Non-coding RNAs in diseases with a focus on osteoarthritis

. 2023 May-Jun ; 14 (3) : e1756. [epub] 20220905

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36063025

Osteoarthritis (OA) is a frequent musculoskeletal disorder affecting millions of people worldwide. Despite advances in understanding the pathogenesis of OA, prognostic biomarkers or effective targeted treatment are not currently available. Research on epigenetic factors has yielded some new insights as new technologies for their detection continue to emerge. In this context, non-coding RNAs, including microRNAs, long non-coding RNAs, circular RNAs, piwi-interacting RNAs, and small nucleolar RNAs, regulate intracellular signaling pathways and biological processes that have a crucial role in the development of several diseases. In this review, we present current knowledge on the role of epigenetic factors with a focus on non-coding RNAs in the development, prediction and treatment of OA. This article is categorized under: RNA in Disease and Development > RNA in Disease.

Zobrazit více v PubMed

Alcaraz, M. J., Guillén, M. I., & Ferrándiz, M. L. (2019). Emerging therapeutic agents in osteoarthritis Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo. Biochemical Pharmacology, 165, 4-16. https://doi.org/10.1016/j.bcp.2019.02.034

Ali, S. A., Peffers, M. J., Ormseth, M. J., Jurisica, I., & Kapoor, M. (2021). The non-coding RNA interactome in joint health and disease. Nature Reviews Rheumatology, 17(11), 692-705. https://doi.org/10.1038/s41584-021-00687-y

Amin, N., Mcgrath, A., & Chen, Y. P. (2019). Evaluation of deep learning in non-coding RNA classification. Nature Machine Intelligence, 1, 246-256. https://doi.org/10.1038/s42256-019-0051-2

Asghar, S., Litherland, G. J., Lockhart, J. C., Goodyear, C. S., & Crilly, A. (2020). Exosomes in intercellular communication and implications for osteoarthritis. Rheumatology, 59(1), 57-68. https://doi.org/10.1093/rheumatology/kez462

Ashraf, S., Radhi, M., Gowler, P., Burston, J. J., Gandhi, R. D., Thorn, G. J., Piccinini, A. M., Walsh, D. A., Chapman, V., & de Moor, C. H. (2019). The polyadenylation inhibitor cordycepin reduces pain, inflammation and joint pathology in rodent models of osteoarthritis. Scientific Reports, 9(1), 1-17. https://doi.org/10.1038/s41598-019-41140-1

Ayarpadikannan, S., & Kim, H.-S. (2014). The impact of transposable elements in genome evolution and genetic instability and their implications in various diseases. Genomics & Informatics, 12(3), 98-104. https://doi.org/10.5808/gi.2014.12.3.98

Bae, S. C., & Lee, Y. H. (2018). MiR-146a levels in rheumatoid arthritis and their correlation with disease activity: A meta-analysis. International Journal of Rheumatic Diseases, 21(7), 1335-1342. https://doi.org/10.1111/1756-185X.13338

Benetatos, L., Vartholomatos, G., & Hatzimichael, E. (2011). MEG3 imprinted gene contribution in tumorigenesis. International Journal of Cancer, 129(4), 773-779. https://doi.org/10.1002/ijc.26052

Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818), 363-366. https://doi.org/10.1038/35053110

Beyer, C., Zampetaki, A., Lin, N. Y., Kleyer, A., Perricone, C., Iagnocco, A., Distler, A., Langley, S. R., Gelse, K., Sesselmann, S., Lorenzini, R., Niemeier, A., Swoboda, B., Distler, J. H. W., Santer, P., Egger, G., Willeit, J., Mayr, M., Schett, G., & Kiechl, S. (2015). Signature of circulating microRNAs in osteoarthritis. Annals of the Rheumatic Diseases, 74(3), e18. https://doi.org/10.1136/annrheumdis-2013-204698

Blüml, S., Bonelli, M., Niederreiter, B., Puchner, A., Mayr, G., Hayer, S., Koenders, M. I., van den Berg, W. B., Smolen, J., & Redlich, K. (2011). Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis and Rheumatism, 63(5), 1281-1288. https://doi.org/10.1002/art.30281

Bonneau, E., Neveu, B., Kostantin, E., Tsongalis, G. J., & De Guire, V. (2019). How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. The electronic Journal of the IFCC, 30(2), 114-127.

Borgonio Cuadra, V. M., González-Huerta, N. C., Romero-Córdoba, S., Hidalgo-Miranda, A., & Miranda-Duarte, A. (2014). Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways. PLoS One, 9(6), 20-25. https://doi.org/10.1371/journal.pone.0097690

Bortolin-Cavaillé, M. L., & Cavaillé, J. (2012). The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Research, 40(14), 6800-6807. https://doi.org/10.1093/nar/gks321

Bottani, M., Banfi, G., & Lombardi, G. (2020). The clinical potential of circulating mirnas as biomarkers: Present and future applications for diagnosis and prognosis of age-associated bone diseases. Biomolecules, 10(4), 1-29. https://doi.org/10.3390/biom10040589

Bouchie, A. (2013). First microRNA mimic enters clinic. Nature Biotechnology, 31(7), 577. https://doi.org/10.1038/nbt0713-577

Bueno, M. J., Castro, I. P. D., & Malumbres, M. (2008). Control of cell proliferation pathways by microRNAs. Cell Cycle, 7, 3143. https://doi.org/10.4161/cc.7.20.6833

Bueno, M. J., & Malumbres, M. (2011). MicroRNAs and the cell cycle. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1812(5), 592-601. https://doi.org/10.1016/j.bbadis.2011.02.002

Cabili, M., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., & Rinn, J. L. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes and Development, 25(18), 1915-1927. https://doi.org/10.1101/gad.17446611

Cao, Y., Tang, S., Nie, X., Zhou, Z., Ruan, G., Han, W., Zhu, Z., & Ding, C. (2021). Decreased miR-214-3p activates NF-κB pathway and aggravates osteoarthritis progression. eBioMedicine, 65, 103283. https://doi.org/10.1016/j.ebiom.2021.103283

Chen, D., Shen, J., Zhao, W., Wang, T., Han, L., Hamilton, J. L., & Im, H. J. (2017). Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Research, 5, 16044. https://doi.org/10.1038/boneres.2016.44

Chen, J., Ao, L., & Yang, J. (2019). Long non-coding RNAs in diseases related to inflammation and immunity. Annals of Translational Medicine, 7(18), 494. https://doi.org/10.21037/atm.2019.08.37

Chen, N., Wu, D., Li, H., Liu, Y., & Yang, H. (2020). MiR-17-3p inhibits osteoblast differentiation by downregulating Sox6 expression. FEBS Open Bio, 10(11), 2499-2506. https://doi.org/10.1002/2211-5463.12979

Chen, Q., Wu, S., Wu, Y., Chen, L., & Pang, Q. (2018). MiR-149 suppresses the inflammatory response of chondrocytes in osteoarthritis by down-regulating the activation of TAK1/NF-κB. Biomedicine and Pharmacotherapy, 101(2), 763-768. https://doi.org/10.1016/j.biopha.2018.02.133

Chen, Y., Lin, Y., Bai, Y., Cheng, D., & Bi, Z. (2019). A long noncoding RNA (LncRNA)-associated competing endogenous RNA (ceRNA) network identifies eight lncrna biomarkers in patients with osteoarthritis of the knee. Medical Science Monitor, 25, 2058-2065. https://doi.org/10.12659/MSM.915555

Chen, Z. G., Zhao, H. J., Lin, L., Liu, J. B., Bai, J. Z., & Wang, G. S. (2020). Circular RNA CirCHIPK3 promotes cell proliferation and invasion of breast cancer by sponging miR-193a/HMGB1/PI3K/AKT axis. Thoracic Cancer, 11(9), 2660-2671. https://doi.org/10.1111/1759-7714.13603

Cheng, J., Guo, J. M., Xiao, B. X., Miao, Y., Jiang, Z., Zhou, H., & Li, Q. N. (2011). PiRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clinica Chimica Acta, 412(17-18), 1621-1625. https://doi.org/10.1016/j.cca.2011.05.015

