Is there a potential of circulating miRNAs as biomarkers in rheumatic diseases?

. 2023 Jul ; 10 (4) : 1263-1278. [epub] 20220907

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37397550
Odkazy

PubMed 37397550
PubMed Central PMC10311055
DOI 10.1016/j.gendis.2022.08.011
PII: S2352-3042(22)00232-X
Knihovny.cz E-zdroje

MicroRNAs (miRNAs) are small non-coding single-stranded RNAs of about 22 nucleotides in length that act as post-transcriptional regulators of gene expression. Depending on the complementarity between miRNA and target mRNA, cleavage, destabilization, or translational suppression of mRNA occurs within the RISC (RNA-induced silencing complex). As gene expression regulators, miRNAs are involved in a variety of biological functions. Dysregulation of miRNAs and their target genes contribute to the pathophysiology of many diseases, including autoimmune and inflammatory disorders. MiRNAs are also present extracellularly in their stable form in body fluids. Their incorporation into membrane vesicles or protein complexes with Ago2, HDL, or nucleophosmin 1 protects them against RNases. Cell-free miRNAs can be delivered to another cell in vitro and maintain their functional potential. Therefore, miRNAs can be considered mediators of intercellular communication. The remarkable stability of cell-free miRNAs and their accessibility in body fluid makes them potential diagnostic or prognostic biomarkers and potential therapeutic targets. Here we provide an overview of the potential role of circulating miRNAs as biomarkers of disease activity, therapeutic response, or diagnosis in rheumatic diseases. Many circulating miRNAs reflect their involvement in the pathogenesis, while for plenty, their pathogenetic mechanisms remain to be explored. Several miRNAs described as biomarkers were also shown to be of therapeutic potential, and some miRNAs are already tested in clinical trials.

Zobrazit více v PubMed

Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. PubMed

Reinhart B.J., Slack F.J., Basson M., et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–906. PubMed

Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–858. PubMed

Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102–114. PubMed

Iorio M.V., Croce C.M. Causes and consequences of microRNA dysregulation. Cancer J. 2012;18(3):215–222. PubMed PMC

Zeng L., Cui J., Wu H., Lu Q. The emerging role of circulating microRNAs as biomarkers in autoimmune diseases. Autoimmunity. 2014;47(7):419–429. PubMed

Rupaimoole R., Slack F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–222. PubMed

Kabekkodu S.P., Shukla V., Varghese V.K., D' Souza J., Chakrabarty S., Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Phil Soc. 2018;93(4):1955–1986. PubMed

Ying S.Y., Chang C.P., Lin S.L. Intron-mediated RNA interference, intronic microRNAs, and applications. Methods Mol Biol. 2010;629:205–237. PubMed

Ghorai A., Ghosh U. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front Genet. 2014;5:100. PubMed PMC

Lee Y., Kim M., Han J., et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–4060. PubMed PMC

Borchert G.M., Lanier W., Davidson B.L. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13(12):1097–1101. PubMed

Han J., Lee Y., Yeom K.H., et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901. PubMed

Gregory R.I., Yan K.P., Amuthan G., et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235–240. PubMed

Kim V.N. MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol. 2004;14(4):156–159. PubMed

Lund E., Güttinger S., Calado A., Dahlberg J.E., Kutay U. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–98. PubMed

Chendrimada T.P., Gregory R.I., Kumaraswamy E., et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–744. PubMed PMC

Diederichs S., Haber D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell. 2007;131(6):1097–1108. PubMed

Krol J., Loedige I., Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610. PubMed

Khvorova A., Reynolds A., Jayasena S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209–216. PubMed

Bhayani M.K., Calin G.A., Lai S.Y. Functional relevance of miRNA sequences in human disease. Mutat Res. 2012;731(1–2):14–19. PubMed PMC

Niederer F., Trenkmann M., Ospelt C., et al. Down-regulation of microRNA-34a∗ in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 2012;64(6):1771–1779. PubMed

Zhou H., Huang X., Cui H., et al. miR-155 and its star-form partner miR-155∗ cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood. 2010;116(26):5885–5894. PubMed

Okamura K., Hagen J.W., Duan H., Tyler D.M., Lai E.C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007;130(1):89–100. PubMed PMC

