Heart rate and age modulate retinal pulsatile patterns
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35701487
PubMed Central
PMC9197857
DOI
10.1038/s42003-022-03441-6
PII: 10.1038/s42003-022-03441-6
Knihovny.cz E-zdroje
- MeSH
- discus nervi optici * MeSH
- lidé MeSH
- nitrooční tlak MeSH
- pulzatilní průtok fyziologie MeSH
- srdeční frekvence MeSH
- vena centralis retinae * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Theoretical models of retinal hemodynamics showed the modulation of retinal pulsatile patterns (RPPs) by heart rate (HR), yet in-vivo validation and scientific merit of this biological process is lacking. Such evidence is critical for result interpretation, study design, and (patho-)physiological modeling of human biology spanning applications in various medical specialties. In retinal hemodynamic video-recordings, we characterize the morphology of RPPs and assess the impact of modulation by HR or other variables. Principal component analysis isolated two RPPs, i.e., spontaneous venous pulsation (SVP) and optic cup pulsation (OCP). Heart rate modulated SVP and OCP morphology (pFDR < 0.05); age modulated SVP morphology (pFDR < 0.05). In addition, age and HR demonstrated the effect on between-group differences. This knowledge greatly affects future study designs, analyses of between-group differences in RPPs, and biophysical models investigating relationships between RPPs, intracranial, intraocular pressures, and cardiovascular physiology.
Department of Biomedical Engineering Brno University of Technology Brno Czech Republic
Department of Neurology University of Minnesota Minneapolis MN USA
Department of Ophthalmology and Visual Neurosciences University of Minnesota Minneapolis MN USA
Department of Ophthalmology Friedrich Alexander University of Erlangen Nuremberg Erlangen Germany
Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
Zobrazit více v PubMed
Guven D, Ozdemir H, Hasanreisoglu B. Hemodynamic alterations in diabetic retinopathy. Ophthalmology. 1996;103:1245–1249. doi: 10.1016/S0161-6420(96)30514-9. PubMed DOI
Flammer J, et al. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 2002;21:359–393. doi: 10.1016/S1350-9462(02)00008-3. PubMed DOI
Wang X, et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch. Clin. Exp. Ophthalmol. 2015;253:1557–1564. doi: 10.1007/s00417-015-3095-y. PubMed DOI
Tornow RP, Kolar R, Odstrcilik J, Labounkova I, Horn F. Imaging video plethysmography shows reduced signal amplitude in glaucoma patients in the area of the microvascular tissue of the optic nerve head. Graefes Arch. Clin. Exp. Ophthalmol. 2021;259:483–494. doi: 10.1007/s00417-020-04934-y. PubMed DOI PMC
Feke GT, Hyman BT, Stern RA, Pasquale LR. Retinal blood flow in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement. Diagnosis, Assess. Dis. Monit. 2015;1:144–151. PubMed PMC
Spain RI, et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis Rebecca. Br. J. Ophthalmol. 2018;102:520–524. doi: 10.1136/bjophthalmol-2017-310477. PubMed DOI PMC
Wong TY, et al. Retinal microvascular abnormalities and incident stroke: the atherosclerosis risk in communities study. Lancet. 2001;358:1134–1140. doi: 10.1016/S0140-6736(01)06253-5. PubMed DOI
Wong TY, et al. Retinal arteriolar narrowing and risk of coronary heart disease in men and women: the Atherosclerosis risk in communities study. J. Am. Med. Assoc. 2002;287:1153–1159. PubMed
Rina M, Shiba T, Takahashi M, Hori Y. Pulse waveform analysis of optic nerve head circulation for predicting carotid atherosclerotic changes. Graefes Arch. Clin. Exp. Ophthalmol. 2015;253:2285–2291. doi: 10.1007/s00417-015-3123-y. PubMed DOI
Holwerda SW, et al. Aortic stiffness is associated with changes in retinal arteriole flow pulsatility mediated by local vasodilation in healthy young/middle-age adults. J. Appl. Physiol. 2020;129:84–93. doi: 10.1152/japplphysiol.00252.2020. PubMed DOI PMC
Kim M, Kim RY, Kim JY, Park YH. Correlation of systemic arterial stiffness with changes in retinal and choroidal microvasculature in type 2 diabetes. Sci. Rep. 2019;9:1–9. PubMed PMC
Heitmar R, Summers RJ. Assessing vascular function using dynamic retinal diameter measurements: a new insight on the endothelium. Thromb. Haemost. 2012;107:1019–1026. doi: 10.1160/TH11-11-0810. PubMed DOI
Wong TY, et al. Retinal arteriolar narrowing and risk of diabetes mellitus in middle-aged persons. J. Am. Med. Assoc. 2002;287:2528–2533. doi: 10.1001/jama.287.19.2528. PubMed DOI
Rege, A. et al. Noninvasive assessment of retinal blood flow using a novel handheld laser speckle contrast imager. Transl. Vis. Sci. Technol. 7, 7 (2018). PubMed PMC
Debuc, D. C., Rege, A. & Smiddy, W. E. Use of XyCAM RI for noninvasive visualization and analysis of retinal blood flow dynamics during clinical investigations. Expert Rev. Med. Devices (2021). 10.1080/17434440.2021.1892486 PubMed
Tornow RP, Kolář R, Odstrčilík J. Non-mydriatic video ophthalmoscope to measure fast temporal changes of the human retina. Eur. Conf. Biomed. Opt. Opt. Soc. Am. 2015;9540:954006.