Chuma, S., & Nakano, T. (2013). piRNA and spermatogenesis in mice. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1609), 20110338. https://doi.org/10.1098/rstb.2011.0338

De Rie, D., Abugessaisa, I., Alam, T., Arner, E., Arner, P., Ashoor, H., Åström, G., Babina, M., Bertin, N., Burroughs, A. M., Carlisle, A. J., Daub, C. O., Detmar, M., Deviatiiarov, R., Fort, A., Gebhard, C., Goldowitz, D., Guhl, S., Ha, T. J., … De Hoon, M. J. L. (2017). An integrated expression atlas of miRNAs and their promoters in human and mouse. Nature Biotechnology, 35(9), 872-878. https://doi.org/10.1038/nbt.3947

Della Bella, E., Menzel, U., Basoli, V., Tourbier, C., Alini, M., & Stoddart, M. J. (2020). Differential regulation of circRNA, miRNA, and piRNA during early osteogenic and chondrogenic differentiation of human mesenchymal stromal cells. Cell, 9(2), 398. https://doi.org/10.3390/cells9020398

Denli, A. M., Tops, B. B. J., Plasterk, R. H. A., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature, 432(7014), 231-235. https://doi.org/10.1038/nature03049

Deogharia, M., & Majumder, M. (2019). Guide snoRNAs: Drivers or passengers in human disease? Biology, 8(1), 1-16. https://doi.org/10.3390/biology8010001

Dieci, G., Preti, M., & Montanini, B. (2009). Eukaryotic snoRNAs: A paradigm for gene expression flexibility. Genomics, 94(2), 83-88. https://doi.org/10.1016/j.ygeno.2009.05.002

Dong, J., Li, L., Fang, X., & Zang, M. (2021). Exosome-encapsulated microrna-127-3p released from bone marrow-derived mesenchymal stem cells alleviates osteoarthritis through regulating cdh11-mediated wnt/β-catenin pathway. Journal of Pain Research, 14, 297-310. https://doi.org/10.2147/JPR.S291472

Eckstein, M., Jung, R., Weigelt, K., Sikic, D., Stöhr, R., Geppert, C., Agaimy, A., Lieb, V., Hartmann, A., Wullich, B., Wach, S., & Taubert, H. (2018). Piwi-like 1 and -2 protein expression levels are prognostic factors for muscle invasive urothelial bladder cancer patients. Scientific Reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-35637-4

Etheridge, A., Lee, I., Hood, L., Galas, D., & Wang, K. (2011). Extracellural microRNA: A new resource of biomarkers. Mutation Research, 717(1-2), 85-90. https://doi.org/10.1016/j.mrfmmm.2011.03.004.Extracellular

Fatica, A., & Bozzoni, I. (2014). Long non-coding RNAs: New players in cell differentiation and development. Nature Reviews Genetics, 15(1), 7-21. https://doi.org/10.1038/nrg3606

Feng, M., Jing, L., Cheng, J., An, S., Huang, J., & Yan, Q. (2021). Circ_0020093 ameliorates IL-1β-induced apoptosis and extracellular matrix degradation of human chondrocytes by upregulating SPRY1 via targeting miR-23b. Molecular and Cellular Biochemistry, 2021, 3623-3633. https://doi.org/10.1007/s11010-021-04186-2

Fernandes, J. C. R., Acuña, S. M., Aoki, J. I., Floeter-Winter, L. M., & Muxel, S. M. (2019). Long non-coding RNAs in the regulation of gene expression: Physiology and disease. Non-Coding RNA, 5(1). https://doi.org/10.3390/ncrna5010017

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specificgenetic interference bydouble-stranded RNA inCaenorhabditis elegans. Nature, 391, 806-811.

Fortes, P., & Morris, K. V. (2016). Long noncoding RNAs in viral infections. Virus Research, 212(1), 1-11. https://doi.org/10.1016/j.virusres.2015.10.002

Frank-Bertoncelj, M., Trenkmann, M., Klein, K., Karouzakis, E., Rehrauer, H., Bratus, A., Kolling, C., Armaka, M., Filer, A., Michel, B. A., Gay, R. E., Buckley, C. D., Kollias, G., Gay, S., & Ospelt, C. (2017). Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nature Communications, 8, 14852. https://doi.org/10.1038/ncomms14852

Friedman, R. C., Farh, K. K. H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92-105. https://doi.org/10.1101/gr.082701.108

Fujita, Y., Kuwano, K., Ochiya, T., & Takeshita, F. (2014). The impact of extracellular vesicle-encapsulated circulating microRNAs in lung cancer research. BioMed Research International, 2014, 1-8. https://doi.org/10.1155/2014/486413

Gao, J., Xu, W., Wang, J., Wang, K., & Li, P. (2017). The role and molecular mechanism of non-coding rnas in pathological cardiac remodeling. International Journal of Molecular Sciences, 18(3), 608. https://doi.org/10.3390/ijms18030608

Gee, H. E., Buffa, F. M., Camps, C., Ramachandran, A., Leek, R., Taylor, M., Patil, M., Sheldon, H., Betts, G., Homer, J., West, C., Ragoussis, J., & Harris, A. L. (2011). The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. British Journal of Cancer, 104(7), 1168-1177. https://doi.org/10.1038/sj.bjc.6606076

Gholaminejad, A., Zare, N., Dana, N., Shafie, D., Mani, A., & Javanmard, S. H. (2021). A meta-analysis of microRNA expression profiling studies in heart failure. Heart Failure Reviews, 26(4), 997-1021. https://doi.org/10.1007/s10741-020-10071-9

Gutschner, T., & Diederichs, S. (2012). The hallmarks of cancer. RNA Biology, 9(6), 703-719. https://doi.org/10.4161/rna.20481

Gordon, F. E., Nutt, C. L., Cheunsuchon, P., Nakayama, Y., Provencher, K. A., Rice, K. A., Zhou, Y., Zhang, X., & Klibanski, A. (2010). Increased expression of angiogenic genes in the brains of mouse Meg3-null embryos. Endocrinology, 151(6), 2443-2452. https://doi.org/10.1210/en.2009-1151

Grimson, A., Srivastava, M., Fahey, B., Woodcroft, B. J., Rosaria, H. C., King, N., Degnan3, B. M., Rokhsar, D. S., & Bartel, D. P. (2009). The early origins of microRNAs and Piwi-interacting RNAs in animals. Nature, 292(3), 342-351. https://doi.org/10.1038/nature07415.The

Han, B. W., & Zamore, P. D. (2014). PiRNAs. Current Biology, 24(16), 730-733. https://doi.org/10.1016/j.cub.2014.07.037

Hanan, M., Simchovitz, A., Yayon, N., Vaknine, S., Cohen-Fultheim, R., Karmon, M., Madrer, N., Rohrlich, T. M., Maman, M., Bennett, E. R., Greenberg, D. S., Meshorer, E., Levanon, E. Y., Soreq, H., & Kadener, S. (2020). A Parkinson's disease Circ RNA s resource reveals a link between circ SLC 8A1 and oxidative stress. EMBO Molecular Medicine, 12(9), 1-19. https://doi.org/10.15252/emmm.201911942

Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384-388. https://doi.org/10.1038/nature11993

He, J., Wang, L., Ding, Y., Liu, H., & Zou, G. (2021). lncRNA FER1L4 is dysregulated in osteoarthritis and regulates IL-6 expression in human chondrocyte cells. Scientific Reports, 11(1), 1-9. https://doi.org/10.1038/s41598-021-92474-8

He, L., & Hannon, G. J. (2004). MicroRNAs: Small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5(7), 522-531. https://doi.org/10.1038/nrg1379

He, X., Gao, K., Lu, S., & Wu, R. (2021). lncRNA HOTTIP leads to osteoarthritis progression via regulating miR-663a/ Fyn-related kinase axis. BMC Musculoskeletal Disorders, 22(1), 1-10. https://doi.org/10.1186/s12891-020-03861-7