Pratt A.J., MacRae I.J. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284(27):17897–17901. PubMed PMC

Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. PubMed

Kim V.N., Han J., Siomi M.C. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–139. PubMed

Eulalio A., Huntzinger E., Nishihara T., Rehwinkel J., Fauser M., Izaurralde E. Deadenylation is a widespread effect of miRNA regulation. RNA. 2009;15(1):21–32. PubMed PMC

Anderson P., Kedersha N. RNA granules. J Cell Biol. 2006;172(6):803–808. PubMed PMC

Vishnoi A., Rani S. MiRNA biogenesis and regulation of diseases: an overview. Methods Mol Biol. 2017;1509:1–10. PubMed

Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci. 2005;30(2):106–114. PubMed

Lam J.K., Chow M.Y., Zhang Y., Leung S.W. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4:e252. PubMed PMC

Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–874. PubMed

Calin G.A., Dumitru C.D., Shimizu M., et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–15529. PubMed PMC

Cimmino A., Calin G.A., Fabbri M., et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–13949. PubMed PMC

Iorio M.V., Piovan C., Croce C.M. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta. 2010;1799(10–12):694–701. PubMed

Weber B., Stresemann C., Brueckner B., Lyko F. Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle. 2007;6(9):1001–1005. PubMed

Stanczyk J., Ospelt C., Karouzakis E., et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 2011;63(2):373–381. PubMed PMC

Jiang Y., Wang L. Role of histone deacetylase 3 in ankylosing spondylitis via negative feedback loop with microRNA-130a and enhancement of tumor necrosis factor-1α expression in peripheral blood mononuclear cells. Mol Med Rep. 2016;13(1):35–40. PubMed PMC

Forman J.J., Legesse-Miller A., Coller H.A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A. Sep 30 2008;105(39):14879–14884. PubMed PMC

Tang R., Li L., Zhu D., et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 2012;22(3):504–515. PubMed PMC

Chen X., Ba Y., Ma L., et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006. PubMed

Mitchell P.S., Parkin R.K., Kroh E.M., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–10518. PubMed PMC

Michael A., Bajracharya S.D., Yuen P.S., et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010;16(1):34–38. PubMed PMC

Kosaka N., Izumi H., Sekine K., Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1(1):7. PubMed PMC

Zubakov D., Boersma A.W., Choi Y., van Kuijk P.F., Wiemer E.A., Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Leg Med. 2010;124(3):217–226. PubMed PMC

Weber J.A., Baxter D.H., Zhang S., et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–1741. PubMed PMC

Kosaka N., Iguchi H., Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101(10):2087–2092. PubMed PMC

Creemers E.E., Tijsen A.J., Pinto Y.M. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110(3):483–495. PubMed

Cocucci E., Racchetti G., Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19(2):43–51. PubMed

Pan B.T., Johnstone R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–978. PubMed

Wang K., Zhang S., Weber J., Baxter D., Galas D.J. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38(20):7248–7259. PubMed PMC

Arroyo J.D., Chevillet J.R., Kroh E.M., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–5008. PubMed PMC

Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–7233. PubMed PMC

Rosenson R.S., Brewer H.B., Jr., Ansell B.J., et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13(1):48–60. PubMed PMC

Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–433. PubMed PMC

Wagner J., Riwanto M., Besler C., et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(6):1392–1400. PubMed

Maggi L.B., Jr., Kuchenruether M., Dadey D.Y., et al. Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome. Mol Cell Biol. 2008;28(23):7050–7065. PubMed PMC

Kolesnick R., Fuks Z. Ceramide: a signal for apoptosis or mitogenesis? J Exp Med. 1995;181(6):1949–1952. PubMed PMC

Kogure T., Lin W.L., Yan I.K., Braconi C., Patel T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology. 2011;54(4):1237–1248. PubMed PMC

Kosaka N., Iguchi H., Yoshioka Y., Takeshita F., Matsuki Y., Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–17452. PubMed PMC

Koppers-Lalic D., Hackenberg M., Bijnsdorp I.V., et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014;8(6):1649–1658. PubMed

Villarroya-Beltri C., Gutiérrez-Vázquez C., Sánchez-Cabo F., et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980. PubMed PMC

