Deciphering miRNA signatures in axial spondyloarthritis: The link between miRNA-1-3p and pro-inflammatory cytokines
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39398012
PubMed Central
PMC11467529
DOI
10.1016/j.heliyon.2024.e38250
PII: S2405-8440(24)14281-8
Knihovny.cz E-zdroje
- Klíčová slova
- Axial spondyloarthritis, Biomarkers, Cytokines, Profiling, miRNA,
- Publikační typ
- časopisecké články MeSH
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that affects the spine and sacroiliac joints. Early detection of axSpA is crucial to slow disease progression and maintain remission or low disease activity. However, current biomarkers are insufficient for diagnosing axSpA or distinguishing between its radiographic (r-axSpA) and non-radiographic (nr-axSpA) subsets. To address this, we conducted a study using miRNA profiling with massive parallel sequencing (MPS) and SmartChip qRT-PCR validation. The goal was to identify differentially expressed miRNAs in axSpA patients, specifically those subdiagnosed with nr-axSpA or r-axSpA. Disease activity was measured using C-reactive protein (CRP) and the Ankylosing Spondylitis Disease Activity Score (ASDAS). Radiographic assessments of the cervical and lumbar spine were performed at baseline and after two years. Out of the initial 432 miRNAs, 90 met the selection criteria, and 45 were validated out of which miR-1-3p was upregulated, whereas miR-1248 and miR-1246 were downregulated in axSpA patients. The expression of miR-1-3p correlated with interleukin (IL)-17 and tumour necrosis factor (TNF) levels, indicating its significant role in axSpA pathogenesis. Although specific miRNAs distinguishing disease subtypes or correlating with disease activity or spinal changes were not found, the study identified three dysregulated miRNAs in axSpA patients, with miR-1-3p linked to IL-17 and TNF, underscoring its pathogenetic significance. These findings could help improve the early detection and treatment of axSpA.
Zobrazit více v PubMed
Rudwaleit M., et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann. Rheum. Dis. 2009;68(6):777–783. doi: 10.1136/ard.2009.108233. PubMed DOI
Rudwaleit M., et al. The early disease stage in axial spondylarthritis: results from the German spondyloarthritis inception cohort. Arthritis Rheum. 2009;60(3):717–727. doi: 10.1002/art.24483. PubMed DOI
López-Medina C., Molto A., Claudepierre P., Dougados M. Clinical manifestations, disease activity and disease burden of radiographic versus non-radiographic axial spondyloarthritis over 5 years of follow-up in the DESIR cohort. Ann. Rheum. Dis. 2019:209–216. doi: 10.1136/annrheumdis-2019-216218. PubMed DOI
Bubová K., et al. Cross-sectional study of patients with axial spondyloarthritis fulfilling imaging arm of ASAS classification criteria: baseline clinical characteristics and subset differences in a singlecentre cohort. BMJ Open. 2019;9(4):1–6. doi: 10.1136/bmjopen-2018-024713. PubMed DOI PMC
Costantino F., Zeboulon N., Said-Nahal R., Breban M. Radiographic sacroiliitis develops predictably over time in a cohort of familial spondyloarthritis followed longitudinally. Rheumatology. 2017;56(5):811–817. doi: 10.1093/rheumatology/kew496. PubMed DOI
Poddubnyy D., et al. Rates and predictors of radiographic sacroiliitis progression over 2 years in patients with axial spondyloarthritis. Ann. Rheum. Dis. 2011;70(8):1369–1374. doi: 10.1136/ard.2010.145995. PubMed DOI
Gravallese E.M., Schett G. Effects of the IL-23–IL-17 pathway on bone in spondyloarthritis. Nat. Rev. Rheumatol. 2018;14(11):631–640. doi: 10.1038/s41584-018-0091-8. PubMed DOI
Pekáčová A., Baloun J., Švec X., Šenolt L. Wiley Interdiscip. Rev. RNA; July, 2022. Non-coding RNAs in Diseases with a Focus on Osteoarthritis. PubMed DOI
Prajzlerová K., Šenolt L., Filková M. Is there a potential of circulating miRNAs as biomarkers in rheumatic diseases? Genes Dis. 2023;10(4):1263–1278. doi: 10.1016/j.gendis.2022.08.011. PubMed DOI PMC