Heyn, H., Ferreira, H. J., Bassas, L., Bonache, S., Sayols, S., Sandoval, J., Esteller, M., & Larriba, S. (2012). Epigenetic disruption of the PIWI pathway in human Spermatogenic disorders. PLoS One, 7(10), e47892. https://doi.org/10.1371/journal.pone.0047892

Holdt, L. M., Kohlmaier, A., & Teupser, D. (2018). Molecular roles and function of circular RNAs in eukaryotic cells. Cellular and Molecular Life Sciences, 75(6), 1071-1098. https://doi.org/10.1007/s00018-017-2688-5

Hu, J., Wang, Z., Pan, Y., Ma, J., Miao, X., Qi, X., Zhou, H., & Jia, L. (2018). MiR-26a and miR-26b mediate osteoarthritis progression by targeting FUT4 via NF-κB signaling pathway. International Journal of Biochemistry and Cell Biology, 94, 79-88. https://doi.org/10.1016/j.biocel.2017.12.003

Huang, J., Liu, L., Yang, J., Ding, J., & Xu, X. (2019). lncRNA DILC is downregulated in osteoarthritis and regulates IL-6 expression in chondrocytes. Journal of Cellular Biochemistry, 120(9), 16019-16024. https://doi.org/10.1002/jcb.28880

Huang, Z., Zhao, J., Wang, W., Zhou, J., & Zhang, J. (2020). Depletion of LncRNA NEAT1 rescues mitochondrial dysfunction through NEDD4L-dependent PINK1 degradation in animal models of Alzheimer's disease. Frontiers in Cellular Neuroscience, 14, 1-11. https://doi.org/10.3389/fncel.2020.00028

Hulejová, H., Barešová, V., Klézl, Z., Polanská, M., Adam, M., & Šenolt, L. (2007). Increased level of cytokines and matrix metalloproteinases in osteoarthritic subchondral bone. Cytokine, 38(3), 151-156. https://doi.org/10.1016/j.cyto.2007.06.001

Hunter, D. J., & Bierma-Zeinstra, S. (2019). Osteoarthritis. The Lancet, 393(10182), 1745-1759. https://doi.org/10.1016/S0140-6736(19)30417-9

Iossifov, I., O'Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., Stessman, H. A., Witherspoon, K. T., Vives, L., Patterson, K. E., Smith, J. D., Paeper, B., Nickerson, D. A., Dea, J., Dong, S., Gonzalez, L. E., Mandell, J. D., Mane, S. M., Murtha, M. T., … Wigler, M. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515(7526), 216-221. https://doi.org/10.1038/nature13908

Ji, M. L., Jiang, H., Wu, F., Geng, R., Ya, L. K., Lin, Y. C., Xu, J. H., Wu, X. T., & Lu, J. (2021). Precise targeting of miR-141/200c cluster in chondrocytes attenuates osteoarthritis development. Annals of the Rheumatic Diseases, 80(3), 356-366. https://doi.org/10.1136/annrheumdis-2020-218469

Jiang, L., Zhou, Y., Shen, J., Chen, Y., Ma, Z., Yu, Y., Chu, M., Qian, Q., Zhuang, X., & Xia, S. (2021). RNA sequencing reveals LINC00167 as a potential diagnosis biomarker for primary osteoarthritis: A multi-stage study. Frontiers in Genetics, 11, 1-9. https://doi.org/10.3389/fgene.2020.539489

Jorjani, H., Kehr, S., Jedlinski, D. J., Gumienny, R., Hertel, J., Stadler, P. F., Zavolan, M., & Gruber, A. R. (2016). An updated human snoRNAome. Nucleic Acids Research, 44(11), 5068-5082. https://doi.org/10.1093/nar/gkw386

Joung, S., Yoon, D. S., Cho, S., Ko, E. A., Lee, K.-M., Park, K. H., Lee, J. W., & Kim, S.-H. (2021). Downregulation of MicroRNA-495 alleviates IL-1β responses among chondrocytes by preventing SOX9 reduction. Yonsei Medical Journal, 62(7), 650-659. https://doi.org/10.3349/ymj.2021.62.7.650

Kanduri, C. (2016). Long noncoding RNAs: Lessons from genomic imprinting. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1859(1), 102-111. https://doi.org/10.1016/j.bbagrm.2015.05.006

Kawahara, Y. (2007). Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science, 315(5815), 1137-1140. https://doi.org/10.1126/science.1138050.Redirection

Kawahara, Y., Zinshteyn, B., Chendrimada, T. P., Shiekhattar, R., & Nishikura, K. (2007). RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Reports, 8(8), 3-9. https://doi.org/10.1038/sj.embor.7401011

Khandelwal, A., Bacolla, A., Vasquez, K. M., & Jain, A. (2015). Long non-coding RNA: A new paradigm for lung cancer. Molecular Carcinogenesis, 54(11), 1235-1251. Portico. https://doi.org/10.1002/mc.22362

Kim, J. R., Yoo, J. J., & Kim, H. A. (2018). Therapeutics in osteoarthritis based on an understanding of its molecular pathogenesis. International Journal of Molecular Sciences, 19(3), 674. https://doi.org/10.3390/ijms19030674

Kim, Y. K., & Kim, V. N. (2007). Processing of intronic microRNAs. EMBO Journal, 26(3), 775-783. https://doi.org/10.1038/sj.emboj.7601512

Kiss-László, Z., Henry, Y., Bachellerie, J. P., Caizergues-Ferrer, M., & Kiss, T. (1996). Site-specific ribose methylation of preribosomal RNA: A novel function for small nucleolar RNAs. Cell, 85(7), 1077-1088. https://doi.org/10.1016/S0092-8674(00)81308-2

Kloppenburg, M., & Berenbaum, F. (2020). Osteoarthritis year in review 2019: Epidemiology and therapy. Osteoarthritis and Cartilage, 28(3), 242-248. https://doi.org/10.1016/j.joca.2020.01.002

Kolbert, C. P., Feddersen, R. M., Rakhshan, F., Grill, D. E., Simon, G., Middha, S., Jang, J. S., Simon, V., Schultz, D. A., Zschunke, M., Lingle, W., Carr, J. M., Thompson, E. A., Oberg, A. L., Eckloff, B. W., Wieben, E. D., Li, P., Yang, P., & Jen, J. (2013). Multi-platform analysis of microRNA expression measurements in RNA from fresh frozen and FFPE tissues. PLoS One, 8(1), e52517. https://doi.org/10.1371/journal.pone.0052517

Kolhe, R., Hunter, M., Liu, S., Jadeja, R. N., Pundkar, C., Mondal, A. K., Mendhe, B., Drewry, M., Rojiani, M. V., Liu, Y., Isales, C. M., Guldberg, R. E., Hamrick, M. W., & Fulzele, S. (2017). Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Scientific Reports, 7(1), 1-14. https://doi.org/10.1038/s41598-017-01905-y

Kura, B., Kalocayova, B., Devaux, Y., & Bartekova, M. (2020). Potential clinical implications of mir-1 and mir-21 in heart disease and cardioprotection. International Journal of Molecular Sciences, 21(3), 700. https://doi.org/10.3390/ijms21030700

Lander, E. S. (2011). Initial impact of the sequencing of the human genome. Nature, 470, 187-197. https://doi.org/10.1038/nature09792

Laneve, P., Po, A., Favia, A., Legnini, I., Alfano, V., Rea, J., Di Carlo, V., Bevilacqua, V., Miele, E., Mastronuzzi, A., Carai, A., Locatelli, F., Bozzoni, I., Ferretti, E., & Caffarelli, E. (2017). The long noncoding RNA linc-NeD125 controls the expression of medulloblastoma driver genes by microRNA sponge activity. Oncotarget, 8(19), 31003-31015. https://doi.org/10.18632/oncotarget.16049

Le, L., Ho, P., & Clark, I. (2020). The scinderin gene (SCIN) is the direct target of miR3085-3p in chondrocytes. Archives of Biological Sciences, 72(3), 373-378. https://doi.org/10.2298/abs200507031l

