IgG glycopeptide enrichment using hydrophilic interaction chromatography-based solid-phase extraction on an aminopropyl column
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
No 336421
Grant Agency of Charles University
SVV260560
Charles University
PubMed
38349535
PubMed Central
PMC10901958
DOI
10.1007/s00216-024-05187-y
PII: 10.1007/s00216-024-05187-y
Knihovny.cz E-resources
- Keywords
- Glycopeptide enrichment, Glycoproteomics, Hydrophilic interaction liquid chromatography, Immunoglobulin G, Solid-phase extraction,
- MeSH
- 2-Propanol MeSH
- Acetates MeSH
- Acetonitriles MeSH
- Chromatography, Liquid methods MeSH
- Solid Phase Extraction methods MeSH
- Formates * MeSH
- Glycopeptides * chemistry MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Immunoglobulin G chemistry MeSH
- Humans MeSH
- Methanol * MeSH
- Solvents MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 2-Propanol MeSH
- Acetates MeSH
- Acetonitriles MeSH
- Formates * MeSH
- formic acid MeSH Browser
- Glycopeptides * MeSH
- Immunoglobulin G MeSH
- Methanol * MeSH
- Solvents MeSH
The sample preparation step is pivotal in glycoproteomic analysis. An effective approach in glycoprotein sample preparation involves enriching glycopeptides by solid-phase extraction (SPE) using polar stationary phases in hydrophilic interaction liquid chromatography (HILIC) mode. The aim of this work is to show how different experimental conditions influence the enrichment efficiency of glycopeptides from human immunoglobulin G (IgG) on an aminopropyl-modified SPE column. Different compositions of the elution solvent (acetonitrile, methanol, and isopropanol), along with varying concentrations of elution solvent acidifiers (formic and acetic acid), and different concentrations of acetonitrile for the conditioning and washing solvents (65%, 75%, and 85% acetonitrile) were tested to observe their effects on the glycopeptide enrichment process. Isopropanol proved less effective in enriching glycopeptides, while acetonitrile was the most efficient, with methanol in between. Higher formic acid concentrations in the elution solvent weakened the ionic interactions, particularly with sialylated glycopeptides. Substituting formic acid with acetic acid led to earlier elution of more glycopeptides. The acetonitrile concentration in conditioning and washing solutions played a key role; at 65% acetonitrile, glycopeptides were not retained on the SPE column and were detected in the flow-through fraction. Ultimately, it was proven that the enrichment method was applicable to human plasma samples, resulting in a significant decrease in the abundances of non-glycosylated peptides. To the best of our knowledge, this study represents the first systematic investigation into the impact of the mobile phase on glycopeptide enrichment using an aminopropyl-modified SPE column in HILIC mode. This study demonstrates the substantial impact of even minor variations in experimental conditions, which have not yet been considered in the literature, on SPE-HILIC glycopeptide enrichment. Consequently, meticulous optimization of these conditions is imperative to enhance the specificity and selectivity of glycoproteomic analysis, ensuring accurate and reliable quantification.
See more in PubMed
Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol. 2020;21(12):729–749. doi: 10.1038/s41580-020-00294-x. PubMed DOI
Murray RK, Granner DK, Mayes PA, Rodwell VW. Harper’s illustrated biochemistry. 26. New York: Lange Medical Books/McGraw-Hill; 2003. pp. 514–535.
Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395–410. doi: 10.1007/s00216-016-9880-6. PubMed DOI PMC
Haukedal H, Freude KK. Implications of glycosylation in Alzheimer’s disease. Front Neurosci. 2021;14:625348. doi: 10.3389/fnins.2020.625348. PubMed DOI PMC
Štambuk T, Gornik O. Protein glycosylation in diabetes. In: Lauc, G., Trbojević-Akmačić, I, editors. The role of glycosylation in health and disease. Adv Exp Med Biol. 2021;1325:285–305. 10.1007/978-3-030-70115-4_14. PubMed
Seeberger PH, Freedberg DI, Cummings RD. Glycans in biotechnology and the pharmaceutical industry. In Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Mohnen D, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2022. Chapter 57. PubMed
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113(4):2343–2394. doi: 10.1021/cr3003533. PubMed DOI PMC
Bagdonaite I, Malaker SA, Polasky DA, Riley NM, Schjoldager K,Vakhrushev SY, Halim A, Aoki-Kinoshita KF, Nesvizhskii AI, Bertozzi CR, Wandall HH, Parker BL, Thaysen-Andersen M, Scott NE. Glycoproteomics. Nat Rev Methods Primers. 2022; 2(1). 10.1038/s43586-022-00128-4.