Turchinovich A., Samatov T.R., Tonevitsky A.G., Burwinkel B. Circulating miRNAs: cell-cell communication function? Front Genet. 2013;4:119. PubMed PMC

Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. PubMed

Murata K., Yoshitomi H., Tanida S., et al. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2010;12(3):R86. PubMed PMC

Blüml S., Bonelli M., Niederreiter B., et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 2011;63(5):1281–1288. PubMed

Taha M., Shaker O.G., Abdelsalam E., Taha N. Serum a proliferation-inducing ligand and microRNA-223 are associated with rheumatoid arthritis: diagnostic and prognostic implications. Mol Med. 2020;26(1):92. PubMed PMC

Li Y.T., Chen S.Y., Wang C.R., et al. Brief report: amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum. 2012;64(10):3240–3245. PubMed

Hong H., Yang H., Xia Y. Circulating miR-10a as predictor of therapy response in rheumatoid arthritis patients treated with methotrexate. Curr Pharmaceut Biotechnol. 2018;19(1):79–86. PubMed

Mu N., Gu J., Huang T., et al. A novel NF-κB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis. Sci Rep. 2016;6 PubMed PMC

Wang Y., Zheng F., Gao G., et al. MiR-548a-3p regulates inflammatory response via TLR4/NF-κB signaling pathway in rheumatoid arthritis. J Cell Biochem. 2019;120(2):1133–1140. PubMed

Jin F., Hu H., Xu M., et al. Serum microRNA profiles serve as novel biomarkers for autoimmune diseases. Front Immunol. 2018;9:2381. PubMed PMC

Qing P., Liu Y. Inhibitory role of long non-coding RNA OIP5-AS1 in rheumatoid arthritis progression through the microRNA-448-paraoxonase 1-toll-like receptor 3-nuclear factor κB axis. Exp Physiol. 2020;105(10):1708–1719. PubMed

Nakamachi Y., Ohnuma K., Uto K., Noguchi Y., Saegusa J., Kawano S. MicroRNA-124 inhibits the progression of adjuvant-induced arthritis in rats. Ann Rheum Dis. 2016;75(3):601–608. PubMed

Hao F., Lee R.J., Zhong L., et al. Hybrid micelles containing methotrexate-conjugated polymer and co-loaded with microRNA-124 for rheumatoid arthritis therapy. Theranostics. 2019;9(18):5282–5297. PubMed PMC

Vermeire S., Hébuterne X., Tilg H., et al. Induction and long-term follow-up with ABX464 for moderate-to-severe ulcerative colitis: results of phase IIa trial. Gastroenterology. 2021;160(7):2595–2598. PubMed

Study of Two Doses of ABX464 in Participants With Moderate to Severe Rheumatoid Arthritis. 2021. https://clinicaltrials.gov/ct2/show/NCT03813199

Wang H., Peng W., Ouyang X., Li W., Dai Y. Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl Res. 2012;160(3):198–206. PubMed

Murata K., Furu M., Yoshitomi H., et al. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS One. 2013;8(7) PubMed PMC

Dawood A.F., Younes S., Alzamil N.M., Alradini F.A., Saja M.F. Inhibition of glycogen synthase kinase-3β protects against collagen type II-induced arthritis associated with the inhibition of miR155/24 and inflammation and upregulation of apoptosis in rats. Arch Physiol Biochem. 2022;128(3):679–687. PubMed

Kim S.W., Ramasamy K., Bouamar H., Lin A.P., Jiang D., Aguiar R.C. MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) Proc Natl Acad Sci U S A. 2012;109(20):7865–7870. PubMed PMC

Liu X., Ni S., Li C., et al. Circulating microRNA-23b as a new biomarker for rheumatoid arthritis. Gene. 2019;712 PubMed PMC

Filková M., Aradi B., Senolt L., et al. Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Ann Rheum Dis. 2014;73(10):1898–1904. PubMed PMC

Yue J., Lau T.C.K., Griffith J.F., et al. Circulating miR-99b-5p as a novel predictor of erosion progression on high-resolution peripheral quantitative computed tomography in early rheumatoid arthritis: a prospective cohort study. Int J Rheum Dis. 2019;22(9):1724–1733. PubMed

