Deciphering miRNA signatures in axial spondyloarthritis: The link between miRNA-1-3p and pro-inflammatory cytokines

. 2024 Oct 15 ; 10 (19) : e38250. [epub] 20240921

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39398012
Odkazy

PubMed 39398012
PubMed Central PMC11467529
DOI 10.1016/j.heliyon.2024.e38250
PII: S2405-8440(24)14281-8
Knihovny.cz E-zdroje

Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that affects the spine and sacroiliac joints. Early detection of axSpA is crucial to slow disease progression and maintain remission or low disease activity. However, current biomarkers are insufficient for diagnosing axSpA or distinguishing between its radiographic (r-axSpA) and non-radiographic (nr-axSpA) subsets. To address this, we conducted a study using miRNA profiling with massive parallel sequencing (MPS) and SmartChip qRT-PCR validation. The goal was to identify differentially expressed miRNAs in axSpA patients, specifically those subdiagnosed with nr-axSpA or r-axSpA. Disease activity was measured using C-reactive protein (CRP) and the Ankylosing Spondylitis Disease Activity Score (ASDAS). Radiographic assessments of the cervical and lumbar spine were performed at baseline and after two years. Out of the initial 432 miRNAs, 90 met the selection criteria, and 45 were validated out of which miR-1-3p was upregulated, whereas miR-1248 and miR-1246 were downregulated in axSpA patients. The expression of miR-1-3p correlated with interleukin (IL)-17 and tumour necrosis factor (TNF) levels, indicating its significant role in axSpA pathogenesis. Although specific miRNAs distinguishing disease subtypes or correlating with disease activity or spinal changes were not found, the study identified three dysregulated miRNAs in axSpA patients, with miR-1-3p linked to IL-17 and TNF, underscoring its pathogenetic significance. These findings could help improve the early detection and treatment of axSpA.

Zobrazit více v PubMed

Rudwaleit M., et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann. Rheum. Dis. 2009;68(6):777–783. doi: 10.1136/ard.2009.108233. PubMed DOI

Rudwaleit M., et al. The early disease stage in axial spondylarthritis: results from the German spondyloarthritis inception cohort. Arthritis Rheum. 2009;60(3):717–727. doi: 10.1002/art.24483. PubMed DOI

López-Medina C., Molto A., Claudepierre P., Dougados M. Clinical manifestations, disease activity and disease burden of radiographic versus non-radiographic axial spondyloarthritis over 5 years of follow-up in the DESIR cohort. Ann. Rheum. Dis. 2019:209–216. doi: 10.1136/annrheumdis-2019-216218. PubMed DOI

Bubová K., et al. Cross-sectional study of patients with axial spondyloarthritis fulfilling imaging arm of ASAS classification criteria: baseline clinical characteristics and subset differences in a singlecentre cohort. BMJ Open. 2019;9(4):1–6. doi: 10.1136/bmjopen-2018-024713. PubMed DOI PMC

Costantino F., Zeboulon N., Said-Nahal R., Breban M. Radiographic sacroiliitis develops predictably over time in a cohort of familial spondyloarthritis followed longitudinally. Rheumatology. 2017;56(5):811–817. doi: 10.1093/rheumatology/kew496. PubMed DOI

Poddubnyy D., et al. Rates and predictors of radiographic sacroiliitis progression over 2 years in patients with axial spondyloarthritis. Ann. Rheum. Dis. 2011;70(8):1369–1374. doi: 10.1136/ard.2010.145995. PubMed DOI

Gravallese E.M., Schett G. Effects of the IL-23–IL-17 pathway on bone in spondyloarthritis. Nat. Rev. Rheumatol. 2018;14(11):631–640. doi: 10.1038/s41584-018-0091-8. PubMed DOI

Pekáčová A., Baloun J., Švec X., Šenolt L. Wiley Interdiscip. Rev. RNA; July, 2022. Non-coding RNAs in Diseases with a Focus on Osteoarthritis. PubMed DOI

Prajzlerová K., Šenolt L., Filková M. Is there a potential of circulating miRNAs as biomarkers in rheumatic diseases? Genes Dis. 2023;10(4):1263–1278. doi: 10.1016/j.gendis.2022.08.011. PubMed DOI PMC

Friedman R.C., Farh K.K.H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. doi: 10.1101/gr.082701.108. PubMed DOI PMC

Motta F., et al. MicroRNAs in axial spondylarthritis: an overview of the recent progresses in the field with a focus on ankylosing spondylitis and psoriatic arthritis. Curr. Rheumatol. Rep. Aug. 2021;23(8) doi: 10.1007/S11926-021-01027-5. PubMed DOI PMC

