Beneficial Effect of Fenofibrate and Silymarin on Hepatic Steatosis and Gene Expression of Lipogenic and Cytochrome P450 Enzymes in Non-Obese Hereditary Hypertriglyceridemic Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_LF_2022_006
Palacký University, Olomouc
IN 00023001
Institute of Clinical and Experimental Medicine
PubMed
35678658
PubMed Central
PMC9164080
DOI
10.3390/cimb44050129
PII: cimb44050129
Knihovny.cz E-zdroje
- Klíčová slova
- CYP 2E1, CYP 4A1, NAFLD, fenofibrate, lipoperoxidation, liver, silymarin, triglycerides,
- Publikační typ
- časopisecké články MeSH
The efficacy of fenofibrate in the treatment of hepatic steatosis has not been clearly demonstrated. In this study, we investigated the effects of fenofibrate and silymarin, administered as monotherapy and in combination to existing hepatic steatosis in a unique strain of hereditary hypertriglyceridemic rats (HHTg), a non-obese model of metabolic syndrome. HHTg rats were fed a standard diet without or with fenofibrate (100 mg/kg b.wt./day) or with silymarin (1%) or with a combination of fenofibrate with silymarin for four weeks. Fenofibrate alone and in combination with silymarin decreased serum and liver triglycerides and cholesterol and increased HDL cholesterol. These effects were associated with the decreased gene expression of enzymes involved in lipid synthesis and transport, while enzymes of lipid conversion were upregulated. The combination treatment had a beneficial effect on the gene expression of hepatic cytochrome P450 (CYP) enzymes. The expression of the CYP2E1 enzyme, which is source of hepatic reactive oxygen species, was reduced. In addition, fenofibrate-induced increased CYP4A1 expression was decreased, suggesting a reduction in the pro-inflammatory effects of fenofibrate. These results show high efficacy and mechanisms of action of the combination of fenofibrate with silymarin in treating hepatic steatosis and indicate the possibility of protection against disorders in which oxidative stress and inflammation are involved.
Zobrazit více v PubMed
Byrne C.D., Targher G. NAFLD: A Multisystem Disease. J. Hepatol. 2015;62:S47–S64. doi: 10.1016/j.jhep.2014.12.012. PubMed DOI
Smits M.M., Ioannou G.N., Boyko E.J., Utzschneider K.M. Non-Alcoholic Fatty Liver Disease as an Independent Manifestation of the Metabolic Syndrome: Results of a US National Survey in Three Ethnic Groups. J. Gastroenterol. Hepatol. 2013;28:664–670. doi: 10.1111/jgh.12106. PubMed DOI
Geisler C.E., Renquist B.J. Hepatic Lipid Accumulation: Cause and Consequence of Dysregulated Glucoregulatory Hormones. J. Endocrinol. 2017;234:R1–R21. doi: 10.1530/JOE-16-0513. PubMed DOI
Lefebvre P., Chinetti G., Fruchart J.C., Staels B. Sorting out the Roles of PPARα in Energy Metabolism and Vascular Homeostasis. J. Clin. Investig. 2006;116:571–580. doi: 10.1172/JCI27989. PubMed DOI PMC
McCullough P.A., Ahmed A.B., Zughaib M.T., Glanz E.D., di Loreto M.J. Treatment of Hypertriglyceridemia with Fibric Acid Derivatives: Impact on Lipid Subfractions and Translation into a Reduction in Cardiovascular Events. Rev. Cardiovasc. Med. 2011;12:173–185. doi: 10.3909/ricm0619. PubMed DOI