Franceschetti T., Dole N.S., Kessler C.B., Lee S.K., Delany A.M. Pathway analysis of microRNA expression profile during murine osteoclastogenesis. PLoS One. 2014;9(9) PubMed PMC

de la Rica L., García-Gómez A., Comet N.R., et al. NF-κB-direct activation of microRNAs with repressive effects on monocyte-specific genes is critical for osteoclast differentiation. Genome Biol. 2015;16:2. PubMed PMC

Sode J., Krintel S.B., Carlsen A.L., et al. Plasma microRNA profiles in patients with early rheumatoid arthritis responding to adalimumab plus methotrexate vs methotrexate alone: a placebo-controlled clinical trial. J Rheumatol. 2018;45(1):53–61. PubMed

Shi D.L., Shi G.R., Xie J., Du X.Z., Yang H. MicroRNA-27a inhibits cell migration and invasion of fibroblast-like synoviocytes by targeting follistatin-like protein 1 in rheumatoid arthritis. Mol Cell. 2016;39(8):611–618. PubMed PMC

Min S., Li L., Zhang M., et al. TGF-β-associated miR-27a inhibits dendritic cell-mediated differentiation of Th1 and Th17 cells by TAB3, p38 MAPK, MAP2K4 and MAP2K7. Gene Immun. 2012;13(8):621–631. PubMed

Hruskova V., Jandova R., Vernerova L., et al. MicroRNA-125b: association with disease activity and the treatment response of patients with early rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):124. PubMed PMC

Duroux-Richard I., Pers Y.M., Fabre S., et al. Circulating miRNA-125b is a potential biomarker predicting response to rituximab in rheumatoid arthritis. Mediat Inflamm. 2014;2014 PubMed PMC

Rossi R.L., Rossetti G., Wenandy L., et al. Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol. 2011;12(8):796–803. PubMed

Huang H.C., Yu H.R., Huang L.T., et al. miRNA-125b regulates TNF-α production in CD14+ neonatal monocytes via post-transcriptional regulation. J Leukoc Biol. 2012;92(1):171–182. PubMed

Castro-Villegas C., Pérez-Sánchez C., Escudero A., et al. Circulating miRNAs as potential biomarkers of therapy effectiveness in rheumatoid arthritis patients treated with anti-TNFα. Arthritis Res Ther. 2015;17:49. PubMed PMC

Luo X., Ranade K., Talker R., Jallal B., Shen N., Yao Y. microRNA-mediated regulation of innate immune response in rheumatic diseases. Arthritis Res Ther. 2013;15(2):210. PubMed PMC

Beyer C., Zampetaki A., Lin N.Y., et al. Signature of circulating microRNAs in osteoarthritis. Ann Rheum Dis. 2015;74(3):e18. PubMed

Weng J., Peng W., Zhu S., Chen S. Long noncoding RNA sponges miR-454 to promote osteogenic differentiation in maxillary sinus membrane stem cells. Implant Dent. 2017;26(2):178–186. PubMed

Skrzypa M., Szala D., Gablo N., et al. miRNA-146a-5p is upregulated in serum and cartilage samples of patients with osteoarthritis. Pol Przegl Chir. 2019;91(3):1–5. PubMed

Kong R., Gao J., Si Y., Zhao D. Combination of circulating miR-19b-3p, miR-122-5p and miR-486-5p expressions correlates with risk and disease severity of knee osteoarthritis. Am J Transl Res. 2017;9(6):2852–2864. PubMed PMC

Gantier M.P., Stunden H.J., McCoy C.E., et al. A miR-19 regulon that controls NF-κB signaling. Nucleic Acids Res. 2012;40(16):8048–8058. PubMed PMC

Glyn-Jones S., Palmer A.J., Agricola R., et al. Osteoarthritis. Lancet. 2015;386(9991):376–387. PubMed

Borgonio Cuadra V.M., González-Huerta N.C., Romero-Córdoba S., Hidalgo-Miranda A., Miranda-Duarte A. Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways. PLoS One. 2014;9(6) PubMed PMC

Li J., Huang J., Dai L., et al. miR-146a, an IL-1β responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther. 2012;14(2):R75. PubMed PMC

Dong Z., Jiang H., Jian X., Zhang W. Change of miRNA expression profiles in patients with knee osteoarthritis before and after celecoxib treatment. J Clin Lab Anal. 2019;33(1) PubMed PMC