Garhofer G, et al. Use of the retinal vessel analyzer in ocular blood flow research. Acta Ophthalmol. 2010;88:717–722. doi: 10.1111/j.1755-3768.2009.01587.x. PubMed DOI
Seifertl BU, Vilser W. Retinal vessel analyzer (RVA)-design and function. Biomed. Tech. 2002;47:678–681. doi: 10.1515/bmte.2002.47.s1b.678. PubMed DOI
Shariflou S, Agar A, Rose K, Bowd C, Golzan SM. Objective quantification of spontaneous retinal venous pulsations using a novel tablet-based ophthalmoscope. Transl. Vis. Sci. Technol. 2020;9:19. doi: 10.1167/tvst.9.4.19. PubMed DOI PMC
Moret F, Poloschek CM, Lagrèze WA, Bach M. Visualization of fundus vessel pulsation using principal component analysis. Investig. Ophthalmol. Vis. Sci. 2011;52:5457–5464. doi: 10.1167/iovs.10-6806. PubMed DOI
Morgan WH, et al. Photoplethysmographic measurement of various retinal vascular pulsation parameters and measurement of the venous phase delay. Investig. Ophthalmol. Vis. Sci. 2014;55:5998–6006. doi: 10.1167/iovs.14-15104. PubMed DOI
Moret F, Reiff CM, Lagrèze WA, Bach M. Quantitative analysis of fundus-image sequences reveals phase of spontaneous venous pulsations. Transl. Vis. Sci. Technol. 2015;4:3. doi: 10.1167/tvst.4.5.3. PubMed DOI PMC
Betz-Stablein B, Hazelton ML, Morgan WH. Modelling retinal pulsatile blood flow from video data. Stat. Methods Med. Res. 2018;27:1575–1584. doi: 10.1177/0962280216665504. PubMed DOI
Qamber, S., Waheed, Z. & Akram, M. U. Personal identification system based on vascular pattern of human retina. In International Biomedical Engineering Conference (CIBEC) 64–67 (IEEE, 2012). 10.1109/CIBEC.2012.6473297
Jan J, Odstrcilik J, Gazarek J, Kolar R. Retinal image analysis aimed at blood vessel tree segmentation and early detection of neural-layer deterioration. Comput. Med. Imaging Graph. 2012;36:431–441. doi: 10.1016/j.compmedimag.2012.04.006. PubMed DOI
Labounkova I, et al. Blind source separation of retinal pulsatile patterns in optic nerve head video-recordings. IEEE Trans. Med. Imaging. 2021;40:852–864. doi: 10.1109/TMI.2020.3039917. PubMed DOI
Levin BE. The clinical significance of spontaneous pulsations of the retinal vein. Arch. Neurol. 1978;35:37–40. doi: 10.1001/archneur.1978.00500250041009. PubMed DOI
Jacks AS, Miller NR. Spontaneous retinal venous pulsation: aetiology and significance. J. Neurol. Neurosurg. Psychiatry. 2003;74:7–9. doi: 10.1136/jnnp.74.1.7. PubMed DOI PMC
Zhang X, et al. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol. Meas. 2017;38:R143–R182. doi: 10.1088/1361-6579/aa7256. PubMed DOI
Golzan SM, Kim MO, Seddighi AS, Avolio A, Graham SL. Non-invasive estimation of cerebrospinal fluid pressure waveforms by means of retinal venous pulsatility and central aortic blood pressure. Ann. Biomed. Eng. 2012;40:1940–1948. doi: 10.1007/s10439-012-0563-y. PubMed DOI
Morgan WH, et al. Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Investig. Ophthalmol. Vis. Sci. 2012;53:4676–4681. doi: 10.1167/iovs.12-9837. PubMed DOI
Wong SH, White RP. The clinical validity of the spontaneous retinal venous pulsation. J. Neuro-Ophthalmol. 2013;33:17–20. doi: 10.1097/WNO.0b013e3182622207. PubMed DOI
D’Antona L, et al. Association of intracranial pressure and spontaneous retinal venous pulsation. JAMA Neurol. 2019;76:1502–1505. doi: 10.1001/jamaneurol.2019.2935. PubMed DOI PMC
D’Antona L, et al. Brain MRI and ophthalmic biomarkers of intracranial pressure. Neurology. 2021;96:e2714–e2723. doi: 10.1212/WNL.0000000000012023. PubMed DOI PMC
Babbs, C. Biomechanics of retinal venous pulsations as indicators of intracranial pressure. Weldon Sch. Biomed. Eng. Fac. Work. Pap. (2016). 10.1039/C5RA18353G