Le Thomas, A., Tóth, K., & Aravin, A. A. (2014). To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biology, 15(1), 204. https://doi.org/10.1186/gb4154

Lee, E. J., Banerjee, S., Zhou, H., Jammalamadaka, A., Arcila, M., Manjunath, B. S., & Kosik, K. S. (2011). Identification of piRNAs in the central nervous system. RNA, 17(6), 1090-1099. https://doi.org/10.1261/rna.2565011

Lennerová, T., Pavelka, K., & Šenolt, L. (2018). Biomarkers of hand osteoarthritis. Rheumatology International, 38(5), 725-735. https://doi.org/10.1007/s00296-017-3864-5

Li, H., Wang, D., Yuan, Y., & Min, J. (2017). New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arthritis Research and Therapy, 19(1), 1-12. https://doi.org/10.1186/s13075-017-1454-2

Li, H. Z., Lin, Z., Xu, X. H., Lin, N., & Lu, H. D. (2018). The potential roles of circRNAs in osteoarthritis: A coming journey to find a treasure. Bioscience Reports, 38(5), 1-12. https://doi.org/10.1042/BSR20180542

Li, K., & Ramchandran, R. (2010). Natural antisense transcript: A concomitant engagement with protein-coding transcript abstract-Antisense transcript underlying mechanisms of NAT NATs role in pathology. Oncotarget, 1(6), 447-452.

Li, X., Zhang, L., Shi, X., Liao, T., Zhang, N., Gao, Y., Xing, R., & Wang, P. (2021). MicroRNA-10a-3p improves cartilage degeneration by regulating CH25H-CYP7B1-RORα mediated cholesterol metabolism in knee osteoarthritis rats. Frontiers in Pharmacology, 12(June), 1-11. https://doi.org/10.3389/fphar.2021.690181

Li, Z. C., Han, N., Li, X., Li, G., Liu, Y. Z., Sun, G. X., Wang, Y., Chen, G. T., & Li, G. F. (2015). Decreased expression of microRNA-130a correlates with TNF-α in the development of osteoarthritis. International Journal of Clinical and Experimental Pathology, 8(3), 2555-2564.

Liang, W. C., Fu, W. M., Wang, Y. B., Sun, Y. X., Xu, L. L., Wong, C. W., Chan, K. M., Li, G., Waye, M. M. Y., & Zhang, J. F. (2016). H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Scientific Reports, 6, 1-11. https://doi.org/10.1038/srep20121

Liang, Y., Song, X., Li, Y., Chen, B., Zhao, W., Wang, L., Zhang, H., Liu, Y., Han, D., Zhang, N., Ma, T., Wang, Y., Ye, F., Luo, D., Li, X., & Yang, Q. (2020). LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Molecular Cancer, 19(1), 1-20. https://doi.org/10.1186/s12943-020-01206-5

Liu, Q., Fu, H., Sun, F., Zhang, H., Tie, Y., Zhu, J., & Xing, R. (2008). miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Research, 36(16), 5391-5404. https://doi.org/10.1093/nar/gkn522

Liu, Y., Zhao, D., Wang, X., Dong, Y., & Ding, F. (2021). LncRNA KCNQ1OT1 attenuates osteoarthritic chondrocyte dysfunction via the miR-218-5p/PIK3C2A axis. Cell and Tissue Research, 385, 115-126. https://doi.org/10.1007/s00441-021-03441-8

Liu, Y., Li, Q., Gao, Z., Lei, F., & Gao, X. (2021). Circ-SPG11 knockdown hampers IL-1β-induced osteoarthritis progression via targeting miR-337-3p/ADAMTS5. Journal of Orthopaedic Surgery and Research, 16(1), 1-13. https://doi.org/10.1186/s13018-021-02526-y

Liu, Y., Zou, R., Wang, Z., Wen, C., Zhang, F., & Lin, F. (2018). Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochemical Journal, 475(22), 3629-3638. https://doi.org/10.1042/BCJ20180675

Lodde, V., Floris, M., Muroni, M. R., Cucca, F., & Idda, M. L. (2021). Non-coding RNAs in malaria infection. Wiley Interdisciplinary Reviews: RNA, 13(3), 1-17. https://doi.org/10.1002/wrna.1697

Long, H., Li, Q., Xiao, Z., & Yang, B. (2021). LncRNA MIR22HG promotes osteoarthritis progression via regulating miR-9-3p/ADAMTS5 pathway. Bioengineered, 12(1), 3148-3158. https://doi.org/10.1080/21655979.2021.1945362

Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setie, F., Casado, S., Suarez-gauthier, A., Gitt, A., Spiteri, I., Das, P. P., Caldas, C., Miska, E., & Esteller, M. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research, 67(4), 1424-1429. https://doi.org/10.1158/0008-5472.CAN-06-4218

Lytle, J. R., Yario, T. A., & Steitz, J. A. (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proceedings of the National Academy of Sciences of the United States of America, 104(23), 9667-9672. https://doi.org/10.1073/pnas.0703820104

Mai, D., Zheng, Y., Guo, H., Ding, P., Bai, R., Li, M., Ye, Y., Zhang, J., Huang, X., Liu, D., Sui, Q., Pan, L., Su, J., Deng, J., Wu, G., Li, R., Deng, S., Bai, Y., Ligu, Y., … Lin, D. (2020). Serum piRNA-54265 is a new biomarker for early detection and clinical surveillance of human colorectal cancer. Theranostics, 10(19), 8468-8478. https://doi.org/10.7150/thno.46241

Malemud, C. J. (2015). Biologic basis of osteoarthritis: State of the evidence. Current Opinion in Rheumatology, 27(3), 289-294. https://doi.org/10.1097/BOR.0000000000000162

Malemud, C. J. (2018). MicroRNAs and osteoarthritis. Cells, 7, 1-10. https://doi.org/10.3390/cells7080092

Mao, D., Wu, M., Wei, J., Zhou, X., Yang, L., & Chen, F. (2021). MicroRNA-101a-3p could be involved in the pathogenesis of temporomandibular joint osteoarthritis by mediating UBE2D1 and FZD4. Journal of Oral Pathology and Medicine, 50(2), 236-243. https://doi.org/10.1111/jop.13131

Mao, G., Zhang, Z., Hu, S., Zhang, Z., Chang, Z., Huang, Z., Liao, W., & Kang, Y. (2018). Exosomes derived from miR-92a-3p overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Research and Therapy, 9(1), 1-13. https://doi.org/10.1186/s13287-018-1004-0

Maxwell, E., & Fournier, M. (1995). The small nucleolar RNAs. Annual Review of Biochemistry, 64(1), 897-934. https://doi.org/10.1146/annurev.bi.64.070195.004341

Meerson, A. (2020). Leptin-responsive MiR-4443 is a small regulatory RNA independent of the canonic microRNA biogenesis pathway. Biomolecules, 10(2), 1-7. https://doi.org/10.3390/biom10020293

Memczak, S., Papavasileiou, P., Peters, O., & Rajewsky, N. (2015). Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One, 10(10), 1-13. https://doi.org/10.1371/journal.pone.0141214

Mens, M. M. J., & Ghanbari, M. (2018). Cell cycle regulation of stem cells by microRNAs. Stem Cell Reviews and Reports, 14(3), 309-322. https://doi.org/10.1007/s12015-018-9808-y

Migita, K., Iwanaga, N., Izumi, Y., Kawahara, C., Kumagai, K., Nakamura, T., Koga, T., & Kawakami, A. (2017). TNF-α-induced miR-155 regulates IL-6 signaling in rheumatoid synovial fibroblasts. BMC Research Notes, 10(1), 403. https://doi.org/10.1186/s13104-017-2715-5

Mirzamohammadi, F., Papaioannou, G., & Kobayashi, T. (2014). microRNAs in cartilage development, homeostasis, and disease. Current Osteoporosis Reports, 12(4), 410-419. https://doi.org/10.1007/s11914-014-0229-9

Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O'Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., & Tewari, M. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10513-10518. https://doi.org/10.1073/pnas.0804549105

Mobasheri, A., & Batt, M. (2016). An update on the pathophysiology of osteoarthritis. Annals of Physical and Rehabilitation Medicine, 59(5-6), 333-339. https://doi.org/10.1016/j.rehab.2016.07.004

Momen-Heravi, F., & Bala, S. (2018). Circular RNAs in head and neck cancer diagnosis and potential molecular targeting. Otorhinolaryngology-Head and Neck Surgery, 3(3). https://doi.org/10.15761/ohns.1000177

Monsellato, I., Garibaldi, E., Cassinotti, E., Baldari, L., Boni, L., Elmore, U., Delpini, R., Rosati, R., Perinotti, R., Alongi, F., Bertocchi, E., Gori, S., Ruffo, G., Pernazza, G., Pulighe, F., De Nisco, C., Morpurgo, E., Contardo, T., Mammano, E., … Orecchia, S. (2020). Expression levels of circulating miRNAs as biomarkers during multimodal treatment of rectal cancer: TiMiSNAR-mirna: A substudy of the TiMiSNAR trial (NCT03962088). Trials, 21(1), 1-7. https://doi.org/10.1186/s13063-020-04568-9

Mori, T., Ngouv, H., Hayashida, M., Akutsu, T., & Nacher, J. C. (2018). ncRNA-disease association prediction based on sequence information and tripartite network. BMC Systems Biology, 12(suppl 1), 37. https://doi.org/10.1186/s12918-018-0527-4

Murata, K., Yoshitomi, H., Tanida, S., Ishikawa, M., Nishitani, K., Ito, H., & Nakamura, T. (2010). Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Research and Therapy, 12(3), R86. https://doi.org/10.1186/ar3013

Mustonen, A. M., & Nieminen, P. (2021). Extracellular vesicles and their potential significance in the pathogenesis and treatment of osteoarthritis. Pharmaceuticals, 14(4), 1-14. https://doi.org/10.3390/ph14040315

Ni, J., Tien, A. L., & Fournier, M. J. (1997). Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell, 89(4), 565-573. https://doi.org/10.1016/S0092-8674(00)80238-X

Ni, W., Jiang, C., Wu, Y., Zhang, H., Wang, L., Yik, J. H. N., Haudenschild, D. R., Fan, S., Shen, S., & Hu, Z. (2021). CircSLC7A2 protects against osteoarthritis through inhibition of the miR-4498/TIMP3 axis. Cell Proliferation, 54(6), 1-17. https://doi.org/10.1111/cpr.13047

Nie, T., Zhang, C., Zhang, G., Fang, L., Liu, X., Cui, L., & Wang, J. (2021). LncRNA CALML3-AS1 regulates chondrocyte apoptosis by acting AS a sponge for miR-146a. Autoimmunity, 2021, 1-7. https://doi.org/10.1080/08916934.2021.1943663

Nishikura, K. (2010). Functions and regulation of RNA editing by ADAR deaminases. Annual Review of Biochemistry, 79(1), 321-349. https://doi.org/10.1146/annurev-biochem-060208-105251

Nourse, J., Spada, S., & Danckwardt, S. (2020). Emerging roles of RNA 3′-end cleavage and polyadenylation in pathogenesis, diagnosis and therapy of human disorders. Biomolecules, 10(6), 1-43. https://doi.org/10.3390/biom10060915

Ntoumou, E., Tzetis, M., Braoudaki, M., Lambrou, G., Poulou, M., Malizos, K., Stefanou, N., Anastasopoulou, L., & Tsezou, A. (2017). Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes. Clinical Epigenetics, 9(1), 1-15. https://doi.org/10.1186/s13148-017-0428-1

O'Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology, 9, 1-12. https://doi.org/10.3389/fendo.2018.00402

Okuhara, A., Nakasa, T., Shibuya, H., Niimoto, T., Adachi, N., Deie, M., & Ochi, M. (2012). Changes in microRNA expression in peripheral mononuclear cells according to the progression of osteoarthritis. Modern Rheumatology, 22(3), 446-457. https://doi.org/10.3109/s10165-011-0536-2

Parasramka, M. A., Maji, S., Matsuda, A., Yan, I. K., & Patel, T. (2016). Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacology & Therapeutics, 161, 67-78. https://doi.org/10.1016/j.pharmthera.2016.03.004

Park, J. K., Jang, Y. J., Oh, B. R., Shin, J., Bae, D., Ha, N., Choi, Y. I., Youn, G. S., Park, J., Lee, E. Y., Lee, E. B., & Song, Y. W. (2020). Therapeutic potential of CKD-506, a novel selective histone deacetylase 6 inhibitor, in a murine model of rheumatoid arthritis. Arthritis Research and Therapy, 22(1), 1-9. https://doi.org/10.1186/s13075-020-02258-0

Peffers, M. J., Caron, M. M., Cremers, A., Surtel, D. A., Fang, Y., Dyer, P., Balaskas, P., & Welting, T. J. (2018). snoRNA signatures in cartilage ageing and osteoarthritis. Osteoarthritis and Cartilage, 26, S164. https://doi.org/10.1016/j.joca.2018.02.357

Peng, L., Song, L., Liu, C., Lv, X., Li, X., Jie, J., Zhao, D., & Li, D. (2016). piR-55490 inhibits the growth of lung carcinoma by suppressing mTOR signaling. Tumor Biology, 37(2), 2749-2756. https://doi.org/10.1007/s13277-015-4056-0

Place, R. F., Li, L., Pookot, D., Noonan, E. J., & Dahiya, R. (2018). Correction: MicroRNA-373 induces expression of genes with complementary promoter sequences [Proc Natl Acad Sci USA (2008) 105 (1608-1613)]. Proceedings of the National Academy of Sciences of the United States of America, 115(14), E3325. https://doi.org/10.1073/pnas.0707594105,

https://doi.org/10.1073/pnas.1803343115

Pleštilová, L., Neidhart, M., Russo, G., Frank-Bertoncelj, M., Ospelt, C., Ciurea, A., Kolling, C., Gay, R. E., Michel, B. A., Vencovský, J., Gay, S., & Jüngel, A. (2016). Expression and regulation of PIWIL-proteins and PIWI-interacting RNAs in rheumatoid arthritis. PLoS One, 11(11), 1-14.

Qin, G. H., Yang, W. C., Yao, J. N., Zhao, Y., & Wu, X. J. (2021). LncRNA OIP5-AS1 affects the biological behaviors of chondrocytes of patients with osteoarthritis by regulating micro-30a-5p. European Review for Medical and Pharmacological Sciences, 25(3), 1215-1224. https://doi.org/10.26355/eurrev_202102_24825

Quicke, J. G., Conaghan, P. G., Corp, N., & Peat, G. (2022). Osteoarthritis year in review 2021: Epidemiology & therapy. Osteoarthritis and Cartilage, 30(2), 196-206. https://doi.org/10.1016/j.joca.2021.10.003

Quinlan, S., Kenny, A., Medina, M., Engel, T., & Jimenez-Mateos, E. M. (2018). microRNAs in neurodegenerative diseases. International Review Of Cell and Molecular Biology, 334, 309-343. https://doi.org/10.1016/bs.ircmb.2017.04.002

Quinn, J. J., & Chang, H. Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics, 17(1), 47-62. https://doi.org/10.1038/nrg.2015.10

Rai, M. F., Tycksen, E. D., Cai, L., Yu, J., Wright, R. W., & Brophy, R. H. (2019). Distinct degenerative phenotype of articular cartilage from knees with meniscus tear compared to knees with osteoarthritis. Osteoarthritis and Cartilage, 27(6), 945-955. https://doi.org/10.1016/j.joca.2019.02.792

Ratneswaran, A., & Kapoor, M. (2021). Osteoarthritis year in review: Genetics, genomics, epigenetics. Osteoarthritis and Cartilage, 29(2), 151-160. https://doi.org/10.1016/j.joca.2020.11.003