Prajzlerová K., et al. Association between circulating miRNAs and spinal involvement in patients with axial spondyloarthritis. PLoS One. Sep. 2017;12(9) doi: 10.1371/journal.pone.0185323. PubMed DOI PMC

Meder B., et al. Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin. Chem. 2014;60(9):1200–1208. doi: 10.1373/clinchem.2014.224238. PubMed DOI

Rudwaleit M., Braun J., Sieper J. ASAS-Klassifikationskriterien für axiale Spondyloarthritis. Z. Rheumatol. 2009;68(7):591–593. doi: 10.1007/s00393-009-0510-y. PubMed DOI

Ramiro S., et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann. Rheum. Dis. 2022;82(1):10–34. doi: 10.1136/ard-2022-223296. PubMed DOI

Landewé R., van Tubergen A. Clinical tools to assess and monitor spondyloarthritis. Curr. Rheumatol. Rep. 2015;17(7):1–7. doi: 10.1007/s11926-015-0522-3. PubMed DOI PMC

Van Der Linden S., Valkenburg H.A., Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. Arthritis Rheum. 1984;27(4):361–368. doi: 10.1002/art.1780270401. PubMed DOI

Hunter T., Sandoval D., Booth N., Holdsworth E., Deodhar A. Comparing symptoms, treatment patterns, and quality of life of ankylosing spondylitis and non-radiographic axial spondyloarthritis patients in the USA: findings from a patient and rheumatologist Survey. Clin. Rheumatol. 2021;40(8):3161–3167. doi: 10.1007/s10067-021-05642-6. PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. May 2011;17(1):10. doi: 10.14806/ej.17.1.200. DOI

Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [Online]. Available:

lh3/seqtk: toolkit for processing sequences in FASTA/Q formats, “lh3/seqtk: toolkit for processing sequences in FASTA/Q formats.”. 2018. https://github.com/lh3/seqtk [Online]. Available:

Vitsios D.M., Enright A.J. Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinformatics. 2015;31(20):3365–3367. doi: 10.1093/bioinformatics/btv380. PubMed DOI PMC

Kozomara A., Griffiths-Jones S. MiRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(D1):68–73. doi: 10.1093/nar/gkt1181. PubMed DOI PMC

Anders S., Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106. PubMed DOI PMC

R Core Team . R Foundation for Statistical Computing; 2020. R: A Language and Environment for Statistical Computing (3.6.3)http://www.r-project.org/ [Online]. Available:

Stephens M. False discovery rates: a new deal. Biostatistics. 2017;18(2):275–294. doi: 10.1093/biostatistics/kxw041. PubMed DOI PMC

RStudio Team . RStudio, Inc.; 2019. RStudio: Integrated Development for R. (1.2.5033)http://www.rstudio.com/ [Online]. Available:

Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50(3):346–363. doi: 10.1002/bimj.200810425. PubMed DOI

Wickham H., et al. Welcome to the Tidyverse. J. Open Source Softw. Nov. 2019;4(43):1686. doi: 10.21105/joss.01686. DOI

Licursi V., Conte F., Fiscon G., Paci P. MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinf. 2019;20(1):1–10. doi: 10.1186/s12859-019-3105-x. PubMed DOI PMC

Baraliakos X., Braun J. Non-radiographic axial spondyloarthritis and ankylosing spondylitis: what are the similarities and differences? RMD Open. 2015;1(Suppl 1):8–11. doi: 10.1136/rmdopen-2015-000053. PubMed DOI PMC

Li X., et al. Aberrant expression of microRNAs in peripheral blood mononuclear cells as candidate biomarkers in patients with axial spondyloarthritis. Int. J. Rheum. Dis. 2019;22(7):1188–1195. doi: 10.1111/1756-185X.13563. PubMed DOI

Hunter M.P., et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008;3(11) doi: 10.1371/journal.pone.0003694. PubMed DOI PMC

Ma J., Lin Y., Zhan M., Mann D.L., Stass S.A., Jiang F. Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer. Lab. Invest. 2015;95(10):1197–1206. doi: 10.1038/labinvest.2015.88. PubMed DOI PMC

Gu H., et al. MiR-1-3p regulates the differentiation of mesenchymal stem cells to prevent osteoporosis by targeting secreted frizzled-related protein 1. Bone. 2020;137 doi: 10.1016/j.bone.2020.115444. PubMed DOI

Ding R., et al. Downregulation of miR-1-3p expression inhibits the hypertrophy and mineralization of chondrocytes in DDH. J. Orthop. Surg. Res. 2021;16(1):1–10. doi: 10.1186/s13018-021-02666-1. PubMed DOI PMC