Bajaj M., Suraamornkul S., Hardies L.J., Glass L., Musi N., DeFronzo R.A. Effects of Peroxisome Proliferator-Activated Receptor (PPAR)-α and PPAR-γ Agonists on Glucose and Lipid Metabolism in Patients with Type 2 Diabetes Mellitus. Diabetologia. 2007;50:1723–1731. doi: 10.1007/s00125-007-0698-9. PubMed DOI
Fernández-Miranda C., Pérez-Carreras M., Colina F., López-Alonso G., Vargas C., Solís-Herruzo J.A. A Pilot Trial of Fenofibrate for the Treatment of Non-Alcoholic Fatty Liver Disease. Dig. Liver Dis. 2008;40:200–205. doi: 10.1016/j.dld.2007.10.002. PubMed DOI
Fabbrini E., Mohammed B.S., Korenblat K.M., Magkos F., McCrea J., Patterson B.W., Klein S. Effect of Fenofibrate and Niacin on Intrahepatic Triglyceride Content, Very Low-Density Lipoprotein Kinetics, and Insulin Action in Obese Subjects with Nonalcoholic Fatty Liver Disease. J. Clin. Endocrinol. Metab. 2010;95:2727–2735. doi: 10.1210/jc.2009-2622. PubMed DOI PMC
Oscarsson J., Önnerhag K., Risérus U., Sundén M., Johansson L., Jansson P.A., Moris L., Nilsson P.M., Eriksson J.W., Lind L. Effects of Free Omega-3 Carboxylic Acids and Fenofibrate on Liver Fat Content in Patients with Hypertriglyceridemia and Non-Alcoholic Fatty Liver Disease: A Double-Blind, Randomized, Placebo-Controlled Study. J. Clin. Lipidol. 2018;12:1390–1403. doi: 10.1016/j.jacl.2018.08.003. PubMed DOI
Tailleux A., Wouters K., Staels B. Roles of PPARs in NAFLD: Potential Therapeutic Targets. Biochim. Biophys. Acta. 2012;1821:809–818. doi: 10.1016/j.bbalip.2011.10.016. PubMed DOI
Waterman I.J., Zammit V.A. Differential Effects of Fenofibrate or Simvastatin Treatment of Rats on Hepatic Microsomal Overt and Latent Diacylglycerol Acyltransferase Activities. Diabetes. 2002;51:1708–1713. doi: 10.2337/diabetes.51.6.1708. PubMed DOI
Edvardsson U., Ljungberg A., Lindén D., William-Olsson L., Peilot-Sjögren H., Ahnmark A., Oscarsson J. PPARα Activation Increases Triglyceride Mass and Adipose Differentiation-Related Protein in Hepatocytes. J. Lipid Res. 2006;47:329–340. doi: 10.1194/jlr.M500203-JLR200. PubMed DOI
Yan F., Wang Q., Xu C., Cao M., Zhou X., Wang T., Yu C., Jing F., Chen W., Gao L., et al. Peroxisome Proliferator-Activated Receptor α Activation Induces Hepatic Steatosis, Suggesting an Adverse Effect. PLoS ONE. 2014;9:e99245. doi: 10.1371/journal.pone.0099245. PubMed DOI PMC
Ahmad J., Odin J.A., Hayashi P.H., Chalasani N., Fontana R.J., Barnhart H., Cirulli E.T., Kleiner D.E., Hoofnagle J.H. Identification and Characterization of Fenofibrate-Induced Liver Injury. Dig. Dis. Sci. 2017;62:3596–3604. doi: 10.1007/s10620-017-4812-7. PubMed DOI PMC
Škop V., Trnovská J., Oliyarnyk O., Marková I., Malínská H., Kazdová L., Zídek V., Landa V., Mlejnek P., Šimáková M., et al. Hepatotoxic Effects of Fenofibrate in Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein. Physiol. Res. 2016;65:891–899. doi: 10.33549/physiolres.933304. PubMed DOI
Vargas-Mendoza N., Madrigal-Santillán E., Morales-González A., Esquivel-Soto J., Esquivel-Chirino C., García-Luna Y., González-Rubio M., Gayosso-de-Lucio J.A., Morales-González J.A. Hepatoprotective Effect of Silymarin. World J. Hepatol. 2014;6:144–149. doi: 10.4254/wjh.v6.i3.144. PubMed DOI PMC