Friedman R.C., Farh K.K.H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. doi: 10.1101/gr.082701.108. PubMed DOI PMC
Motta F., et al. MicroRNAs in axial spondylarthritis: an overview of the recent progresses in the field with a focus on ankylosing spondylitis and psoriatic arthritis. Curr. Rheumatol. Rep. Aug. 2021;23(8) doi: 10.1007/S11926-021-01027-5. PubMed DOI PMC
Prajzlerová K., et al. Association between circulating miRNAs and spinal involvement in patients with axial spondyloarthritis. PLoS One. Sep. 2017;12(9) doi: 10.1371/journal.pone.0185323. PubMed DOI PMC
Meder B., et al. Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin. Chem. 2014;60(9):1200–1208. doi: 10.1373/clinchem.2014.224238. PubMed DOI
Rudwaleit M., Braun J., Sieper J. ASAS-Klassifikationskriterien für axiale Spondyloarthritis. Z. Rheumatol. 2009;68(7):591–593. doi: 10.1007/s00393-009-0510-y. PubMed DOI
Ramiro S., et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann. Rheum. Dis. 2022;82(1):10–34. doi: 10.1136/ard-2022-223296. PubMed DOI
Landewé R., van Tubergen A. Clinical tools to assess and monitor spondyloarthritis. Curr. Rheumatol. Rep. 2015;17(7):1–7. doi: 10.1007/s11926-015-0522-3. PubMed DOI PMC
Van Der Linden S., Valkenburg H.A., Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. Arthritis Rheum. 1984;27(4):361–368. doi: 10.1002/art.1780270401. PubMed DOI
Hunter T., Sandoval D., Booth N., Holdsworth E., Deodhar A. Comparing symptoms, treatment patterns, and quality of life of ankylosing spondylitis and non-radiographic axial spondyloarthritis patients in the USA: findings from a patient and rheumatologist Survey. Clin. Rheumatol. 2021;40(8):3161–3167. doi: 10.1007/s10067-021-05642-6. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. May 2011;17(1):10. doi: 10.14806/ej.17.1.200. DOI
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [Online]. Available:
lh3/seqtk: toolkit for processing sequences in FASTA/Q formats, “lh3/seqtk: toolkit for processing sequences in FASTA/Q formats.”. 2018. https://github.com/lh3/seqtk [Online]. Available:
Vitsios D.M., Enright A.J. Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinformatics. 2015;31(20):3365–3367. doi: 10.1093/bioinformatics/btv380. PubMed DOI PMC
Kozomara A., Griffiths-Jones S. MiRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(D1):68–73. doi: 10.1093/nar/gkt1181. PubMed DOI PMC
Anders S., Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106. PubMed DOI PMC
R Core Team . R Foundation for Statistical Computing; 2020. R: A Language and Environment for Statistical Computing (3.6.3)http://www.r-project.org/ [Online]. Available:
Stephens M. False discovery rates: a new deal. Biostatistics. 2017;18(2):275–294. doi: 10.1093/biostatistics/kxw041. PubMed DOI PMC
RStudio Team . RStudio, Inc.; 2019. RStudio: Integrated Development for R. (1.2.5033)http://www.rstudio.com/ [Online]. Available:
Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50(3):346–363. doi: 10.1002/bimj.200810425. PubMed DOI
Wickham H., et al. Welcome to the Tidyverse. J. Open Source Softw. Nov. 2019;4(43):1686. doi: 10.21105/joss.01686. DOI
Licursi V., Conte F., Fiscon G., Paci P. MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinf. 2019;20(1):1–10. doi: 10.1186/s12859-019-3105-x. PubMed DOI PMC
Baraliakos X., Braun J. Non-radiographic axial spondyloarthritis and ankylosing spondylitis: what are the similarities and differences? RMD Open. 2015;1(Suppl 1):8–11. doi: 10.1136/rmdopen-2015-000053. PubMed DOI PMC
Li X., et al. Aberrant expression of microRNAs in peripheral blood mononuclear cells as candidate biomarkers in patients with axial spondyloarthritis. Int. J. Rheum. Dis. 2019;22(7):1188–1195. doi: 10.1111/1756-185X.13563. PubMed DOI
Hunter M.P., et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008;3(11) doi: 10.1371/journal.pone.0003694. PubMed DOI PMC
Ma J., Lin Y., Zhan M., Mann D.L., Stass S.A., Jiang F. Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer. Lab. Invest. 2015;95(10):1197–1206. doi: 10.1038/labinvest.2015.88. PubMed DOI PMC