Kurowska-Stolarska M., Alivernini S., Ballantine L.E., et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci U S A. 2011;108(27):11193–11198. PubMed PMC

Xie W., Su W., Xia H., Wang Z., Su C., Su B. Synovial fluid microRNA-210 as a potential biomarker for early prediction of osteoarthritis. BioMed Res Int. 2019;2019 PubMed PMC

Zhao S., Wang Y., Liang Y., et al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 2011;63(5):1376–1386. PubMed

Stagakis E., Bertsias G., Verginis P., et al. Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis. 2011;70(8):1496–1506. PubMed

Tenbrock K., Rauen T. T cell dysregulation in SLE. Clin Immunol. 2022;239 PubMed

Wang G., Tam L.S., Li E.K., et al. Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J Rheumatol. 2010;37(12):2516–2522. PubMed

Wang G., Tam L.S., Li E.K., et al. Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus. 2011;20(5):493–500. PubMed

Dong C., Zhou Q., Fu T. Circulating exosomes derived-miR-146a from systemic lupus erythematosus patients regulates senescence of mesenchymal stem cells. Biomed Res Int. 2019;2019 PubMed PMC

Tang Y., Luo X., Cui H., et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 2009;60(4):1065–1075. PubMed

Sim T.M., Ong S.J., Mak A. Type I interferons in systemic lupus erythematosus: a journey from bench to bedside. Int J Mol Sci. 2022;23(5):2505. PubMed PMC

Zhang H., Huang X., Ye L., et al. B cell-related circulating microRNAs with the potential value of biomarkers in the differential diagnosis, and distinguishment between the disease activity and lupus nephritis for systemic lupus erythematosus. Front Immunol. 2018;9:1473. PubMed PMC

Carlsen A.L., Schetter A.J., Nielsen C.T., et al. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum. 2013;65(5):1324–1334. PubMed PMC

Navarro-Quiroz E., Pacheco-Lugo L., Navarro-Quiroz R., et al. Profiling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritis. PLoS One. 2017;12(11) PubMed PMC

Nakhjavani M., Etemadi J., Pourlak T., Mirhosaini Z., Zununi Vahed S., Abediazar S. Plasma levels of miR-21, miR-150, miR-423 in patients with lupus nephritis. Iran J Kidney Dis. 2019;13(3):198–206. PubMed

Zhang Y., Wang Y. The correlation of plasma microRNA-200 family expressions with risk and disease severity of lupus nephritis. Eur Rev Med Pharmacol Sci. 2018;22(10):3118–3125. PubMed

Xiao C., Calado D.P., Galler G., et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 2007;131(1):146–159. PubMed

Thomas M.D., Kremer C.S., Ravichandran K.S., Rajewsky K., Bender T.P. c-Myb is critical for B cell development and maintenance of follicular B cells. Immunity. 2005;23(3):275–286. PubMed

Zheng X., Zhang Y., Yue P., et al. Diagnostic significance of circulating miRNAs in systemic lupus erythematosus. PLoS One. 2019;14(6) PubMed PMC

Sing T., Jinnin M., Yamane K., et al. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology. 2012;51(9):1550–1556. PubMed

Makino K., Jinnin M., Kajihara I., et al. Circulating miR-142-3p levels in patients with systemic sclerosis. Clin Exp Dermatol. 2012;37(1):34–39. PubMed

Tanaka S., Suto A., Ikeda K., et al. Alteration of circulating miRNAs in SSc: miR-30b regulates the expression of PDGF receptor β. Rheumatology. 2013;52(11):1963–1972. PubMed

Rusek M., Michalska-Jakubus M., Kowal M., Bełtowski J., Krasowska D. A novel miRNA-4484 is up-regulated on microarray and associated with increased MMP-21 expression in serum of systemic sclerosis patients. Sci Rep. 2019;9(1) PubMed PMC

Ciechomska M., Zarecki P., Merdas M., et al. The role of microRNA-5196 in the pathogenesis of systemic sclerosis. Eur J Clin Invest. 2017;47(8):555–564. PubMed

Jinnin M. Mechanisms of skin fibrosis in systemic sclerosis. J Dermatol. 2010;37(1):11–25. PubMed