Guidoboni G, et al. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Investig. Ophthalmol. Vis. Sci. 2014;55:4105–4118. doi: 10.1167/iovs.13-13611. PubMed DOI PMC
Levine DN. Spontaneous pulsation of the retinal veins. Microvasc. Res. 1998;56:154–165. doi: 10.1006/mvre.1998.2098. PubMed DOI
Levine DN, Bebie H. Phase and amplitude of spontaneous retinal vein pulsations: an extended constant inflow and variable outflow model. Microvasc. Res. 2016;106:67–79. doi: 10.1016/j.mvr.2016.03.005. PubMed DOI
Shirwany NA, Zou MH. Arterial stiffness: a brief review. Acta Pharmacol. Sin. 2010;31:1267–1276. doi: 10.1038/aps.2010.123. PubMed DOI PMC
Steppan, J., Barodka, V., Berkowitz, D. E. & Nyhan, D. Vascular stiffness and increased pulse pressure in the aging cardiovascular system. Cardiol. Res. Pract. 10.4061/2011/263585 (2011). PubMed PMC
Wong TY, Klein R, Klein BEK, Meuer SM, Hubbard LD. Retinal vessel diameters and their associations with age and blood pressure. Investig. Ophthalmol. Vis. Sci. 2003;44:4644–4650. doi: 10.1167/iovs.03-0079. PubMed DOI
Wong TY, et al. The prevalence and risk factors of retinal microvascular abnormalities in older persons: the cardiovascular health study. Ophthalmology. 2003;110:658–666. doi: 10.1016/S0161-6420(02)01931-0. PubMed DOI
Golzan, S. M., Morgan, W. H., Georgevsky, D. & Graham, S. L. Correlation of retinal nerve fibre layer thickness and spontaneous retinal venous pulsations in glaucoma and normal controls. PLoS ONE10, e0128433 (2015). PubMed PMC
Shlens, J. A Tutorial on principal component analysis. arXiv10.48550/arXiv.1404.1100 (2014).
Boron, W. & Boulpaep, E. In Medical Physiology (Elsevier, 2016).
Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: Implications for end-organ damage. J. Appl. Physiol. 2008;105:1652–1660. doi: 10.1152/japplphysiol.90549.2008. PubMed DOI PMC
Golzan M, Graham SL, Leaney J, Avolio A. Dynamic association between intraocular pressure and spontaneous pulsations of retinal veins. Curr. Eye Res. 2011;36:53–59. doi: 10.3109/02713683.2010.530731. PubMed DOI
Hedges TRJ, Baron EM, Hedges TRI, Sinclair SH. The retinal venous pulse: its relation to optic disc characteristics and choroidal pulse. Ophthalmology. 1993;101:542–547. doi: 10.1016/S0161-6420(94)31302-9. PubMed DOI
Lee HY, Oh BH. Aging and arterial stiffness. Circ. J. 2010;74:2257–2262. doi: 10.1253/circj.CJ-10-0910. PubMed DOI
Kim J-Y, et al. Gender difference in arterial stiffness in a multicenter cross-sectional study: the Korean arterial aging study (KAAS) Pulse. 2014;2:11–17. doi: 10.1159/000365267. PubMed DOI PMC
Tornow R-P, Odstrcilik J, Kolar R. Time-resolved quantitative inter-eye comparison of cardiac cycle-induced blood volume changes in the human retina. Biomed. Opt. Express. 2018;9:6237–6254. doi: 10.1364/BOE.9.006237. PubMed DOI PMC
Tornow, R. P., Milczarek, A., Odstrcilik, J. & Kolar, R. Binocular video ophthalmoscope for simultaneous recording of sequences of the human retina to compare dynamic parameters. In: European Conference on Biomedical Optics. Optical Society of America, p. 1041309 (2017).
Kolar R, Tornow RP, Odstrcilik J, Liberdova I. Registration of retinal sequences from new video-ophthalmoscopic camera. Biomed. Eng. Online. 2016;15:57. doi: 10.1186/s12938-016-0191-0. PubMed DOI PMC
Brunton, S. Singular Value Decomposition (SVD): Mathematical overview. YouTubehttps://www.youtube.com/watch?v=nbBvuuNVfco (2020).
Jan, J. Digital signal filtering, analysis and restoration (IET, 2000).
Hulley, S. B., Cummings, S. R., Browher, W. S., Grady, D. G. & Newman, T. B. Designing Clinical Research: An Epidemiological Approach (Lippcincott Williams & Wilkins, 2007).