Patwa T, Li C, Simeone DM, Lubman DM. Glycoprotein analysis using protein microarrays and mass spectrometry. Mass Spectrom Rev. 2010;29(5):830–844. doi: 10.1002/mas.20269. PubMed DOI PMC
Mathew J, Sankar P, Varacallo M. Physiology, Blood Plasma. In: StatPearls. Treasure Island: StatPearls Publishing. 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK531504/ Accessed 05 Oct 2023. PubMed
Ruiz-May E, Catalá C, Rose JK. N-Glycoprotein enrichment by lectin affinity chromatography. In Jorrin-Novo J, Komatsu S, Weckwerth W, Wienkoop S, editors. Plant Proteomics. Methods in Molecular Biology. New Jersey: Humana Press; 2014. 10.1007/978-1-62703-631-3_43. PubMed
Sajid MS, Jabeen F, Hussain D, Ashiq MN, Najam-Ul-Haq M. Hydrazide-functionalized affinity on conventional support materials for glycopeptide enrichment. Anal Bioanal Chem. 2017;409(12):3135–3143. doi: 10.1007/s00216-017-0254-5. PubMed DOI
Kong S, Zhang Q, Yang L, Huang Y, Liu M, Yan G, Zhao H, Wu M, Zhang X, Yang P, Cao W. Effective enrichment strategy using boronic acid-functionalized mesoporous graphene–silica composites for intact N- and O-linked glycopeptide analysis in human serum. Anal Chem. 2021;93(17):6682–6691. doi: 10.1021/acs.analchem.0c05482. PubMed DOI
Wang D, Hincapie M, Rejtar T, Karger BL. Ultrasensitive characterization of site-specific glycosylation of affinity purified haptoglobin from lung cancer patient plasma using 10 μm i.d. Porous Layer Open Tubular (PLOT) LC-LTQ-CID/ETD-MS. Anal Chem. 2011; 83(6): 2029–2037. 10.1021/ac102825g. PubMed PMC
Zhu R, Zacharias L, Wooding KM, Peng W, Mechref Y. Glycoprotein enrichment analytical techniques: advantages and disadvantages. Methods Enzymol. 2017;2017(585):397–429. doi: 10.1016/bs.mie.2016.11.009. PubMed DOI PMC
Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis: sample preparation. J Sep Sci. 2012;35(18):2341–2372. doi: 10.1002/jssc.201200434. PubMed DOI
Jensen PH, Mysling S, Højrup P, Jensen ON. Glycopeptide enrichment for MALDI-TOF mass spectrometry analysis by hydrophilic interaction liquid chromatography solid phase extraction (HILIC SPE). In: Kohler J, Patrie S, editors. Mass spectrometry of glycoproteins. Methods in Molecular Biology. New Jersey: Humana Press; 2013. pp. 131–144. 10.1007/978-1-62703-146-2_10. PubMed
Zacharias LG, Hartmann AK, Song E, Zhao J, Zhu R, Mirzaei P, Mechref Y. HILIC and ERLIC enrichment of glycopeptides derived from breast and brain cancer cells. J Proteome Res. 15(10):3624–3634. 10.1021/acs.jproteome.6b00429. PubMed PMC
Cao W, Huang J, Jiang B, Gao X, Yang P. Highly selective enrichment of glycopeptides based on zwitterionically functionalized soluble nanopolymers. Sci Rep. 2016; 6(1). 10.1038/srep29776. PubMed PMC
Yang W, Shah P, Hu Y, Toghi Eshghi S, Sun S, Liu Y, Zhang H. Comparison of enrichment methods for intact N- and O-linked glycopeptides using strong anion exchange and hydrophilic interaction liquid chromatography. Anal Chem. 2017;89(21):11193–11197. doi: 10.1021/acs.analchem.7b03641. PubMed DOI PMC
Alagesan K, Khilji SK, Kolarich D. It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem. 2017;409(2):529–538. doi: 10.1007/s00216-016-0051-6. PubMed DOI PMC