Bonner J.C. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15(4):255–273. PubMed

Chouri E., Servaas N.H., Bekker C.P.J., et al. Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis. J Autoimmun. 2018;89:162–170. PubMed

Qian B.P., Ji M.L., Qiu Y., et al. Identification of serum miR-146a and miR-155 as novel noninvasive complementary biomarkers for ankylosing spondylitis. Spine. 2016;41(9):735–742. PubMed

Kook H.Y., Jin S.H., Park P.R., Lee S.J., Shin H.J., Kim T.J. Serum miR-214 as a novel biomarker for ankylosing spondylitis. Int J Rheum Dis. 2019;22(7):1196–1201. PubMed

Zhao W., Wu C., Dong Y., Ma Y., Jin Y., Ji Y. microRNA-24 regulates osteogenic differentiation via targeting T-cell factor-1. Int J Mol Sci. 2015;16(5):11699–11712. PubMed PMC

Perez-Sanchez C., Font-Ugalde P., Ruiz-Limon P., et al. Circulating microRNAs as potential biomarkers of disease activity and structural damage in ankylosing spondylitis patients. Hum Mol Genet. 2018;27(5):875–890. PubMed

Magrey M.N., Haqqi T., Haseeb A. Identification of plasma microRNA expression profile in radiographic axial spondyloarthritis-a pilot study. Clin Rheumatol. 2016;35(5):1323–1327. PubMed PMC

Lu W., You R., Yuan X., et al. The microRNA miR-22 inhibits the histone deacetylase HDAC4 to promote T(H)17 cell-dependent emphysema. Nat Immunol. 2015;16(11):1185–1194. PubMed PMC

Gaston J.S.H., Jadon D.R. Th17 cell responses in spondyloarthritis. Best Pract Res Clin Rheumatol. 2017;31(6):777–796. PubMed

Prajzlerová K., Grobelná K., Hušáková M., et al. Association between circulating miRNAs and spinal involvement in patients with axial spondyloarthritis. PLoS One. 2017;12(9) PubMed PMC

Noda M., Camilliere J.J. In vivo stimulation of bone formation by transforming growth factor-beta. Endocrinology. 1989;124(6):2991–2994. PubMed

Le L.T., Swingler T.E., Crowe N., et al. The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl) 2016;94(5):583–596. PubMed PMC

Nakasa T., Shibuya H., Nagata Y., Niimoto T., Ochi M. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum. 2011;63(6):1582–1590. PubMed

Ciechomska M., Bonek K., Merdas M., et al. Changes in miRNA-5196 expression as a potential biomarker of anti-TNF-α therapy in rheumatoid arthritis and ankylosing spondylitis patients. Arch Immunol Ther Exp. 2018;66(5):389–397. PubMed PMC

Prajzlerová K., Komarc M., Forejtová Š., et al. Circulating miR-145 as a marker of therapeutic response to anti-TNF therapy in patients with ankylosing spondylitis. Physiol Res. 2021;70(2):255–264. PubMed PMC

Fukuda T., Ochi H., Sunamura S., et al. MicroRNA-145 regulates osteoblastic differentiation by targeting the transcription factor Cbfb. FEBS Lett. 2015;589(21):3302–3308. PubMed

Chen Y., Wang X., Yang M., et al. miR-145-5p increases osteoclast numbers in vitro and aggravates bone erosion in collagen-induced arthritis by targeting osteoprotegerin. Med Sci Mon Int Med J Exp Clin Res. 2018;24:5292–5300. PubMed PMC

Misunova M., Salinas-Riester G., Luthin S., et al. Microarray analysis of circulating micro RNAs in the serum of patients with polymyositis and dermatomyositis reveals a distinct disease expression profile and is associated with disease activity. Clin Exp Rheumatol. 2016;34(1):17–24. PubMed

Inoue K., Jinnin M., Yamane K., et al. Down-regulation of miR-223 contributes to the formation of Gottron's papules in dermatomyositis via the induction of PKCɛ. Eur J Dermatol. 2013;23(2):160–167. PubMed

Hirai T., Ikeda K., Tsushima H., et al. Circulating plasma microRNA profiling in patients with polymyositis/dermatomyositis before and after treatment: miRNA may be associated with polymyositis/dermatomyositis. Inflamm Regen. 2018;38:1. PubMed PMC

