI following SAH is attributed its ability to inhibit pyroptosis mediated by NLRP3 inflammasome, suggesting its potential as a promising therapeutic approach for SAH. Keywords: Subarachnoid hemorrhage, Early brain injury, Hirudin, pyroptosis, Nod-like receptor protein 3 (NLRP3) inflammasome.
Zobrazit více v PubMed
Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8:355–369. doi: 10.1016/S1474-4422(09)70025-0. PubMed DOI
Rabinstein AA. Subarachnoid hemorrhage. Neurology. 2013;80:e56–59. doi: 10.1212/WNL.0b013e3182834b22. PubMed DOI
Dority JS, Oldham JS. Subarachnoid Hemorrhage: An Update. Anesthesiol Clin. 2016;34:577–600. doi: 10.1016/j.anclin.2016.04.009. PubMed DOI
Persson HC, Carlsson L, Sunnerhagen KS. Life situation 5 years after subarachnoid haemorrhage. Acta Neurol Scand. 2018;137:99–104. doi: 10.1111/ane.12815. PubMed DOI
Korja M, Lehto H, Juvela S, Kaprio J. Incidence of subarachnoid hemorrhage is decreasing together with decreasing smoking rates. Neurology. 2016;87:1118–1123. doi: 10.1212/WNL.0000000000003091. PubMed DOI PMC
Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014;10:44–58. doi: 10.1038/nrneurol.2013.246. PubMed DOI
Rass V, Helbok R. Early brain injury after poor-grade subarachnoid hemorrhage. Curr Neurol Neurosci Rep. 2019;19:78. doi: 10.1007/s11910-019-0990-3. PubMed DOI PMC
Lauzier DC, Jayaraman K. Early brain injury after subarachnoid hemorrhage: incidence and mechanisms. stroke. 2023;54:1426–1440. doi: 10.1161/STROKEAHA.122.040072. PubMed DOI PMC
Li R, Liu W, Yin J, Chen Y, Guo S, Fan H, Li X, Zhang X, He X, Duan C. TSG-6 attenuates inflammation-induced brain injury via modulation of microglial polarization in SAH rats through the SOCS3/STAT3 pathway. J Neuroinflammation. 2018;15:231. doi: 10.1186/s12974-018-1279-1. PubMed DOI PMC
Cao C, Ding J, Cao D, Li B, Wu J, Li X, Li H, Cui G, Shen H, Chen G. TREM2 modulates neuroinflammation with elevated IRAK3 expression and plays a neuroprotective role after experimental SAH in rats. Neurobiol Dis. 2022;171:105809. doi: 10.1016/j.nbd.2022.105809. PubMed DOI
Li T, Zhang Y, Lu Q, Lei L, Du J, Lu X. GPNMB Ameliorates Neuroinflammation Via the Modulation of AMPK/NFκB Signaling Pathway After SAH in Mice. J Neuroimmune Pharmacol. 2023;18:628–639. doi: 10.1007/s11481-023-10087-6. PubMed DOI PMC
Boise LH, Collins CM. Salmonella-induced cell death: apoptosis, necrosis or programmed cell death? Trends Microbiol. 2001;9:64–67. doi: 10.1016/S0966-842X(00)01937-5. PubMed DOI
Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9:113–114. doi: 10.1016/S0966-842X(00)01936-3. PubMed DOI
Xu P, Li F, Tang H. Pyroptosis and airway homeostasis regulation. Physiol Res. 2023;72:1–13. doi: 10.33549/physiolres.934971. PubMed DOI PMC
Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8:1812–1825. doi: 10.1111/j.1462-5822.2006.00751.x. PubMed DOI
Fink SL, Cookson BT. Pyroptosis and host cell death responses during Salmonella infection. Cell Microbiol. 2007;9:2562–2570. doi: 10.1111/j.1462-5822.2007.01036.x. PubMed DOI
Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A, Morita R. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun. 2015;6:7360. doi: 10.1038/ncomms8360. PubMed DOI PMC
An P, Xie J, Qiu S, Liu Y, Wang J, Xiu X, Li L, Tang M. Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci. 2019;232:116599. doi: 10.1016/j.lfs.2019.116599. PubMed DOI
Sun YB, Zhao H, Mu DL, Zhang W, Cui J, Wu L, Alam A, Wang DX, Ma D. Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis. Cell Death Dis. 2019;10:167. doi: 10.1038/s41419-019-1416-5. PubMed DOI PMC
Kuwar R, Rolfe A, Di L, Xu H, He L, Jiang Y, Zhang S, Sun D. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J Neuroinflammation. 2019;16:81. doi: 10.1186/s12974-019-1471-y. PubMed DOI PMC
Shi S, Zhang C, Liu J. TIMP2 facilitates CIRI through activating NLRP3-mediated pyroptosis. Aging (Albany NY) 2023;15:3635–3643. doi: 10.18632/aging.204696. PubMed DOI PMC
