Positive effects of voluntary running on metabolic syndrome-related disorders in non-obese hereditary hypertriacylglycerolemic rats
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25830228
PubMed Central
PMC4382201
DOI
10.1371/journal.pone.0122768
PII: PONE-D-14-46230
Knihovny.cz E-zdroje
- MeSH
- běh fyziologie MeSH
- bílá tuková tkáň patologie MeSH
- buněčná membrána metabolismus MeSH
- ceramidy metabolismus MeSH
- fosfolipidy metabolismus MeSH
- hnědá tuková tkáň metabolismus patologie MeSH
- hypertriglyceridemie krev MeSH
- kosterní svaly metabolismus patologie MeSH
- krysa rodu Rattus MeSH
- metabolický syndrom krev MeSH
- metabolismus lipidů * MeSH
- oxidační stres MeSH
- svalové buňky metabolismus MeSH
- triglyceridy metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
- fosfolipidy MeSH
- triglyceridy MeSH
While metabolic syndrome is often associated with obesity, 25% of humans suffering from it are not obese and the effect of physical activity remains unclear in such cases. Therefore, we used hereditary hypertriaclyglycerolemic (HHTg) rats as a unique model for studying the effect of spontaneous physical activity [voluntary running (VR)] on metabolic syndrome-related disorders, such as dyslipidemia, in non-obese subjects. Adult HHTg males were fed standard (CD) or high-sucrose (HSD) diets ad libitum for four weeks. Within both dietary groups, some of the rats had free access to a running wheel (CD+VR, HSD+VR), whereas the controls (CD, HSD) had no possibility of extra physical activity. At the end of the four weeks, we measured the effects of VR on various metabolic syndrome-associated parameters: (i) biochemical parameters, (ii) the content and composition of triacylglycerols (TAG), diacylglycerols (DAG), ceramides and membrane phospholipids, and (iii) substrate utilization in brown adipose tissue. In both dietary groups, VR led to various positive effects: reduced epididymal and perirenal fat depots; increased epididymal adipose tissue lipolysis; decreased amounts of serum TAG, non-esterified fatty acids and insulin; a higher insulin sensitivity index. While tissue ceramide content was not affected, decreased TAG accumulation resulted in reduced and modified liver, heart and skeletal muscle DAG. VR also had a beneficial effect on muscle membrane phospholipid composition. In addition, compared with the CD group, the CD+VR rats exhibited increased fatty acid oxidation and protein content in brown adipose tissue. Our results confirm that physical activity in a non-obese model of severe dyslipidemia has many beneficial effects and can even counteract the negative effects of sucrose consumption. Furthermore, they suggest that the mechanism by which these effects are modulated involves a combination of several positive changes in lipid metabolism.
Zobrazit více v PubMed
Najafian J, Mohammadifard N, Naeini FF, Nouri F. Relation between usual daily walking time and metabolic syndrome. Niger Med J. 2014;55: 29–33. 10.4103/0300-1652.128156 PubMed DOI PMC
Tappy L, Lê KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90: 23–46. 10.1152/physrev.00019.2009 PubMed DOI
Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79: 537–543. PubMed
Albright A, Franz M, Hornsby G, Kriska A, Marrero D, Ullrich I, et al. American College of Sports Medicine position stand. Exercise and type 2 diabetes. Med Sci Sports Exerc. 2000;32: 1345–1360. PubMed
Katzmarzyk PT, Leon AS, Wilmore JH, Skinner JS, Rao DC, Rankinen T, et al. Targeting the metabolic syndrome with exercise: Evidence from the HERITAGE Family Study. Medicine and Science in Sports and Exercise. 2003;35: 1703–1709. PubMed
Voulgari C, Tentolouris N, Dilaveris P, Tousoulis D, Katsilambros N, Stefanadis C. Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals. J Am Coll Cardiol. 2011;58: 1343–1350. 10.1016/j.jacc.2011.04.047 PubMed DOI