Rayford, K. J., Cooley, A., Rumph, J. T., Arun, A., Rachakonda, G., Villalta, F., Lima, M. F., Pratap, S., Misra, S., & Nde, P. N. (2021). Pirnas as modulators of disease pathogenesis. International Journal of Molecular Sciences, 22(5), 1-22. https://doi.org/10.3390/ijms22052373

Razmara, E., Bitaraf, A., Yousefi, H., Nguyen, T. H., Garshasbi, M., Cho, W. C. S., & Babashah, S. (2019). Non-coding RNAs in cartilage development: An updated review. International Journal of Molecular Sciences, 20(18), 4475. https://doi.org/10.3390/ijms20184475

Ripmeester, E. G., Caron, M. M., Balaskas, P., Dyer, P., Chabronova, A., van den Akker, G. G., Housmans, B. A., Smagul, A., Fang, Y., Cremers, A., Surtel, D. A., van Rhijn, L. W., Peffers, M. J., & Welting, T. J. (2020). Impaired chondrcoyte U3 SNORNA expression in osteoarthritis and its impact on the chondrocyte's protein translation apparatus. Osteoarthritis and Cartilage, 28(2020), S47. https://doi.org/10.1016/j.joca.2020.02.075

Robinson, W. H., Lepus, C. M., Wang, Q., Raghu, H., Mao, R., Lindstrom, T. M., Sokolove, J., Centers, C., Affairs, V., Alto, P., Care, H., & Alto, P. (2016). Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nature Reviews Rheumatology, 12(10), 580-592. https://doi.org/10.1038/nrrheum.2016.136.Low-grade

Rong, Y., Zhang, J., Jiang, D., Ji, C., liu, W., Wang, J., Ge, X., Tang, P., Yu, S., Cui, W., & Cai, W. (2021). Hypoxic pretreatment of small extracellular vesicles mediates cartilage repair in osteoarthritis by delivering miR-216a-5p. Acta Biomaterialia, 122, 325-342. https://doi.org/10.1016/j.actbio.2020.12.034

Rouget, C., Papin, C., Boureux, A., Meunier, A. C., Franco, B., Robine, N., Lai, E. C., Pelisson, A., & Simonelig, M. (2010). Maternal mRNA deadenylation and decay by the piRNA pathway in the early drosophila embryo. Nature, 467(7319), 1128-1132. https://doi.org/10.1038/nature09465

Ruby, J. G., Jan, C. H., & Bartel, D. P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature, 448(7149), 83-86. https://doi.org/10.1038/nature05983

Saferding, V., Puchner, A., Goncalves-Alves, E., Hofmann, M., Bonelli, M., Brunner, J. S., Sahin, E., Niederreiter, B., Hayer, S., Kiener, H. P., Einwallner, E., Nehmar, R., Carapito, R., Georgel, P., Koenders, M. I., Boldin, M., Schabbauer, G., Kurowska-Stolarska, M., Steiner, G., … Blüml, S. (2017). MicroRNA-146a governs fibroblast activation and joint pathology in arthritis. Journal of Autoimmunity, 82, 74-84. https://doi.org/10.1016/j.jaut.2017.05.006

Salzman, J., Gawad, C., Wang, P. L., Lacayo, N., & Brown, P. O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 7(2), e30733. https://doi.org/10.1371/journal.pone.0030733

Santini, P., Politi, L., Vedova, P. D., Scandurra, R., & Scotto D'Abusco, A. (2014). The inflammatory circuitry of miR-149 as a pathological mechanism in osteoarthritis. Rheumatology International, 34(5), 711-716. https://doi.org/10.1007/s00296-013-2754-8

Schmerer, N., & Schulte, L. N. (2021). Long noncoding RNAs in bacterial infection. Wiley Interdisciplinary Reviews: RNA, 12(6), 1-21. https://doi.org/10.1002/wrna.1664

Schmitz, S. U., Grote, P., & Herrmann, B. G. (2016). Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences, 73(13), 2491-2509. https://doi.org/10.1007/s00018-016-2174-5

Setten, R. L., Rossi, J. J., & Han, S. P. (2019). The current state and future directions of RNAi-based therapeutics. Nature Reviews Drug Discovery, 18(6), 421-446. https://doi.org/10.1038/s41573-019-0017-4

Shuwen, H., Xi, Y., Quan, Q., Yin, J., & Miao, D. (2020). Can small nucleolar RNA be a novel molecular target for hepatocellular carcinoma? Gene, 733, 144384. https://doi.org/10.1016/j.gene.2020.144384

Si, Z., Zhou, S., Shen, Z., Luan, F., & Yan, J. (2021). lncRNA HAND2-AS1 is downregulated in osteoarthritis and regulates IL-6 expression in chondrocytes. Journal of Orthopaedic Surgery and Research, 16(1), 1-8. https://doi.org/10.1186/s13018-021-02216-9

Sondag, G. R., & Haqqi, T. M. (2016). The role of microRNAs and their targets in osteoarthritis. Current Rheumatology Reports, 18(8), 56. https://doi.org/10.1007/s11926-016-0604-x

Steck, E., Boeuf, S., Gabler, J., Werth, N., Schnatzer, P., Diederichs, S., & Richter, W. (2012). Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. Journal of Molecular Medicine, 90(10), 1185-1195. https://doi.org/10.1007/s00109-012-0895-y

Stein, E. V., Duewer, D. L., Farkas, N., Romsos, E. L., Wang, L., & Cole, D. (2017). Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR. PLoS One, 12, 1-26.

Steinbusch, M. M. F., Fang, Y., Milner, P. I., Clegg, P. D., Young, D. A., Welting, T. J. M., & Peffers, M. J. (2017). Serum snoRNAs as biomarkers for joint ageing and post traumatic osteoarthritis. Scientific Reports, 7, 1-11. https://doi.org/10.1038/srep43558

Su, L. C., Huang, A. F., Jia, H., Liu, Y., & Xu, W. D. (2017). Role of microRNA-155 in rheumatoid arthritis. International Journal of Rheumatic Diseases, 20(11), 1631-1637. https://doi.org/10.1111/1756-185X.13202

Su, W., Xie, W., Shang, Q., & Su, B. (2015). The long noncoding RNA MEG3 is downregulated and inversely associated with vegf levels in osteoarthritis. BioMed Research International, 2015, 1-5. https://doi.org/10.1155/2015/356893

Sugimoto, K., Kage, H., Aki, N., Sano, A., Kitagawa, H., Nagase, T., Yatomi, Y., Ohishi, N., & Takai, D. (2007). The induction of H3K9 methylation by PIWIL4 at the p16Ink4a locus. Biochemical and Biophysical Research Communications, 359(3), 497-502. https://doi.org/10.1016/j.bbrc.2007.05.136

Sun, M., Yang, J., Jiang, D., & Bao, G. (2021). Overexpression of hsa_circ_0094742 inhibits il-1β-induced decline in chon-001 cell viability by targeting microrna-127-5p. Histology and Histopathology, 36(2), 207-216. https://doi.org/10.14670/HH-18-325

Swingler, T. E., Wheeler, G., Carmont, V., Elliott, H. R., Barter, M. J., Abu-elmagd, M., Donell, S. T., Boot-handford, R. P., Hajihosseini, M. K., Mu, A., Dalmay, T., Young, D. A., & Clark, I. M. (2012). The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis & Rheumatism, 64(6), 1909-1919. https://doi.org/10.1002/art.34314

Tao, S. C., Yuan, T., Zhang, Y. L., Yin, W. J., Guo, S. C., & Zhang, C. Q. (2017). Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 7(1), 180-195. https://doi.org/10.7150/thno.17133

Tardif, G., Hum, D., Pelletier, J. P., Duval, N., & Martel-Pelletier, J. (2009). Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskeletal Disorders, 10(1), 1-11. https://doi.org/10.1186/1471-2474-10-148