Bleil J., et al. Cartilage in facet joints of patients with ankylosing spondylitis (AS) shows signs of cartilage degeneration rather than chondrocyte hypertrophy: implications for joint remodeling in AS. Arthritis Res. Ther. 2015;17(1):1–10. doi: 10.1186/s13075-015-0675-5. PubMed DOI PMC

Zhou L., et al. MicroRNA-1-3p enhances osteoblast differentiation of MC3T3-E1 cells by interacting with hypoxia-inducible factor 1 α inhibitor (HIF1AN) Mech. Dev. 2020;162(February) doi: 10.1016/j.mod.2020.103613. PubMed DOI

Miossec P. Local and systemic effects of IL-17 in joint inflammation : a historical perspective from discovery to targeting. Cell. Mol. Immunol. 2021;(March) doi: 10.1038/s41423-021-00644-5. PubMed DOI PMC

Jang S.I., Tandon M., Teos L., Zheng C.Y., Warner B.M., Alevizos I. Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren’s syndrome. EBioMedicine. 2019;48:526–538. doi: 10.1016/j.ebiom.2019.09.010. PubMed DOI PMC

Tang Y.P., et al. Circular RNAs in peripheral blood mononuclear cells from ankylosing spondylitis. Chin. Med. J. 2021;134(21):2573–2582. doi: 10.1097/CM9.0000000000001815. PubMed DOI PMC

Ruiz-Limon P., et al. Potential role and impact of peripheral blood mononuclear cells in radiographic axial spondyloarthritis-associated endothelial dysfunction. Diagnostics. 2021;11(6):1–17. doi: 10.3390/diagnostics11061037. PubMed DOI PMC

Rosine N., Miceli-Richard C. Innate cells: the alternative source of IL-17 in axial and peripheral spondyloarthritis? Front. Immunol. 2021;11(January):1–12. doi: 10.3389/fimmu.2020.553742. PubMed DOI PMC

Pawlina K., Tomasz T. Benchmarking of bioinformatics tools for NGS - based microRNA profiling with RT - qPCR method. Funct. Integr. Genomics. 2023;23(4):1–11. doi: 10.1007/s10142-023-01276-w. PubMed DOI PMC

Pepe J., et al. Characterization of extracellular vesicles in osteoporotic patients compared to osteopenic and healthy controls. J. Bone Miner. Res. 2022;00(00):1–15. doi: 10.1002/jbmr.4688. PubMed DOI PMC

Pinto M.C.X., et al. Calcium signaling and cell proliferation. Cell. Signal. 2015;27(11):2139–2149. doi: 10.1016/j.cellsig.2015.08.006. PubMed DOI

Qi K., et al. Long non-coding RNA (lncRNA) CaIF is downregulated in osteoarthritis and inhibits LPS-induced interleukin 6 (IL-6) upregulation by downregulation of miR-1246. Med. Sci. Monit. 2019;25:8019–8024. doi: 10.12659/MSM.917135. PubMed DOI PMC

Krissansen G.W., et al. Overexpression of miR-595 and miR-1246 in the sera of patients with active forms of inflammatory bowel disease. Inflamm. Bowel Dis. 2015;21(3):520–530. doi: 10.1097/MIB.0000000000000285. PubMed DOI

Husakova M. Micrornas in the key events of systemic lupus erythematosus pathogenesis. Biomed. Pap. 2016;160(3):327–342. doi: 10.5507/bp.2016.004. PubMed DOI

Maksymowych W.P. Biomarkers for diagnosis of axial spondyloarthritis, disease activity, prognosis, and prediction of response to therapy. Front. Immunol. 2019;10(MAR):1–9. doi: 10.3389/fimmu.2019.00305. PubMed DOI PMC

Furst D.E., Louie J.S. Targeting inflammatory pathways in axial spondyloarthritis. Arthritis Res. Ther. 2019;21(1):1–15. doi: 10.1186/s13075-019-1885-z. PubMed DOI PMC

Silacci M., et al. Discovery and characterization of COVA322, a clinical-stage bispecific TNF/IL-17A inhibitor for the treatment of inflammatory diseases. mAbs. 2016;8(1):141–149. doi: 10.1080/19420862.2015.1093266. PubMed DOI PMC

Andersen T., et al. Increased plasma levels of IL-21 and IL-23 in spondyloarthritis are not associated with clinical and MRI findings. Rheumatol. Int. 2012;32(2):387–393. doi: 10.1007/s00296-010-1655-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...