Bray GA. Soft drink consumption and obesity: it is all about fructose. Curr Opin Lipidol. 2010;21: 51–57. 10.1097/MOL.0b013e3283346ca2 PubMed DOI
Bizeau ME, Pagliassotti MJ. Hepatic adaptations to sucrose and fructose. Metabolism. 2005;54: 1189–201. PubMed
Rizkalla SW. Health implications of fructose consumption: A review of recent data. Nutr Metab (Lond). 2010;7: 82 10.1186/1743-7075-7-82 PubMed DOI PMC
Parks EJ, Skokan LE, Timlin MT, Dingfelder CS. Dietary sugars stimulate fatty acid synthesis in adults. J Nutr. 2008;138: 1039–1046. PubMed PMC
Marek G, Pannu V, Shanmugham P, Pancione B, Mascia D, Crosson S, et al. Adiponectin resistance and pro-inflammatory changes in the visceral adipose tissue induced by fructose consumption via ketohexokinase-dependent pathway. Diabetes. 2014;64: 508–518. 10.2337/db14-0411 PubMed DOI
Lê KA, Ith M, Kreis R, Faeh D, Bortolotti M, Tran C, et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr. 2009;89: 1760–1765. 10.3945/ajcn.2008.27336 PubMed DOI
Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn W, et al. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes. 1999;48: 1113–1119. PubMed
Thamer C, Machann J, Bachmann O, Haap M, Dahl D, Wietek B, et al. Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab. 2003;88: 1785–91. PubMed
Deivanayagam S, Mohammed BS, Vitola BE, Naguib GH, Keshen TH, Kirk EP, et al. Nonalcoholic fatty liver disease is associated with hepatic and skeletal muscle insulin resistance in overweight adolescents. Am J Clin Nutr. 2008;88: 257–262. PubMed PMC
Hulver MW, Dohm GL. The molecular mechanism linking muscle fat accumulation to insulin resistance. Proc Nutr Soc. 2004;63: 375–380. PubMed
Longato L, Tong M, Wands JR, de la Monte SM. High fat diet induced hepatic steatosis and insulin resistance: Role of dysregulated ceramide metabolism. Hepatol Res. 2012;42: 412–427. 10.1111/j.1872-034X.2011.00934.x PubMed DOI PMC
Sjögren P, Sierra-Johnson J, Gertow K, Rosell M, Vessby B, de Faire U, et al. Fatty acid desaturases in human adipose tissue: relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia. 2008;51: 328–35. PubMed
Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A. Desaturation and elongation of Fatty acids and insulin action. Ann N Y Acad Sci. 2002;967: 183–195. PubMed
Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N Engl J Med. 1993;328: 238–244. PubMed
Kazdová L, Zák A, Vrána A. Increased lipoprotein oxidability and aortic lipid peroxidation in an experimental model of insulin resistance syndrome. Ann N Y Acad Sci. 1997;827: 521–525. PubMed
Pravenec M, Kajiya T, Zídek V, Landa V, Mlejnek P, Simáková M, et al. Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome. Hypertension. 2011;57: 731–737. 10.1161/HYPERTENSIONAHA.110.164350 PubMed DOI PMC
Slocum N, Durrant JR, Bailey D, Yoon L, Jordan H, Barton J, et al. Responses of brown adipose tissue to diet-induced obesity, exercise, dietary restriction and ephedrine treatment. Exp Toxicol Pathol. 2013;65: 549–57. 10.1016/j.etp.2012.04.001 PubMed DOI
De Matteis R, Lucertini F, Guescini M, Polidori E, Zeppa S, Stocchi V, et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovasc Dis. 2013;23: 582–590. 10.1016/j.numecd.2012.01.013 PubMed DOI
Ghorbani M, Claus TH, Himms-Hagen J. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. Biochem Pharmacol. 1997;54: 121–131. PubMed
Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest. 1998;102: 412–420. PubMed PMC
Nedergaard J, Cannon B. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 2010;11: 268–272. 10.1016/j.cmet.2010.03.007 PubMed DOI
Cypess AM, Kahn CR. Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17: 143–149. 10.1097/MED.0b013e328337a81f PubMed DOI PMC
Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293: E444–E452. PubMed
Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360: 1518–1525. 10.1056/NEJMoa0808949 PubMed DOI
Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360: 1509–1517. 10.1056/NEJMoa0810780 PubMed DOI PMC