Tazi, J., Begon-Pescia, C., Campos, N., Apolit, C., Garcel, A., & Scherrer, D. (2021). Specific and selective induction of miR-124 in immune cells by the quinoline ABX464: A transformative therapy for inflammatory diseases. Drug Discovery Today, 26(4), 1030-1039. https://doi.org/10.1016/j.drudis.2020.12.019

Tollervey, D., & Kiss, T. (1997). Function and synthesis of small nucleolar RNAs. Current Opinion in Cell Biology, 9(3), 337-342. https://doi.org/10.1016/S0955-0674(97)80005-1

van den Bosch, M. H. J. (2021). Osteoarthritis year in review 2020: Biology. Osteoarthritis and Cartilage, 29(2), 143-150. https://doi.org/10.1016/j.joca.2020.10.006

Vasudevan, S., & Steitz, J. A. (2007). AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell, 2, 1105-1118. https://doi.org/10.1016/j.cell.2007.01.038

Vishnoi, A., & Rani, S. (2016). miRNA biogenesis and regulation of diseases: An overview. microRNA Profiling, 1-10. https://doi.org/10.1007/978-1-4939-6524-3_1

Wang, B., Sun, Y., Liu, N., & Liu, H. (2021). LncRNA HOTAIR modulates chondrocyte apoptosis and inflammation in osteoarthritis via regulating miR-1277-5p/SGTB axis. Wound Repair and Regeneration, 29(3), 495-504. https://doi.org/10.1111/wrr.12908

Wang, B., Li, J., & Tian, F. (2021). Downregulation of lncRNA SNHG14 attenuates osteoarthritis by inhibiting FSTL-1 mediated NLRP3 and TLR4/NF-κB pathway through miR-124-3p. Life Sciences, 270(36), 119143. https://doi.org/10.1016/j.lfs.2021.119143

Wang, C., Li, N., Liu, Q., Su, L., Wang, S., Chen, Y., Liu, M., & Lin, H. (2021). The role of circRNA derived from RUNX2 in the serum of osteoarthritis and its clinical value. Journal of Clinical Laboratory Analysis, 2021, 1-9. https://doi.org/10.1002/jcla.23858

Wang, H., Zhang, H., Sun, Q., Wang, Y., Yang, J., Yang, J., Zhang, T., Luo, S., Wang, L., Jiang, Y., Zeng, C., Cai, D., & Bai, X. (2017). Intra-articular delivery of Antago-miR-483-5p inhibits osteoarthritis by modulating Matrilin 3 and tissue inhibitor of metalloproteinase 2. Molecular Therapy, 25(3), 715-727. https://doi.org/10.1016/j.ymthe.2016.12.020

Wang, H., Tan, Z., Hu, H., Liu, H., Wu, T., Zheng, C., Wang, X., Luo, Z., Wang, J., Liu, S., Lu, Z., & Tu, J. (2019). MicroRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer, 19(1), 1-13. https://doi.org/10.1186/s12885-019-5951-3

Wang, L., Wu, F., Song, Y., Li, X., Wu, Q., Duan, Y., & Jin, Z. (2016). Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients. Cell Death and Disease, 7(8), 1-12. https://doi.org/10.1038/cddis.2016.125

Wang, R., Jiang, W., Zhang, L., Xie, S., Zhang, S., Yuan, S., Jin, Y., & Zhou, G. (2020). Intra-articular delivery of extracellular vesicles secreted by chondrogenic progenitor cells from MRL/MpJ superhealer mice enhances articular cartilage repair in a mouse injury model. Stem Cell Research and Therapy, 11(1), 1-14. https://doi.org/10.1186/s13287-020-01594-x

Wang, W., Min, L., Qiu, X., Wu, X., Liu, C., Ma, J., Zhang, D., & Zhu, L. (2021). Biological function of Long non-coding RNA (LncRNA) Xist. Frontiers in Cell and Developmental Biology, 9, 1-27. https://doi.org/10.3389/fcell.2021.645647

Wang, X., Sun, W., Shen, W., Xia, M., Chen, C., Xiang, D., Ning, B., Cui, X., Li, H., Li, X., Ding, J., & Wang, H. (2016). Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. Journal of Hepatology, 64(6), 1283-1294. https://doi.org/10.1016/j.jhep.2016.01.019

Wang, X. B., Zhao, F. C., Yi, L. H., Tang, J. L., Zhu, Z. Y., Pang, Y., Chen, Y. S., Li, D. Y., Guo, K. J., & Zheng, X. (2019). microRNA-21-5p as a novel therapeutic target for osteoarthritis. Rheumatology, 58(8), 1485-1497. https://doi.org/10.1093/rheumatology/kez102

Wang, Y., Wu, C., Yang, Y., Ren, Z., Lammi, M. J., & Guo, X. (2019). Preliminary exploration of hsa-circ-0032131 levels in peripheral blood as a potential diagnostic biomarker of osteoarthritis. Genetic Testing and Molecular Biomarkers, 23(10), 717-721. https://doi.org/10.1089/gtmb.2019.0036

Watt, F. E. (2018). Osteoarthritis biomarkers: Year in review. Osteoarthritis and Cartilage, 26(3), 312-318. https://doi.org/10.1016/j.joca.2017.10.016

Weigl, M., Kocijan, R., Ferguson, J., Leinfellner, G., Heimel, P., Feichtinger, X., Pietschmann, P., Grillari, J., Zwerina, J., Redl, H., & Hackl, M. (2021). Longitudinal changes of circulating miRNAs during bisphosphonate and Teriparatide treatment in an animal model of postmenopausal osteoporosis. Journal of Bone and Mineral Research, 36(6), 1131-1144. https://doi.org/10.1002/jbmr.4276

Weng, W., Liu, N., Toiyama, Y., Kusunoki, M., Nagasaka, T., Fujiwara, T., Wei, Q., Qin, H., Lin, H., Ma, Y., & Goel, A. (2018). Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer. Molecular Cancer, 17(1), 1-12. https://doi.org/10.1186/s12943-018-0767-3

Wiggins, J. F., Ruffino, L., Kelnar, K., Omotola, M., Patrawala, L., Brown, D., & Bader, A. G. (2010). Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Research, 70(14), 5923-5930. https://doi.org/10.1158/0008-5472.CAN-10-0655

Williams, G. T., & Farzaneh, F. (2012). Are snoRNAs and snoRNA host genes new players in cancer? Nature Reviews Cancer, 12(2), 84-88. https://doi.org/10.1038/nrc3195

Wilusz, J. E. (2018). A 360° view of circular RNAs: From biogenesis to functions. WIREs RNA, 9(4), 139-148. https://doi.org/10.1002/wrna.1478

Wu, P.-H., Fu, Y., Cecchini, K., Özata, D. M., Arif, A., Yu, T., Colpan, C., Gainetdinov, I., Weng, Z., & Zamore, P. D. (2020). The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nature Genetics, 52(7), 728-739. https://doi.org/10.1038/s41588-020-0657-7

Xi, P., Zhang, C. l., Wu, S. Y., Liu, L., Li, W. J., & Li, Y. M. (2021). CircRNA circ-IQGAP1 knockdown alleviates interleukin-1β-induced osteoarthritis progression via targeting miR-671-5p/TCF4. Orthopaedic Surgery, 13(3), 1036-1046. https://doi.org/10.1111/os.12923

Xiang, Y., Li, Y., Yang, L., He, Y., Jia, D., & Hu, X. (2020). MiR-142-5p as a CXCR4-targeted microRNA attenuates SDF-1-induced chondrocyte apoptosis and cartilage degradation via inactivating MAPK signaling pathway. Biochemistry Research International, 2020, 1-14. https://doi.org/10.1155/2020/4508108

Xiao, K., Yang, Y., Bian, Y., Feng, B., Li, Z., Wu, Z., Qiu, G., & Weng, X. (2019). Identification of differentially expressed long noncoding RNAs in human knee osteoarthritis. Journal of Cellular Biochemistry, 120(3), 4620-4633. https://doi.org/10.1002/jcb.27750