Lammerding L, Slowik A, Johann S, Beyer C, Zendedel A. Poststroke Inflammasome Expression and Regulation in the Peri-Infarct Area by Gonadal Steroids after Transient Focal Ischemia in the Rat Brain. Neuroendocrinology. 2016;103:460–475. doi: 10.1159/000439435. PubMed DOI
Díaz-García E, Nanwani-Nanwani K, García-Tovar S, Alfaro E, López-Collazo E, Quintana-Díaz M, García-Rio F, Cubillos-Zapata C. NLRP3 Inflammasome Overactivation in Patients with Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res. 2023;14:334–346. doi: 10.1007/s12975-022-01064-x. PubMed DOI PMC
Yan A, Pan X, Wen X, Nie X, Li Y. Activated protein C overexpression suppresses the pyroptosis of subarachnoid hemorrhage model cells by regulating the NLRP3 inflammasome pathway. Exp Ther Med. 2021;22:1391. doi: 10.3892/etm.2021.10827. PubMed DOI PMC
Liu C, Yao K, Tian Q, Guo Y, Wang G, He P, Wang J, Wang J, Zhang Z, Li M. CXCR4-BTK axis mediate pyroptosis and lipid peroxidation in early brain injury after subarachnoid hemorrhage via NLRP3 inflammasome and NF-κB pathway. Redox Biol. 2023;68:102960. doi: 10.1016/j.redox.2023.102960. PubMed DOI PMC
Junren C, Xiaofang X, Huiqiong Z, Gangmin L, Yanpeng Y, Xiaoyu C, Yuqing G, Yanan L, Yue Z, Fu P, Cheng P. Pharmacological activities and mechanisms of hirudin and its derivatives - a review. Front Pharmacol. 2021;12:660757. doi: 10.3389/fphar.2021.660757. PubMed DOI PMC
Li WQ, Qin ZS, Chen S, Cheng D, Yang SC, Choi YMM, Chu B, Zhou WH, Zhang ZJ. Hirudin alleviates acute ischemic stroke by inhibiting NLRP3 inflammasome-mediated neuroinflammation: In vivo and in vitro approaches. Int Immunopharmacol. 2022;110:108967. doi: 10.1016/j.intimp.2022.108967. PubMed DOI
Sun Z, Zhao Z, Zhao S, Sheng Y, Zhao Z, Gao C, Li J, Liu X. Recombinant hirudin treatment modulates aquaporin-4 and aquaporin-9 expression after intracerebral hemorrhage in vivo. Mol Biol Rep. 2009;36:1119–1127. doi: 10.1007/s11033-008-9287-3. PubMed DOI
Xia X, Li M, Wei R, Li J, Lei Y, Zhang M. Intracerebral hirudin injection alleviates cognitive impairment and oxidative stress and promotes hippocampal neurogenesis in rats subjected to cerebral ischemia. Neuropathology. 2023;43:362–372. doi: 10.1111/neup.12897. PubMed DOI
Luo G, Chen L, Chen M, Mao L, Zeng Q, Zou Y, Xue J, Liu P, Wu Q, Yang S, Liu M. Hirudin inhibit the formation of NLRP3 inflammasome in cardiomyocytes via suppressing oxidative stress and activating mitophagy. Heliyon. 2024;10:e23077. doi: 10.1016/j.heliyon.2023.e23077. PubMed DOI PMC
Bai Y, Bai J, Lu P, Jing YM, Zheng WC, Wang LY, Wang JH, Wang F. Hirudin ameliorates myocardial ischemia-reperfusion injury in a rat model of hemorrhagic shock and resuscitation: roles of NLRP3-signaling pathway. Mol Cell Biochem. 2024;479:63–72. doi: 10.1007/s11010-023-04717-z. PubMed DOI
Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–334. doi: 10.1016/j.jneumeth.2007.08.004. PubMed DOI PMC
Karabiyikoglu M, Hua Y, Keep RF, Ennis SR, Xi G. Intracerebral hirudin injection attenuates ischemic damage and neurologic deficits without altering local cerebral blood flow. J Cereb Blood Flow Metab. 2004;24:159–166. doi: 10.1097/01.WCB.0000100062.36077.84. PubMed DOI
Zhang D, Yan H, Li H, Hao S, Zhuang Z, Liu M, Sun Q, Yang Y, Zhou M, Li K, Hang C. TGFβ-activated Kinase 1 (TAK1) Inhibition by 5Z-7-oxozeaenol attenuates early brain injury after experimental subarachnoid hemorrhage. J Biol Chem. 2015;290:19900–19909. doi: 10.1074/jbc.M115.636795. PubMed DOI PMC
Cai W, Wu Z, Lai J, Yao J, Zeng Y, Fang Z, Lin W, Chen J, Xu C, Chen X. LDC7559 inhibits microglial activation and GSDMD-dependent pyroptosis after subarachnoid hemorrhage. Front Immunol. 2023;14:1117310. doi: 10.3389/fimmu.2023.1117310. PubMed DOI PMC
Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26:627–634. doi: 10.1161/01.STR.26.4.627. discussion 635. PubMed DOI