Gillessen A., Schmidt H.H.J. Silymarin as Supportive Treatment in Liver Diseases: A Narrative Review. Adv. Ther. 2020;37:1279–1301. doi: 10.1007/s12325-020-01251-y. PubMed DOI PMC
Škottová N., Kazdová L., Oliyarnyk O., Večeřa R., Sobolová L., Ulrichová J. Phenolics-Rich Extracts from Silybum Marianum and Prunella Vulgaris Reduce a High-Sucrose Diet Induced Oxidative Stress in Hereditary Hypertriglyceridemic Rats. Pharm. Res. 2004;50:123–130. doi: 10.1016/j.phrs.2003.12.013. PubMed DOI
Poruba M., Kazdová L., Oliyarnyk O., Malinská H., Matusková Z., Tozzi Di Angelo I., Skop V., Vecera R. Improvement Bioavailability of Silymarin Ameliorates Severe Dyslipidemia Associated with Metabolic Syndrome. Xenobiotica. 2015;45:751–756. doi: 10.3109/00498254.2015.1010633. PubMed DOI
Ebrahimpour-koujan S., Gargari B.P., Mobasseri M., Valizadeh H., Asghari-Jafarabadi M. Lower Glycemic Indices and Lipid Profile among Type 2 Diabetes Mellitus Patients Who Received Novel Dose of Silybum Marianum (L.) Gaertn. (Silymarin) Extract Supplement: A Triple-Blinded Randomized Controlled Clinical Trial. Phytomedicine. 2018;44:39–44. doi: 10.1016/j.phymed.2018.03.050. PubMed DOI
Mohammadi H., Hadi A., Arab A., Moradi S., Rouhani M.H. Effects of Silymarin Supplementation on Blood Lipids: A Systematic Review and Meta-Analysis of Clinical Trials. Phytother. Res. 2019;33:871–880. doi: 10.1002/ptr.6287. PubMed DOI
di Pierro F., Callegari A., Carotenuto D., Tapia M. Clinical Efficacy, Safety and Tolerability of BIO-C (Micronized Silymarin) as a Galactagogue. Acta Biomed. 2009;79:205–210. PubMed
Poruba M., Matušková Z., Kazdová L., Oliyarnyk O., Malínská H., Tozzi I., Angelo D.I., Večeřa R. Positive Effects of Different Drug Forms of Silybin in the Treatment of Metabolic Syndrome. Physiol. Res. 2015;64:507–512. doi: 10.33549/physiolres.933235. PubMed DOI
Vrána A., Kazdová L. The Hereditary Hypertriglyceridemic Nonobese Rat: An Experimental Model of Human Hypertriglyceridemia. Transpl. Proc. 1990;22:2579. PubMed
Zicha J., Pecháňová O., Čačányiová S., Cebová M., Kristek F., Török J., Šimko F., Dobešová Z., Kuneš J. Hereditary Hypertriglyceridemic Rat: A Suitable Model of Cardiovascular Disease and Metabolic Syndrome? Physiol. Res. 2006;55:49–63. PubMed
Škop V.C., Malínská H., Trnovská J., Hüttl M., Cahová M., Blachnio-Zabielska A., Baranowski M., Burian M., Oliyarnyk O., Kazdová L. Positive Effects of Voluntary Running on Metabolic Syndrome-Related Disorders in Non-Obese Hereditary Hypertriacylglycerolemic Rats. PLoS ONE. 2015;10:e0122768. doi: 10.1371/journal.pone.0122768. PubMed DOI PMC
Ye Q., Zou B., Yeo Y.H., Li J., Huang D.Q., Wu Y., Yang H., Liu C., Kam L.Y., Tan X.X.E., et al. Global Prevalence, Incidence, and Outcomes of Non-Obese or Lean Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2020;5:739–752. doi: 10.1016/S2468-1253(20)30077-7. PubMed DOI
Ibarra-Lara L., Sánchez-Aguilar M., Sánchez-Mendoza A., del Valle-Mondragón L., Soria-Castro E., Carreón-Torres E., Díaz-Díaz E., Vázquez-Meza H., Guarner-Lans V., Rubio-Ruiz M.E. Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II. Molecules. 2016;22:31. doi: 10.3390/molecules22010031. PubMed DOI PMC