Shimada S., Jinnin M., Ogata A., et al. Serum miR-21 levels in patients with dermatomyositis. Clin Exp Rheumatol. 2013;31(1):161–162. PubMed

Yu L., Li J., Chen Y., et al. hsa-miR-7 is a potential biomarker for idiopathic inflammatory myopathies with interstitial lung disease in humans. Ann Clin Lab Sci. 2018;48(6):764–769. PubMed

Kroh E.M., Parkin R.K., Mitchell P.S., Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR) Methods. 2010;50(4):298–301. PubMed PMC

McDonald J.S., Milosevic D., Reddi H.V., Grebe S.K., Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57(6):833–840. PubMed

Ge Q., Zhou Y., Lu J., Bai Y., Xie X., Lu Z. miRNA in plasma exosome is stable under different storage conditions. Molecules. 2014;19(2):1568–1575. PubMed PMC

Gilad S., Meiri E., Yogev Y., et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148. PubMed PMC

Blondal T., Jensby Nielsen S., Baker A., et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59(1):S1–S6. PubMed

Kirschner M.B., Kao S.C., Edelman J.J., et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One. 2011;6(9) PubMed PMC

Rasmussen K.D., Simmini S., Abreu-Goodger C., et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010;207(7):1351–1358. PubMed PMC

Pritchard C.C., Kroh E., Wood B., et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res. 2012;5(3):492–497. PubMed PMC

Wang K., Yuan Y., Cho J.H., McClarty S., Baxter D., Galas D.J. Comparing the microRNA spectrum between serum and plasma. PLoS One. 2012;7(7) PubMed PMC

Mi S., Zhang J., Zhang W., Huang R.S. Circulating microRNAs as biomarkers for inflammatory diseases. MicroRNA. 2013;2(1):63–71. PubMed PMC

de Planell-Saguer M., Rodicio M.C. Detection methods for microRNAs in clinic practice. Clin Biochem. 2013;46(10–11):869–878. PubMed

Pegtel D.M., Cosmopoulos K., Thorley-Lawson D.A., et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A. 2010;107(14):6328–6333. PubMed PMC

Mittelbrunn M., Gutiérrez-Vázquez C., Villarroya-Beltri C., et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282. PubMed PMC

Fabbri M., Paone A., Calore F., et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 2012;109(31):E2110–E2116. PubMed PMC

Iguchi H., Kosaka N., Ochiya T. Secretory microRNAs as a versatile communication tool. Commun Integr Biol. 2010;3(5):478–481. PubMed PMC

Kota J., Chivukula R.R., O'Donnell K.A., et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005–1017. PubMed PMC

Pope R.M. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat Rev Immunol. 2002;2(7):527–535. PubMed

Nagata Y., Nakasa T., Mochizuki Y., et al. Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded microRNA-15a. Arthritis Rheum. 2009;60(9):2677–2683. PubMed

Pauley K.M., Satoh M., Chan A.L., Bubb M.R., Reeves W.H., Chan E.K. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008;10(4):R101. PubMed PMC

Stanczyk J., Pedrioli D.M., Brentano F., et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008;58(4):1001–1009. PubMed

Peng J.S., Chen S.Y., Wu C.L., et al. Amelioration of experimental autoimmune arthritis through targeting of synovial fibroblasts by intraarticular delivery of microRNAs 140-3p and 140-5p. Arthritis Rheumatol. 2016;68(2):370–381. PubMed

Garchow B.G., Bartulos Encinas O., Leung Y.T., et al. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med. 2011;3(10):605–615. PubMed PMC

Trajkovski M., Hausser J., Soutschek J., et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011;474(7353):649–653. PubMed

Janssen H.L., Reesink H.W., Lawitz E.J., et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–1694. PubMed

Ottosen S., Parsley T.B., Yang L., et al. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob Agents Chemother. 2015;59(1):599–608. PubMed PMC

Jopling C.L., Yi M., Lancaster A.M., Lemon S.M., Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science. 2005;309(5740):1577–1581. PubMed

Lanford R.E., Hildebrandt-Eriksen E.S., Petri A., et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327(5962):198–201. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...