Vrana A, Kazdova L. The hereditary hypertriglyceridemic nonobese rat—an experimental-model of human hypertriglyceridemia. Transplant Proc. 1990;22: 2579–2579. PubMed
Zicha J, Pechánová O, Cacányiová S, Cebová M, Kristek F, Török J, et al. Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res. 2006;55: S49–S63. PubMed
Klimes I, Vrána A, Kunes J, Seböková E, Dobesová Z, Stolba P, et al. Hereditary hypertriglyceridemic rat: a new animal model of metabolic alterations in hypertension. Blood Press. 1995;4: 137–142. PubMed
Vrána A, Kazdová L, Dobesová Z, Kunes J, Kren V, Bílá V, et al. Triglyceridemia, glucoregulation, and blood pressure in various rat strains. Effects of dietary carbohydrates. Ann N Y Acad Sci. 1993;683: 57–68. PubMed
Dhingra R, Sullivan L, Jacques PF, Wang TJ, Fox CS, Meigs JB, et al. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation. 2007;116: 480–488. PubMed
Chen W, Fan S, Xie X, Xue N, Jin X, Wang L. Novel PPAR Pan agonist, ZBH ameliorates hyperlipidemia and insulin resistance in high fat diet induced hyperlipidemic hamster. Plos One. 2014;9: e96056 10.1371/journal.pone.0096056 PubMed DOI PMC
McAllister RA. Observations on the Folin-Ciocalteu reaction. J Med Lab Technol. 1969;26: 1–10. PubMed
Pravenec M, Kazdová L, Maxová M, Zídek V, Mlejnek P, Simáková M, et al. Long-term pioglitazone treatment enhances lipolysis in rat adipose tissue. Int J Obes (Lond). 2008;32: 1848–1853. 10.1038/ijo.2008.192 PubMed DOI
Dawn-Linsley M, Ekinci FJ, Ortiz D, Rogers E, Shea TB. Monitoring thiobarbituric acid-reactive substances (TBARs) as an assay for oxidative damage in neuronal cultures and central nervous system. J Neurosci Methods. 2005;141: 219–222. PubMed
Machann J, Stefan N, Schick F. H-1 MR spectroscopy of skeletal muscle, liver and bone marrow. Eur J Radiol. 2008;67: 275–284. 10.1016/j.ejrad.2008.02.032 PubMed DOI
Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med. 1997;37: 484–493. PubMed
Blachnio-Zabielska AU, Persson XM, Koutsari C, Zabielski P, Jensen MD. A liquid chromatography/tandem mass spectrometry method for measuring the in vivo incorporation of plasma free fatty acids into intramyocellular ceramides in humans. Rapid Commun Mass Spectrom. 2012;26: 1134–1140. 10.1002/rcm.6216 PubMed DOI PMC
Blachnio-Zabielska AU, Zabielski P, Jensen MD. Intramyocellular diacylglycerol concentrations and [U-13C]palmitate isotopic enrichment measured by LC/MS/MS. J Lipid Res. 2013;54: 1705–1711. 10.1194/jlr.D035006 PubMed DOI PMC
Kahleova H, Matoulek M, Bratova M, Malinska H, Kazdova L, Hill M, et al. Vegetarian diet-induced increase in linoleic acid in serum phospholipids is associated with improved insulin sensitivity in subjects with type 2 diabetes. Nutr Diabetes. 2013;3: e75 10.1038/nutd.2013.12 PubMed DOI PMC
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226: 497–509. PubMed
Trnovská J, Silhavý J, Zídek V, Simáková M, Mlejnek P, Landa V, et al. Gender-related effects on substrate utilization and metabolic adaptation in hairless spontaneously hypertensive rat. Physiol Res. 2015;64: 51–60. PubMed
Ke Z, Yip SP, Li L, Zheng XX, Tam WK, Tong KY. The effects of voluntary, involuntary, and forced exercises on motor recovery in a stroke rat model. Conf Proc IEEE Eng Med Biol Soc. 2011;2011: 8223–8226. 10.1109/IEMBS.2011.6092028 PubMed DOI
Li JY, Kuo TB, Yen JC, Tsai SC, Yang CC. Voluntary and involuntary running in the rat show different patterns of theta rhythm, physical activity, and heart rate. J Neurophysiol. 2014;111: 2061–270. 10.1152/jn.00475.2013 PubMed DOI
Conti FF, Jde O Brito, Bernardes N, Dda S Dias, Sanches IC, Malfitano C, et al. Cardiovascular autonomic dysfunction and oxidative stress induced by fructose overload in an experimental model of hypertension and menopause. BMC Cardiovasc Disord. 2014;14: 185 10.1186/1471-2261-14-185 PubMed DOI PMC
Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107: 1198–1205. PubMed