Goel S.K., Lalwani N.D., Reddy J.K. Peroxisome Proliferation and Lipid Peroxidation in Rat Liver. Cancer Res. 1986;46:1324–1330. PubMed
Poruba M., Matuskova Z., Hüttl M., Malinska H., Oliyarnyk O., Markova I., Gurska S., Kazdova L., Vecera R. Fenofibrate Decreases Hepatic P-Glycoprotein in a Rat Model of Hereditary Hypertriglyceridemia. Front. Pharm. 2019;10:56. doi: 10.3389/fphar.2019.00056. PubMed DOI PMC
Yu X.H., Zheng X.L., Tang C.K. Peroxisome Proliferator-Activated Receptor α in Lipid Metabolism and Atherosclerosis. Adv. Clin. Chem. 2015;71:171–203. PubMed
Montagner A., Polizzi A., Fouché E., Ducheix S., Lippi Y., Lasserre F., Barquissau V., Régnier M., Lukowicz C., Benhamed F., et al. Liver PPARα Is Crucial for Whole-Body Fatty Acid Homeostasis and Is Protective against NAFLD. Gut. 2016;65:1202–1214. doi: 10.1136/gutjnl-2015-310798. PubMed DOI PMC
Piccinin E., Cariello M., de Santis S., Ducheix S., Sabbà C., Ntambi J.M., Moschetta A. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1) Nutrients. 2019;11:2283. doi: 10.3390/nu11102283. PubMed DOI PMC
Oosterveer M.H., Grefhorst A., van Dijk T.H., Havinga R., Staels B., Kuipers F., Groen A.K., Reijngoud D.J. Fenofibrate Simultaneously Induces Hepatic Fatty Acid Oxidation, Synthesis, and Elongation in Mice. J. Biol. Chem. 2009;284:34036–34044. doi: 10.1074/jbc.M109.051052. PubMed DOI PMC
Kersten S. Physiological Regulation of Lipoprotein Lipase. Biochim. Biophys. Acta. 2014;1841:919–933. doi: 10.1016/j.bbalip.2014.03.013. PubMed DOI
Jensen-Urstad A.P.L., Semenkovich C.F. Fatty Acid Synthase and Liver Triglyceride Metabolism: Housekeeper or Messenger? Biochim. Biophys. Acta. 2012;1821:747–753. doi: 10.1016/j.bbalip.2011.09.017. PubMed DOI PMC
Foucaud-Vignault M., Soayfane Z., Ménez C., Bertrand-Michel J., Martin P.G.P., Guillou H., Collet X., Lespine A. P-Glycoprotein Dysfunction Contributes to Hepatic Steatosis and Obesity in Mice. PLoS ONE. 2011;6:e23614. doi: 10.1371/journal.pone.0023614. PubMed DOI PMC
Ehrhardt M., Lindenmaier H., Burhenne J., Haefeli W.E., Weiss J. Influence of Lipid Lowering Fibrates on P-Glycoprotein Activity in Vitro. Biochem. Pharm. 2004;67:285–292. doi: 10.1016/j.bcp.2003.09.008. PubMed DOI
Russell D.W. The Enzymes, Regulation, and Genetics of Bile Acid Synthesis. Annu. Rev. Biochem. 2003;72:137–174. doi: 10.1146/annurev.biochem.72.121801.161712. PubMed DOI
Roglans N., Vázquez-Carrera M., Alegret M., Novell F., Zambón D., Ros E., Laguna J.C., Sánchez R.M. Fibrates Modify the Expression of Key Factors Involved in Bile-Acid Synthesis and Biliary-Lipid Secretion in Gallstone Patients. Eur. J. Clin. Pharm. 2003;59:855–861. PubMed
Shen J., Arnett D.K., Parnell L.D., Lai C.Q., Straka R.J., Hopkins P.N., An P., Feitosa M.F., Ordovás J.M. The Effect of CYP7A1 Polymorphisms on Lipid Responses to Fenofibrate. J. Cardiovasc. Pharm. 2012;59:254–259. doi: 10.1097/FJC.0b013e31823de86b. PubMed DOI PMC
Srivastava R.A.K., Cefalu A.B., Srivastava N.S., Averna M. NPC1L1 and ABCG5/8 Induction Explain Synergistic Fecal Cholesterol Excretion in Ob/Ob Mice Co-Treated with PPAR-α and LXR Agonists. Mol. Cell. Biochem. 2020;473:247–262. doi: 10.1007/s11010-020-03826-3. PubMed DOI