Gu H., et al. MiR-1-3p regulates the differentiation of mesenchymal stem cells to prevent osteoporosis by targeting secreted frizzled-related protein 1. Bone. 2020;137 doi: 10.1016/j.bone.2020.115444. PubMed DOI
Ding R., et al. Downregulation of miR-1-3p expression inhibits the hypertrophy and mineralization of chondrocytes in DDH. J. Orthop. Surg. Res. 2021;16(1):1–10. doi: 10.1186/s13018-021-02666-1. PubMed DOI PMC
Bleil J., et al. Cartilage in facet joints of patients with ankylosing spondylitis (AS) shows signs of cartilage degeneration rather than chondrocyte hypertrophy: implications for joint remodeling in AS. Arthritis Res. Ther. 2015;17(1):1–10. doi: 10.1186/s13075-015-0675-5. PubMed DOI PMC
Zhou L., et al. MicroRNA-1-3p enhances osteoblast differentiation of MC3T3-E1 cells by interacting with hypoxia-inducible factor 1 α inhibitor (HIF1AN) Mech. Dev. 2020;162(February) doi: 10.1016/j.mod.2020.103613. PubMed DOI
Miossec P. Local and systemic effects of IL-17 in joint inflammation : a historical perspective from discovery to targeting. Cell. Mol. Immunol. 2021;(March) doi: 10.1038/s41423-021-00644-5. PubMed DOI PMC
Jang S.I., Tandon M., Teos L., Zheng C.Y., Warner B.M., Alevizos I. Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren’s syndrome. EBioMedicine. 2019;48:526–538. doi: 10.1016/j.ebiom.2019.09.010. PubMed DOI PMC
Tang Y.P., et al. Circular RNAs in peripheral blood mononuclear cells from ankylosing spondylitis. Chin. Med. J. 2021;134(21):2573–2582. doi: 10.1097/CM9.0000000000001815. PubMed DOI PMC
Ruiz-Limon P., et al. Potential role and impact of peripheral blood mononuclear cells in radiographic axial spondyloarthritis-associated endothelial dysfunction. Diagnostics. 2021;11(6):1–17. doi: 10.3390/diagnostics11061037. PubMed DOI PMC
Rosine N., Miceli-Richard C. Innate cells: the alternative source of IL-17 in axial and peripheral spondyloarthritis? Front. Immunol. 2021;11(January):1–12. doi: 10.3389/fimmu.2020.553742. PubMed DOI PMC
Pawlina K., Tomasz T. Benchmarking of bioinformatics tools for NGS - based microRNA profiling with RT - qPCR method. Funct. Integr. Genomics. 2023;23(4):1–11. doi: 10.1007/s10142-023-01276-w. PubMed DOI PMC
Pepe J., et al. Characterization of extracellular vesicles in osteoporotic patients compared to osteopenic and healthy controls. J. Bone Miner. Res. 2022;00(00):1–15. doi: 10.1002/jbmr.4688. PubMed DOI PMC
Pinto M.C.X., et al. Calcium signaling and cell proliferation. Cell. Signal. 2015;27(11):2139–2149. doi: 10.1016/j.cellsig.2015.08.006. PubMed DOI
Qi K., et al. Long non-coding RNA (lncRNA) CaIF is downregulated in osteoarthritis and inhibits LPS-induced interleukin 6 (IL-6) upregulation by downregulation of miR-1246. Med. Sci. Monit. 2019;25:8019–8024. doi: 10.12659/MSM.917135. PubMed DOI PMC
Krissansen G.W., et al. Overexpression of miR-595 and miR-1246 in the sera of patients with active forms of inflammatory bowel disease. Inflamm. Bowel Dis. 2015;21(3):520–530. doi: 10.1097/MIB.0000000000000285. PubMed DOI
Husakova M. Micrornas in the key events of systemic lupus erythematosus pathogenesis. Biomed. Pap. 2016;160(3):327–342. doi: 10.5507/bp.2016.004. PubMed DOI
Maksymowych W.P. Biomarkers for diagnosis of axial spondyloarthritis, disease activity, prognosis, and prediction of response to therapy. Front. Immunol. 2019;10(MAR):1–9. doi: 10.3389/fimmu.2019.00305. PubMed DOI PMC
Furst D.E., Louie J.S. Targeting inflammatory pathways in axial spondyloarthritis. Arthritis Res. Ther. 2019;21(1):1–15. doi: 10.1186/s13075-019-1885-z. PubMed DOI PMC
Silacci M., et al. Discovery and characterization of COVA322, a clinical-stage bispecific TNF/IL-17A inhibitor for the treatment of inflammatory diseases. mAbs. 2016;8(1):141–149. doi: 10.1080/19420862.2015.1093266. PubMed DOI PMC
Andersen T., et al. Increased plasma levels of IL-21 and IL-23 in spondyloarthritis are not associated with clinical and MRI findings. Rheumatol. Int. 2012;32(2):387–393. doi: 10.1007/s00296-010-1655-3. PubMed DOI