Xiao, M., Li, J., Li, W., Wang, Y., Wu, F., Xi, Y., Zhang, L., Ding, C., Luo, H., Li, Y., Peng, L., Zhao, L., Peng, S., Xiao, Y., Dong, S., Cao, J., & Yu, W. (2017). microRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biology, 14(10), 1326-1334. https://doi.org/10.1080/15476286.2015.1112487

Xu, J., & Ma, X. (2021). Hsa_circ_0032131 knockdown inhibits osteoarthritis progression via the miR-502-5p/PRDX3 axis. Aging, 13(11), 15100-15113. https://doi.org/10.18632/aging.203073

Yang, S., Maurin, T., Robine, N., Rasmussen, K. D., Jeffrey, K. L., Chandwani, R., Papapetrou, E. P., Sadelain, M., O'Carroll, D., & Lai, E. C. (2010). Conserved vertebrate mir-451 provides a platform for dicer-independent, Ago2-mediated microRNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(34), 15163-15168. https://doi.org/10.1073/pnas.1006432107

Yao, J., Wang, Y. W., Fang, B. B., Zhang, S. J., & Cheng, B. L. (2016). piR-651 and its function in 95-D lung cancer cells. Biomedical Reports, 4(5), 546-550. https://doi.org/10.3892/br.2016.628

Yao, T., Yang, Y., Xie, Z., Xu, Y., Huang, Y., Gao, J., Shen, S., Ye, H., Iranmanesh, Y., Fan, S., & Ma, J. (2021). Circ0083429 regulates osteoarthritis progression via the Mir-346/SMAD3 Axis. Frontiers in Cell and Developmental Biology, 8, 1-16. https://doi.org/10.3389/fcell.2020.579945

Ye, D., Shen, Z., & Zhou, S. (2019). Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment. Cancer Management and Research, 11, 969-979. https://doi.org/10.2147/CMAR.S191696

Yoda, M., Kawamata, T., Paroo, Z., Ye, X., Iwasaki, S., Liu, Q., & Tomari, Y. (2010). ATP-dependent human RISC assembly pathways. Nature Structural & Molecular Biology, 17(1), 17-23. https://doi.org/10.1038/nsmb.1733.ATP-dependent

Yoon, J. H., Abdelmohsen, K., & Gorospe, M. (2014). Functional interactions among microRNAs and long noncoding RNAs. Seminars in Cell and Developmental Biology, 34, 9-14. https://doi.org/10.1016/j.semcdb.2014.05.015

Yu, D., Wei, W., Hefeng, Y., Weihao, L., Qianqian, Q., & Song, L. (2021). Upregulated ox40l can be inhibited by miR-146a-5p in condylar chondrocytes induced by IL-1β and TNF-α: A possible regulatory mechanism in osteoarthritis. International Archives of Allergy and Immunology, 182(5), 408-416. https://doi.org/10.1159/000512291

Zhang, D., Cao, X., Li, J., & Zhao, G. (2015). MiR-210 inhibits NF-ΰ B signaling pathway by targeting DR6 in osteoarthritis. Scientific Reports, 5, 1-7. https://doi.org/10.1038/srep12775

Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E., & Filipowicz, W. (2004). Single processing center models for human dicer and bacterial RNase III. Cell, 118(1), 57-68. https://doi.org/10.1016/j.cell.2004.06.017

Zhang, J., Hao, X., Yin, M., Xu, T., & Guo, F. (2019). Long non-coding RNA in osteogenesis. Bone and Joint Research, 8(2), 73-80. https://doi.org/10.1302/2046-3758.82.BJR-2018-0074.R1

Zhang, L., Yang, M., Marks, P., White, L. M., Hurtig, M., Mi, Q. S., Divine, G., & Gibson, G. (2012). Serum non-coding RNAs as biomarkers for osteoarthritis progression after ACL injury. Osteoarthritis and Cartilage, 20(12), 1631-1637. https://doi.org/10.1016/j.joca.2012.08.016

Zhang, L., Sui, C., Zhang, Y., Wang, G., & Yin, Z. (2021). Knockdown of hsa_circ_0134111 alleviates the symptom of osteoarthritis via sponging microRNA-224-5p. Cell Cycle, 20(11), 1052-1066. https://doi.org/10.1080/15384101.2021.1919838

Zhang, L., Qiu, J., Shi, J., Liu, S., & Zou, H. (2021). MicroRNA-140-5p represses chondrocyte pyroptosis and relieves cartilage injury in osteoarthritis by inhibiting cathepsin B/nod-like receptor protein 3. Bioengineered, 12(2), 9949-9964. https://doi.org/10.1080/21655979.2021.1985342

Zhang, L., Yang, C., Chen, S., Wang, G., Shi, B., Tao, X., Zhou, L., & Zhao, J. (2017). Long noncoding RNA DANCR is a positive regulator of proliferation and chondrogenic differentiation in human synovium-derived stem cells. DNA and Cell Biology, 36(2), 136-142. https://doi.org/10.1089/dna.2016.3544

Zhang, Q., Qiao, X., & Xia, W. (2020). CircSERPINE2 weakens IL-1β-caused apoptosis and extracellular matrix degradation of chondrocytes by regulating miR-495/TGFBR2 axis. Bioscience Reports, 40(11), 1-12. https://doi.org/10.1042/BSR20201601

Zhang, W., Hu, C., Zhang, C., Luo, C., Zhong, B., & Yu, X. (2021). MiRNA-132 regulates the development of osteoarthritis in correlation with the modulation of PTEN/PI3K/AKT signaling. BMC Geriatrics, 21(1), 1-10. https://doi.org/10.1186/s12877-021-02046-8

Zhang, Y., & Jordan, J. M. (2008). Epidemiology of osteoarthritis. Rheumatic Disease Clinics of North America, 34(3), 515-529. https://doi.org/10.1016/j.rdc.2008.05.007

Zhang, Z., Yang, T., & Xiao, J. (2018). Circular RNAs: Promising biomarkers for human diseases. eBioMedicine, 34, 267-274. https://doi.org/10.1016/j.ebiom.2018.07.036

Zhao, M., Hou, Y., Du, Y. E., Yang, L., Qin, Y., Peng, M., Liu, S., Wan, X., Qiao, Y., Zeng, H., Cui, X., Teng, Y., & Liu, M. (2020). Drosha-independent miR-6778-5p strengthens gastric cancer stem cell stemness via regulation of cytosolic one-carbon folate metabolism. Cancer Letters, 478, 8-21. https://doi.org/10.1016/j.canlet.2020.02.040

Zhou, C., He, T., & Chen, L. (2021). LncRNA CASC19 accelerates chondrocytes apoptosis and proinflammatory cytokine production to exacerbate osteoarthritis development through regulating the miR-152-3p/DDX6 axis. Journal of Orthopaedic Surgery and Research, 16(1), 1-9. https://doi.org/10.1186/s13018-021-02543-x

Zhou, F., Wang, W., Xing, Y., Wang, T., Xu, X., & Wang, J. (2014). NF-κB target microRNAs and their target genes in TNFα-stimulated HeLa cells. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1839(4), 344-354. https://doi.org/10.1016/j.bbagrm.2014.01.006

Zhou, J. L., Deng, S., Fang, H. S., Du, X. J., Peng, H., & Hu, Q. J. (2020). Circular RNA circANKRD36 regulates Casz1 by targeting miR-599 to prevent osteoarthritis chondrocyte apoptosis and inflammation. Journal of Cellular and Molecular Medicine, 25, 1-12. https://doi.org/10.1111/jcmm.15884

Zhou, J. L., Deng, S., Fang, H. S., Du, X. J., Peng, H., & Hu, Q. J. (2021). Circular RNA circANKRD36 regulates Casz1 by targeting miR-599 to prevent osteoarthritis chondrocyte apoptosis and inflammation. Journal of Cellular and Molecular Medicine, 25(1), 120-131. https://doi.org/10.1111/jcmm.15884

Zhou, Z., Sun, B., Huang, S., & Zhao, L. (2019). Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death and Disease, 10(7), 503. https://doi.org/10.1038/s41419-019-1744-5

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...