Pan P, Zhang X, Li Q, Zhao H, Qu J, Zhang JH, Liu X, Feng H, Chen Y. Cyclosporine A alleviated matrix metalloproteinase 9 associated blood-brain barrier disruption after subarachnoid hemorrhage in mice. Neurosci Lett. 2017;649:7–13. doi: 10.1016/j.neulet.2017.03.050. PubMed DOI
Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something else? Science. 2013;339:156–161. doi: 10.1126/science.1227901. PubMed DOI PMC
Almutairi MM, Gong C, Xu YG, Chang Y, Shi H. Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci. 2016;73:57–77. doi: 10.1007/s00018-015-2050-8. PubMed DOI PMC
Ivanidze J, Kallas ON. Application of blood-brain barrier permeability imaging in global cerebral edema. AJNR Am J Neuroradiol. 2016;37:1599–1603. doi: 10.3174/ajnr.A4784. PubMed DOI PMC
Mackman N, Bergmeier W, Stouffer GA. Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov. 2020;19:333–352. doi: 10.1038/s41573-020-0061-0. PubMed DOI
Gilroy D, De Maeyer R. New insights into the resolution of inflammation. Semin Immunol. 2015;27:161–168. doi: 10.1016/j.smim.2015.05.003. PubMed DOI
Patsouris V, Blecharz-Lang KG, Nieminen-Kelhä M, Schneider UC, Vajkoczy P. Resolution of Cerebral Inflammation Following Subarachnoid Hemorrhage. Neurocrit Care. 2023;39:218–228. doi: 10.1007/s12028-023-01770-w. PubMed DOI PMC
Geraghty JR, Davis JL, Testai FD. Neuroinflammation and microvascular dysfunction after experimental subarachnoid hemorrhage: emerging components of early brain injury related to outcome. Neurocrit Care. 2019;31:373–389. doi: 10.1007/s12028-019-00710-x. PubMed DOI PMC
Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol. 2020;35:623–636. PubMed
Zheng ZV, Lyu H, Lam SYE, Lam PK, Poon WS, Wong GKC. The Dynamics of Microglial Polarization Reveal the Resident Neuroinflammatory Responses After Subarachnoid Hemorrhage. Transl Stroke Res. 2020;11:433–449. doi: 10.1007/s12975-019-00728-5. PubMed DOI
Yamada H, Kase Y, Okano Y, Kim D, Goto M, Takahashi S, Okano H, Toda M. Subarachnoid hemorrhage triggers neuroinflammation of the entire cerebral cortex, leading to neuronal cell death. Inflamm Regen. 2022;42:61. doi: 10.1186/s41232-022-00236-4. PubMed DOI PMC
Chen J, Wang L, Wu C, Hu Q, Gu C, Yan F, Li J, Yan W, Chen G. Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J Pineal Res. 2014;56:12–19. doi: 10.1111/jpi.12086. PubMed DOI
Chen J, Li M, Liu Z, Wang Y, Xiong K. Molecular mechanisms of neuronal death in brain injury after subarachnoid hemorrhage. Front Cell Neurosci. 2022;16:1025708. doi: 10.3389/fncel.2022.1025708. PubMed DOI PMC
Vande Walle L, Lamkanfi M. Pyroptosis. Curr Biol. 2016;26:R568–r572. doi: 10.1016/j.cub.2016.02.019. PubMed DOI
Liu Y, Luo Y, Zhang A, Wang Z, Wang X, Yu Q, Zhang Z, Zhu Z, Wang K, Chen L, Nie X, Zhang JH, Zhang J, Fang Y, Su Z, Chen S. Long non-coding RNA H19 promotes NLRP3-mediated pyroptosis after subarachnoid hemorrhage in rats. Transl Stroke Res. 2023;14:987–1001. doi: 10.1007/s12975-022-01104-6. PubMed DOI
Xu P, Hong Y, Xie Y, Yuan K, Li J, Sun R, Zhang X, Shi X, Li R, Wu J, Liu X, Hu W, Sun W. TREM-1 Exacerbates Neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental subarachnoid hemorrhage. Transl Stroke Res. 2021;12:643–659. doi: 10.1007/s12975-020-00840-x. PubMed DOI
Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C. Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol. 2009;182:3173–3182. https://doi.org/10.4049/jimmunol.182.Supp.135.70 https://doi.org/10.4049/jimmunol.0802367 . PubMed DOI PMC
Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci. 2014;1319:82–95. doi: 10.1111/nyas.12458. PubMed DOI PMC
Swanson KV, Deng M. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–489. doi: 10.1038/s41577-019-0165-0. PubMed DOI PMC
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–665. doi: 10.1038/nature15514. PubMed DOI