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal. 2013;18: 1208–1246. 10.1089/ars.2011.4498 PubMed DOI PMC
Li G, Liu J, Zhang H, Li Q, Zhang S. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity. Physiol Res. 2014. In press. PubMed
Gröne EF, Walli AK, Gröne HJ, Miller B, Seidel D. The role of lipids in nephrosclerosis and glomerulosclerosis. Atherosclerosis. 1994;107:1–13. PubMed
Saric M, Kronzon I. Aortic atherosclerosis and embolic events. Curr Cardiol Rep. 2012;14: 342–349. 10.1007/s11886-012-0261-2 PubMed DOI
Sarma S, Carrick-Ranson G, Fujimoto N, Adams-Huet B, Bhella PS, Hastings JL, et al. Effects of age and aerobic fitness on myocardial lipid content. Circ Cardiovasc Imaging. 2013;6: 1048–1055. 10.1161/CIRCIMAGING.113.000565 PubMed DOI PMC
Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001;86: 5755–5761. PubMed
Tamura Y, Watada H, Igarashi Y, Nomiyama T, Onishi T, Takahashi K, et al. Short-term effects of dietary fat on intramyocellular lipid in sprinters and endurance runners. Metabolism. 2008;57: 373–379. 10.1016/j.metabol.2007.10.013 PubMed DOI
Timmers S, Schrauwen P, de Vogel J. Muscular diacylglycerol metabolism and insulin resistance. Physiol Behav. 2008;94: 242–251. 10.1016/j.physbeh.2007.12.002 PubMed DOI
Bergman BC, Hunerdosse DM, Kerege A, Playdon MC, Perreault L. Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans. Diabetologia. 2012;55: 1140–1150. 10.1007/s00125-011-2419-7 PubMed DOI PMC
Marignani PA, Epand RM, Sebaldt RJ. Acyl chain dependence of diacylglycerol activation of protein kinase C activity in vitro. Biochem Biophys Res Commun. 1996;225: 469–473. PubMed
van Hees AMJ, Jans A, Hul GB, Roche HM, Saris WHM, Blaak EE. Skeletal Muscle Fatty Acid Handling in Insulin Resistant Men. Obesity. 2011;19: 1350–1359. 10.1038/oby.2011.10 PubMed DOI
Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 2000;10: 73–80. PubMed
Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 2003;278: 10297–10303. PubMed
Amati F, Dube JJ, Alvarez-Carnero E, Edreira MM, Chomentowski P, Coen PM, et al. Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance Another Paradox in Endurance-Trained Athletes? Diabetes. 2011;60: 2588–2597. 10.2337/db10-1221 PubMed DOI PMC
Dubé JJ, Amati F, Toledo FG, Stefanovic-Racic M, Rossi A, Coen P, et al. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia. 2011;54: 1147–1156. 10.1007/s00125-011-2065-0 PubMed DOI PMC
Galbo T, Shulman GI. Lipid-induced hepatic insulin resistance. Aging (Albany NY). 2013;5: 582–583. PubMed PMC
Field CJ, Ryan EA, Thomson AB, Clandinin MT. Diet fat composition alters membrane phospholipid composition, insulin binding, and glucose metabolism in adipocytes from control and diabetic animals. J Biol Chem. 1990;265: 11143–11150. PubMed
Helge JW, Ayre KJ, Hulbert AJ, Kiens B, Storlien LH. Regular exercise modulates muscle membrane phospholipid profile in rats. J Nutr. 1999;129: 1636–1642. PubMed
Andersson A, Sjödin A, Olsson R, Vessby B. Effects of physical exercise on phospholipid fatty acid composition in skeletal muscle. Am J Physiol. 1998;274: E432–E428. PubMed
Kröger J, Schulze MB. Recent insights into the relation of Δ5 desaturase and Δ6 desaturase activity to the development of type 2 diabetes. Curr Opin Lipidol. 2012;23: 4–10. 10.1097/MOL.0b013e32834d2dc5 PubMed DOI
Pelikánová T, Kazdová L, Chvojková S, Base J. Serum phospholipid fatty acid composition and insulin action in type 2 diabetic patients. Metabolism. 2001;50: 1472–1478. PubMed
Segawa M, Oh-Ishi S, Kizaki T, Ookawara T, Sakurai T, Izawa T, et al. Effect of running training on brown adipose tissue activity in rats: a reevaluation. Res Commun Mol Pathol Pharmacol. 1998;100: 77–82. PubMed
Yamashita H, Yamamoto M, Sato Y, Izawa T, Komabayashi T, Saito D, et al. Effect of running training on uncoupling protein mRNA expression in rat brown adipose tissue. Int J Biometeorol. 1993;37: 61–64. PubMed