Molnarova K, Duris A, Jecmen T, Kozlik P. Comparison of human IgG glycopeptides separation using mixed-mode hydrophilic interaction/ion-exchange liquid chromatography and reversed-phase mode. Anal Bioanal Chem. 2021;413(16):4321–4328. doi: 10.1007/s00216-021-03388-3. PubMed DOI
Kozlik P, Molnarova K, Jecmen T, Krizek T, Goldman R. Glycan-specific precipitation of glycopeptides in high organic content sample solvents used in HILIC. J Chromatogr A. 2020;1150:122196. doi: 10.1016/j.jchromb.2020.122196. PubMed DOI PMC
Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem. 2012;402(1):231–247. doi: 10.1007/s00216-011-5308-5. PubMed DOI PMC
Cortés S, Subirats X, Rosés M. Solute–solvent interactions in hydrophilic interaction liquid chromatography: characterization of the retention in a silica column by the Abraham linear free energy relationship model. J Solution Chem. 2022;51(9):1081–1100. doi: 10.1007/s10953-022-01161-3. DOI
Lewis AL, Chen X, Schnaar RL, Varki A. Sialic acids and other nonulosonic acids. In: In Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Mohnen D, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH, editors. Essentials of Glycobiology. New York: Cold Spring Harbor Laboratory Press; 2022. Chapter 15. PubMed
Battellino T, Ogata K, Spicer V, Ishihama Y, Krokhin O. Acetic acid ion pairing additive for reversed-phase HPLC improves detection sensitivity in bottom-up proteomics compared to formic acid. J Proteome Res. 2023;22(1):272–278. doi: 10.1021/acs.jproteome.2c00388. PubMed DOI
Redón L, Subirats X, Rosés M. Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents. J Chromatogr A. 2021;1656:462543. 10.1016/j.chroma.2021.462543. PubMed
Dinh NP, Jonsson T, Irgum K. Water uptake on polar stationary phases under conditions for hydrophilic interaction chromatography and its relation to solute retention. J Chromatogr A. 2013;1320:33–47. doi: 10.1016/j.chroma.2013.09.061. PubMed DOI
Jandera P, Hájek T. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review. J Sep Sci. 2018;41(1):145–162. doi: 10.1002/jssc.201701010. PubMed DOI
Redón L, Subirats X, Rosés M. HILIC characterization: estimation of phase volumes and composition for a zwitterionic column. Anal Chim Acta. 2020;1130:39–48. doi: 10.1016/j.aca.2020.06.035. PubMed DOI
Guo Y, Bhalodia N, Fattal B, Serris I. Evaluating the adsorbed water layer on polar stationary phases for hydrophilic interaction chromatography (HILIC) Separations. 2019;6(2):19. doi: 10.3390/separations6020019. DOI
Sanda M, Goldman R. Data independent analysis of IgG glycoforms in samples of unfractionated human plasma. Anal Chem. 2016;88(20):10118–10125. doi: 10.1021/acs.analchem.6b02554. PubMed DOI PMC
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. doi: 10.3389/fimmu.2014.00520. PubMed DOI PMC
Hortin GL, Sviridov D, Anderson NL. High-abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance. Clin Chem. 2008;54(10):1608–1616. doi: 10.1373/clinchem.2008.108175. PubMed DOI
Panuwet P, Hunter RE, D'Souza PE, Jr, Chen X, Radford SA, Cohen JR, Marder ME, Kartavenka K, Ryan PB, Barr DB. Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: advancing biomonitoring. Crit Rev Anal Chem. 2016;46(2):93–105. doi: 10.1080/10408347.2014.980775. PubMed DOI PMC