Ståhlberg D., Reihnér E., Ewerth S., Einarsson K., Angelin B. Effects of Bezafibrate on Hepatic Cholesterol Metabolism. Eur. J. Clin. Pharm. 1991;40:S33–S36. doi: 10.1007/BF03216286. PubMed DOI
Orolin J., Večeřa R., Jung D., Meyer U.A., Škottová N., Anzenbacher P. Hypolipidemic Effects of Silymarin Are Not Mediated by the Peroxisome Proliferator-Activated Receptor Alpha. Xenobiotica. 2008;37:725–735. doi: 10.1080/00498250701463333. PubMed DOI
Lupp A., Karge E., Deufel T., Oelschläger H., Fleck C. Ciprofibrate, Clofibric Acid and Respective Glycinate Derivatives: Effects of a Four-Week Treatment on Male Lean and Obese Zucker Rats. Arzneimittelforschung. 2008;58:225–241. PubMed
Federico A., Dallio M., Loguercio C. Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules. 2017;22:191. doi: 10.3390/molecules22020191. PubMed DOI PMC
Abenavoli L., Izzo A.A., Milić N., Cicala C., Santini A., Capasso R. Milk Thistle (Silybum Marianum): A Concise Overview on Its Chemistry, Pharmacological, and Nutraceutical Uses in Liver Diseases. Phytother. Res. 2018;32:2202–2213. doi: 10.1002/ptr.6171. PubMed DOI
Brites F., Martin M., Guillas I., Kontush A. Antioxidative Activity of High-Density Lipoprotein (HDL): Mechanistic Insights into Potential Clinical Benefit. BBA Clin. 2017;8:66–77. doi: 10.1016/j.bbacli.2017.07.002. PubMed DOI PMC
Xiao F., Gao F., Zhou S., Wang L. The Therapeutic Effects of Silymarin for Patients with Glucose/Lipid Metabolic Dysfunction: A Meta-Analysis. Medicine. 2020;99:e22249. doi: 10.1097/MD.0000000000022249. PubMed DOI PMC
Surai P.F. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants. 2015;4:204–247. doi: 10.3390/antiox4010204. PubMed DOI PMC
Ohta T., Masutomi N., Tsutsui N., Sakairi T., Mitchell M., Milburn M.V., Ryals J.A., Beebe K.D., Guo L. Untargeted Metabolomic Profiling as an Evaluative Tool of Fenofibrate-Induced Toxicology in Fischer 344 Male Rats. Toxicol. Pathol. 2009;37:521–535. doi: 10.1177/0192623309336152. PubMed DOI
Holeček M., Vodeničarovová M. Effects of Low and High Doses of Fenofibrate on Protein, Amino Acid, and Energy Metabolism in Rat. Int. J. Exp. Pathol. 2020;101:171–182. doi: 10.1111/iep.12368. PubMed DOI PMC
Johnson A.L., Edson K.Z., Totah R.A., Rettie A.E. Cytochrome P450 ω-Hydroxylases in Inflammation and Cancer. Adv. Pharm. 2015;74:223–262. PubMed PMC
Aubert J., Begriche K., Knockaert L., Robin M.A., Fromenty B. Increased Expression of Cytochrome P450 2E1 in Nonalcoholic Fatty Liver Disease: Mechanisms and Pathophysiological Role. Clin. Res. Hepatol. Gastroenterol. 2011;35:630–637. doi: 10.1016/j.clinre.2011.04.015. PubMed DOI
Leung T.M., Nieto N. CYP2E1 and Oxidant Stress in Alcoholic and Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2013;58:395–398. doi: 10.1016/j.jhep.2012.08.018. PubMed DOI
Harjumäki R., Pridgeon C.S., Ingelman-Sundberg M. CYP2E1 in Alcoholic and Non-Alcoholic Liver Injury. Roles of ROS, Reactive Intermediates and Lipid Overload. Int. J. Mol. Sci. 2021;22:8221. doi: 10.3390/ijms22158221. PubMed DOI PMC
Rolo A.P., Teodoro J.S., Palmeira C.M. Role of Oxidative Stress in the Pathogenesis of Nonalcoholic Steatohepatitis. Free Radic. Biol. Med. 2012;52:59–69. doi: 10.1016/j.freeradbiomed.2011.10.003. PubMed DOI